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work with a high degree of accuracy allowing the work to be more effectively load balanced. The
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processor. The effect of this minimization technique has been compared to load balancers within
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Abstract

In order to quickly take advantage of petascale machines, which
are in the near future, we must improve the performance of current
codes. In the past, general-purpose adaptive codes, such as Uintah,
have been shown to scale to thousands of processors. However, in
order to take advantage of petascale machines these codes will have
to scale to hundreds of thousands of processors. One important as-
pect of parallel codes is the load balance. Load imbalance can greatly
hinder performance and scalability at large numbers of processors. In
this paper we describe two improvements to the existing load balancer
within Uintah. The first improvement involves using timings gathered
at run-time in order to predict the cost of work with a high degree of
accuracy allowing the work to be more effectively load balanced. The
second improvement proposes a method to distributed work accord-
ing to a space-filling curve more effectively by attempting to minimize
the maximum amount of work assigned to any one processor. The
effect of this minimization technique has been compared to load bal-
ancers within Zoltan and has shown that significant improvements are
possible.

1 Introduction

The Center for Safety of Accidental Fires and Explosions (C-SAFE)
simulates fires and explosions in order to improve safety by gaining a
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better understanding of the underlying physical phenomena that affect
explosions. The simulations are done using their large parallel multi-
physics framework Uintah [14, 11, 19, 20, 18]. Uintah is a parallel and
adaptive framework built upon the Common Component Architecture
(CCA) that can be used to simulate a wide variety of problems on
structured grids. By being both parallel and adaptive Uintah is able
to solve large problems with a high degree of accuracy quickly [18].

With petascale computing in the near future it is important that
frameworks such as Uintah utilize parallel processors efficiently. The
changing grid in SAMR applications have made scalability challeng-
ing, the cost to change the grid often dominates the runtime causing
performance to suffer [18, 26, 27]. However, promising scaling results
have recently been shown in Uintah up to 12,000 processors and up to
32,000 processors in ALPS [4]. The scalability results between ALPS
and Uintah cannot be directly compared due to significant differences
in both the problems being simulated and the simulation methodolo-
gies used.

One crucial requirement for scalability is the load balance. Load
balancing is the process in which work is distributed across proces-
sors such that each processor has approximately the same amount of
work and such that the required communication between processors
is minimized. In parallel adaptive frameworks load balancing must
occur whenever the grid changes. In many SAMR problems the grid
changes rapidly, a single grid may be used a only a few times before
a new one is required. The rapid changing of the grid can cause per-
formance problems if the adaptive portions of the framework are not
efficient enough. This has lead to the use of dynamic load balancers,
which are a class of load balancers that emphasize the time to load
balance.

The need for varying load balancers in a large variety of codes
has lead to the development of the load balancing packages such as
Zoltan [5, 3, 2], Metis [15], and Jostle [24]. Zoltan is a collection of
common load balancing algorithms that are designed to run quickly
in parallel. By combining the various algorithms into a single package
with a unified interface developers can quickly switch between a variety
of algorithms choosing the best one to fit their needs. Uintah has
designed its own load balancer based on space-filling curves (SFCs)
and has also recently connected to the Zoltan package in order to
compare against some of the standard algorithms. This paper will
discuss methods used to dynamically load balance a wide variety of
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simulations within Uintah and compare Uintah’s load balancer against
some of the common algorithms found in Zoltan.

2 Uintah

The Uintah Computational Framework, is a set of parallel software
components and libraries built upon the DOE common component
architecture that facilitate the solution of partial differential equa-
tions (PDEs) on SAMR grids. Uintah is a sophisticated computational
framework that can integrate multiple simulation components, analyze
the dependencies and communication patterns between them, and effi-
ciently execute the resulting multi-physics simulation. Uintah employs
an abstract task-graph representation to describe computation and
communication. Through this mechanism, Uintah components del-
egate decisions about parallelism to a framework component, which
determines communication patterns and characterizes the computa-
tional workloads, needed for global resource optimization. This allows
parallelism to be integrated between multiple components while main-
taining overall scalability and allows the Uintah runtime to analyze
the structure of the computation to automatically enable load balanc-
ing, data communication, parallel I/O, checkpointing and restarting
capabilities.

Using the task-graph simulation designers can develop large-scale
parallel SAMR simulations with little understanding of the underlying
parallelism. To do this the designers must specify their algorithm as
a series of tasks. Each task specifies its computation and the data de-
pendencies required by the computation. The task specifies the data
dependencies by stating which variables the tasks requires in order
to perform its computation along with the stencil width. In addi-
tion, tasks specify which variables they compute or modify. Using
the dependency information the framework can create a task graph
which specifies the order of the computation and communication. In
addition, the framework is advanced enough to perform many commu-
nication optimizations like asynchronous communication and message
coalescing.

Uintah supports a variety of variable types that can be used by
simulation components. Figure 1 show the variables that Uintah sup-
ports. Cell centered variables lie in the center of a cell, face centered
variables lie on the X, Y, or Z face of a cell, node centered variables
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Figure 1: The variable types in Uintah

lie on the corners of a cell, and particle variables lie at the location
of particles. Particles can be placed throughout the domain and are
allowed to move throughout the simulation. The wide variety of sup-
ported variables has allowed Uintah to be used for a wide variety of
applications [11, 13, 12] ranging from simulating fires and explosions
to simulating human vocal chords.

Parallelism is achieved in Uintah by decomposing the structured
grid into a set of rectangular regions called patches that are distributed
across processors. Tasks are executed on each patch and communica-
tion between patch boundaries is done automatically by the framework
when needed. In order to optimize many different patch operations
the framework Uintah restricts patch boundaries to occur at fixed lo-
cations. When specifying the SAMR parameters a user includes a
minimum patch size which is used to create a lattice on the grid. The
lattice is laid across the grid such that the lattice edges are divisible by
the minimum patch size. Doing this allows Uintah to make many as-
sumptions about patch layout which simplifies the SAMR framework
making many SAMR operations faster.

Uintah currently supports multiple simulation components with
SAMR. Examples of these modules include the fluid dynamics code
ICE [16], the particle method MPM [9], and a coupled method com-
bining both ICE and MPM called MPMICE [8].

3 Dynamic Load Balancing

One key factor in parallel performance is the patch distribution. Patches
must be distributed evenly such that each processor performs nearly
the same amount of work. Failure to evenly balance the work leads
to poor performance because processors with less work will complete
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their work faster than processors with more work and will have to sit
idle until the processors with more work finish. In addition, patches
should be distributed such that communication is minimized. In many
simulations communication is predominantly local, meaning that only
a small area around each patch must be communicated from neigh-
boring patches in order to perform calculations on that patch. If two
neighboring patches are placed on the same processor then communi-
cation between those patches does not need to occur. Thus clustering
patches together can lead to a large reduction in the required com-
munication. In addition, for dynamic load balancing, it is important
that the time to generate the patch distribution is small relative to
the overall computation.

Thus dynamic load balancing can be described as the minimization
of three competing costs.

1. The cost of load imbalance

2. The cost communication

3. The cost to generate the load distribution

The minimization of these three costs does not coincide. For ex-
ample, the best way to minimize communication is to place all of the
work on a single processor which would maximize the load imbalance.
Thus any load balancing algorithm must try to balance the minimiza-
tion of these three costs such that the overall runtime is minimized.
The following will discuss the effects of these three costs on the overall
runtime of the simulation.

Load imbalance occurs when one or more processors are assigned
more work than other processors. When the simulation is executing
the processors that have more work will take more time to finish ex-
ecuting. As a result the processors with less work will typically have
to wait at some point for the other processors to catch up. In an ideal
load balance each processor has the same amount of work causing
the processors to finish their tasks around the same time minimizing
the amount of time that processers wait for each other. A large load
imbalance can greatly affect the overall performance and scalability.

Too much communication can also cause performance issues. Com-
munication across the network is slow relative to the time for compu-
tation. Simulation time can easily be dominated by communication.
However, if patches are placed on the same processor as their neighbor-
ing patches then communication between those patches is not needed.
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By clustering the patches together the framework can greatly reduce
the communication between patches significantly affecting the overall
runtime.

Finally the time to generate the load distribution can also greatly
affect the overall runtime. In SAMR the grid can change often. Each
time the grid changes the work must be reload balanced. If a slow
load balancing algorithm is used and load balancing occurs often the
time to load balance can dominate the overall runtime and in this
case it may be preferable to use a faster load balancing algorithm that
produces a poorer patch distribution.

Most load balancing algorithms are either geometric or graph based.
Geometric based algorithms partition work based on coordinate infor-
mation and graph based algorithms partition work based on a weighted
graph that represents both communication and computation.

3.1 Geometric Based Algorithms

Geometric based algorithms use coordinate information about the cal-
culation to load balance the work. The computation can be repre-
sented as a series of nodes each with an assigned weight representing
the amount of work associated with that node. The weighted nodes
have coordinate information provided by the simulation. The domain
is then partitioned into approximately equal weighted partitions ex-
plicitly minimizing goal 1. Goal 2 is not explicitly addressed with
these algorithms. Instead it is implicitly addressed through the use of
coordinate information. In most calculations communication is pre-
dominantly local. That is in order to make a calculation on a cell
only a small region around that cell is needed. By using the coor-
dinate data the load balancer can cluster work that is geometrically
close onto the same processor reducing the communication needed.
Uintah’s and Zoltan’s space-filling curve algorithms are examples of a
geometric based algorithm. Other geometric based algorithms found
in Zoltan include Recursive Coordinate Bisection (RCB) and Recur-
sive Inertial Bisection (RIB) [3, 2].

3.1.1 Recursive Coordinate Bisection

Recursive Coordinate Bisection uses a bisection technique to partition
the domain. The algorithm first chooses one of the coordinate axis and
then splits the domain by making an appropriate perpendicular cut.

6



The position of the cut should be such that both sides of the domain
have approximately equal weights. The sub-domains are then further
divided by recursive application of the same splitting algorithm until
the number of partitions equals the number of processors [1].

3.1.2 Recursive Inertial Bisection

Recursive Inertial Bisection was purposed to improve the load balanc-
ing result of RCB. Similar to RCB, RIB divides the domain based on
the location of the objects being partitioned by use of cutting planes.
But RIB introduced a more flexible method on how to choose the
direction to cut the domain. The algorithm computes an eigenvec-
tor of the inertial matrix to decide the direction of the principle axis
instead of a coordinate axis, so that the cutting plane will always be
orthogonal to the longest direction of the domain. The domain is then
recursively divided into two pieces until the number of sub domains
needed is reached [25].

3.1.3 Space-Filling Curves

Other common geometric based dynamic load balancing algorithms
are based on space-filling curves. Space-filling curves are fractal curves
that fill the domain as they are refined. Load balancers based on these
curves use the curves to cluster patches together. This is done by or-
dering the patches in the order that the space-filling curve traverses
them. The patches are then split into approximately equal sized curve
segments satisfying goal 1. Some space-filling curves move through
space locally without jumping across the domain. In these cases the
curve maintains locality. Meaning units of work that are close together
on the curve are also close together in the domain. This implies that
objects close together on the curve are more likely to communicate
than objects that are further apart on the curve. Partitioning the
curve clusters pathes onto the same processors as their neighbors re-
ducing the communication. The Hilbert curve [10] is a commonly used
curve for dynamic load balancing. The Hilbert curve moves through
space without jumping across the domain ensuring that patches neigh-
boring on the curve also are neighbors in space. In fact, the ordering
produced by the Hilbert curve is a traversal of a subset of the commu-
nication graph. This makes the Hilbert curve ideal for load balancing
algorithms. Space-filling curve based algorithms are commonly used

7



for dynamic load balancing because they are fast and result in decent
partitions [6, 23, 22, 21].

3.2 Graph Based Algorithms

A parallel computation can be represented by a directional weighted
graph where the nodes represent work and the edges represent com-
munication. Each node is assigned a weight representing the cost of
computation. In addition, each edge is also assigned a weight repre-
senting the cost of communication between two nodes. Graph based
load balancing algorithms use this graph to partition the work by min-
imizing both the computation weight and the communication weight.
These algorithms require a graph of the communication and compu-
tation to be explicitly formed. An example of such an algorithm is
Zoltan’s Parallel HyperGraph partitioner [3, 2].

Since graph based algorithms explicitly take into account com-
munication weights they tend to produce better load balances than
geometric based algorithms. However, graph based algorithms tend
to take much more time to create the load distribution than geometric
based algorithms. Uintah does not explicitly form the communication
graph. The cost of explicitly creating the graph along with the in-
creased cost of load balancing associated with graph based algorithms
has lead to the use of geometric based load balancers within Uintah.
Because of this graph based algorithms will not be further considered
in this paper.

4 Uintah’s Dynamic Load Balancing

Uintah uses a dynamic load balancer based on space-filling curves
because they have been shown to quickly produce decent load bal-
ances. In order to achieve as much performance as possible Uintah
has developed its own parallel space-filling curve algorithm. The load
balancing algorithm can be described in the following three processes:
sorting the patches by the space-filling curve, estimating the weights
for the patches, and assigning the patches to processors. Each of these
processes is performed on each level individually. The following will
discuss those three parts and compare Uintah’s performance using
both its algorithm and Zoltan’s algorithms.
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4.1 Curve Generation

Dynamic load balancers based space-filling curves must first order
patches according to the space-filling curve. Uintah does this through
a highly parallel method described in [17]. This method reduces the
curve generation to a parallel sorting method allowing the use of highly
parallel sorting methods which have been studied in detail in the past.
Each processor is given a subset of the patches to sort according to the
space-filling curve. While sorting the subset of patches each processor
generates a unique curve index for each of its patches that are then
used to merge the curves from each processor into a single curve. Using
this method the cost for generating the curve is insignificant compared
to other parts of the simulation. Once the patches are sorted by the
space-filling curve the curve must be partitioned into approximately
equally weighted curve segments. To do this each patch must first be
assigned a weight.

4.2 Weight Estimation

In order to balance the load effectively the load balancer must be able
to predict the amount of work on each patch. Without an accurate
prediction the load balance can suffer. For simple problems this can
by modeling the computations performed on variables. For example,
the ICE algorithm uses cell centered variables and performs a fixed
number of calculations per each cell. Thus the cost for computing on
a single patch could be represented as the following:

Wp = cp + ccNc

Where cp is a constant cost per patch, cc is the constant cost per
cell, and Nc is the number of cells in the patch. In order for this
model to be accurate the user would have to provide constants that
were proportionally accurate adding an additional layer of complexity
to the user. These constants can vary from machine to machine and
would need to be modified whenever changes are made to the ICE
code. The model gets significantly more complicated for MPMICE
simulations. In MPMICE, calculations are performed on cells, nodes,
and particles. The ICE model could be expanded for an MPMICE
problem as follows:

Wp = cp +
v∑

cvNv
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Where v denotes the variable type, cv denotes the constant cost per
variable of type v, Nv denotes the quantity of each variable contained
in the patch, and v is the following variable types: cell, node, and
particle. For this model the user would have to provide four constants
which would be difficult to determine. In addition, the work per node
in MPMICE is not constant. MPMICE performs an iterative solve
locally on each node which can converge at different rates. In order for
this model to be accurate the nodes would all need to converge at close
to the same rate or the model would need to be expanded in order
to account for differing convergence rates. It is clear that creating
accurate cost models for a simulation as complex as MPMICE is a
challenging task that is prone to inaccuracies.

4.2.1 Weight Profiling

Because of the drawbacks related to accurate cost modeling Uintah
uses an alterative approach which uses forecasting methods to predict
the cost of each patch based on observations made at runtime. During
task execution the time to complete each task is recorded and used
to update a simple forecasting model which is then used to predict
the time to execute on each patch in the future. This provides a
mechanism to accurately predict the cost of each patch while requiring
little information from the user.

Uintah currently uses simple exponential smoothing as its fore-
casting method. This model, described in [7], has been used in a wide
variety of applications because of its accuracy and simplicity. The
model is as follows:

Wr,t+1 = αEr,t + (1− α)Wr,t (1)

Where Wr,t is the predicted weight at timestep t for region r, Er,t is
the actual execution time at timestep t for region r and α is a weight-
ing factor in the range of [0,1] which represents the rate of decay on
past data. This method can also be viewed as a weighted moving av-
erage where the weight on past observations decreases exponentially.
A smaller value for α causes the data to put more weight on recent
observations causing the forecast to respond more quickly to changes
in the actual value but also causes the forecast to become more suscep-
tible to noise. A larger value for α will cause that data to be smoother
eliminating noise but also causes the forecast to react more slowly to
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changes in the actual value. α can be defined in terms of the size of a
moving average window using the following formula:

α =
2.0

T + 1

Where T is the number of timesteps that will contain 99.9% of the
total weight in the weighted average [7]. Uintah uses a default value
of 20 for T.

On the initial timestep and when new regions are created through
the AMR process Wr,t is unavailable requiring an estimation of the
initial value. For this timestep Uintah uses one of the simple models
specified above. While this model is likely highly inaccurate the load
balance produced by it is only used for a couple of timesteps. These
initial timesteps are then used to set the initial value by setting Wr,0 =
Er,0.

A different initialization approach is used for new regions. The
regridding process of AMR codes can produce regions that did not
exist on the previous timestep. In these cases there will be no data
associated with that region and an initial value must be estimated.
Currently this is done by setting the initial value for new regions equal
to the average cost of all regions. This ensures that the initial guess is
at least close to the actual value ensuring that the estimation will be
accurate within a few timesteps and that the load imbalance caused
by this guess will be limited.

In order to allow for changing patch sets forecasting is performed
on a per region basis. The difference between regions and patches is
shown in figure 2. Regions are equally size portions of the domain
whose size is determined by the same lattice that is used to determine
patch boundaries. Throughout the run the location and size of a region
does not change. Patches are comprised of one or more regions and are
allowed to change throughout the simulation. This allows for a simple
mapping of costs between patches and regions. The measured cost for
each region is equal to the cost of the patch times the proportion of
the patch that the region encompasses as described in the following
formula:

Er,t = Ep,t
Vr

Vp
(2)
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Regions

Patches

Figure 2: Regions and Patches

where t is the current timestep, Er,t is the measured computation
time for region r, Ep,t is the measured execution time for patch p,
Vp is the volume of patch p, and Vr is the volume of region r. In
addition Wp,t+1 can be defined as the sum of the weights of all regions
contained in patch p:

Wp,t+1 =
r∈p∑
r

(Wr,t+1) (3)

Uintah uses a method to store the profiling data that minimizes
both storage and communication. The profile data is stored locally on
each processor for each region. When a processor executes a task on a
patch it adds the contribution to its local profile data using equation
2. If a region was owned by a different processor in the past then local
profile data will exist on multiple processors but each processor will
only update its local data. At the end of each timestep the simulation
finalizes the profiling by applying formula 1. Updating the profiling
data each timestep is a local operation which does not require any
communication. However, communication is required when load bal-
ancing occurs. During load balancing each processor must know the
cost of each patch. This is done by applying equation 3 locally and
then performing an MPI Allreduce to get the global sum.

In order to keep the data structures for profiling as small as possible
contributions are stored in Standard Template Library (STL) maps
where a region only has an entry if it is non-zero. This causes the
storage per processor to be proportional to the number of patches per
processor. In addition, when the contribution for a region becomes too
small it is deleted from the map. When a processor has not updated
a region in its map for over T timesteps then the contributing weight
for that region is less than .1% of the total weight at this point we
consider the weight to be insignificant and delete it from the map.
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This prevents the size of the maps from slowly growing over time.
Figure 3 shows the average absolute and relative error per patch

between the predicted weight and the actual cost for an expanding 3D
blastwave in ICE. The left graph shows that the primary amount of
error in the predictions is caused by the finest level. This is expected as
the finest level has the more work than the coarser levels and thus more
potential for work. The right graph shows the mean absolute error per
patch as a percentage of execution time. This graph shows that the
profiling error for level 0 and level 2 are both under 10%. The error
on level 1 tends to spike upward when regridding occurs. While the
percentage error is higher on level 1 the amount of imbalance caused
is insignificant because the overall runtime is dominated by execution
on the fine level. Higher order smoothing methods described in [7]
have also been used but provided no benefited over the first order
smoothing described above. In the future it may be worthwhile to use
advanced forecasting methods like a Kalman filter.
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Figure 3: The Mean Absolute and Relative Forecasting Error

4.3 Distribution Algorithm

The distribution algorithm partitions the linearly ordered patches into
segments of approximately equal weight in order to minimize load
imbalance. If the simulation is load balanced processors with less
work will have to wait for processors with more work causing the
parallel computation resource to be used inefficiently. In other words,
the simulation will move at the speed of the processor with the most
work. Because of this Uintah attempts to minimize both the maximum
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amount of work assigned to any one processor and the total imbalance,
where imbalance is defined as

I = |1− Wavg

Wmax
|

Uintah’s curve distribution algorithm linearly traverses the patches
along the curve while assigning them to processors. Two heuristics
are used to determine when to partition the curve. The first heuris-
tic attempts to minimize the imbalance by assigning the patch where
it causes the least imbalance relative to the remaining work. This is
done by tracking the amount of work assigned to the current processor
along with the average amount of unassigned work for the remaining
processors. The patch is assigned to the current processor if the im-
balance caused by placing the patch on the current processor is less
than the imbalance caused by not placing the patch on the current
processor.

The second heuristic attempts to minimize the maximum assigned
work by not allowing the work on any processor to exceed some
threshold. Each processor uses a different threshold in the range of
(Wmax,Wavg) where Wmax is the current maximum weight of the best
known assignment and Wavg is the average amount of work per pro-
cessor. This causes each processor to generate potentially different
assignments and in some cases individual processors may not be able
to generate a valid assignment due to the maximal constraint. Next
Wmax is set to the lowest maximum found by any processor and the
assignment algorithm repeats. The process is terminated when no
improvements are made to Wmax. This method searches for assign-
ment possibilities in parallel causing the algorithm to converge in few
iterations. Pseudo code for this process can be found in figure 4.

5 Zoltan Results

The Uintah framework can connect to the Zoltan dynamic load bal-
ancing package. This allows the Uintah space-filling curve (USFC)
code to be compared against other load balancing methods. Figure 5
shows a comparison of the total runtime for Zoltan’s load balancers
normalized by Uintah’s runtime for an expanding blastwave in ICE.

This graph shows that the USFC code is between 1%-11% faster
than the Zoltan space-filling curve (ZHSFC) code for the full range of
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function assignPatches(patches,weights,assignments)

totalWeight=Sum(weights), averageWeight=totalWeight/numProcessors, maxWeight=totalWeight, more=true

while(more)

//compute local maximum weight

myMaxWeight=averageWeight+(maxWeight-averageWeight)*rank/numProcessors

remainingWeight=totalWeight, remainingAverageWeight=averageWeight

currentWeight=0, currentProc=0

for each patch in patches

takeWeight=currentWeight+weights[patch]

takeImbalance=|takeWeight-remainingAverageWeight|

noTakeImbalance=|currentWeight-remainingAverageWeight|

if(takeImbalance<noTakeImbalance && takeWeight<myMaxWeight )

//assign to current processor

newassignments[patch]=currentProc

currentWeight=takeWeight

else

currentProc++

//update average statistics

remainingWeight-=currentWeight

remainingAverageWeight=remainingWeight/(NumProcessors-currentProc)

//assign to next processor

newassignments[patch]=currentProc

currentWeight=weights[patch]

end if

end for

localMaxWeight=infinity

//if my assignment is valid

if(currentProc<numProcessors)

//update assignments

assignments=newAssignments

localMaxWeight=getMaxAssignedWeight(patches,weights,assignments)

end if

//compute best minimum on all processors

maxWeight=AllReduceMin(localMaxWeight)

if(maxWeight>=localMaxWeight)

more=false

end while

/All gather the assignment from the processor with the lowest max cost

AllGather(assignments)

end function

Figure 4: The assign patches function.
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Figure 5: A Comparison of Uintah’s Runtime

processors tested. In addition, the USFC code is faster than Zoltan’s
recursive coordinate bisection (ZRCB) and recursive inertial bisection
(ZRIB) code at smaller numbers of processors. At larger numbers of
processors the ZRCB and ZRIB codes are better.

Figure 6 helps explain where Uintah is gaining and loosing on the
Zoltan algortihms. This figure shows both the maximum execution
time across all processors and the average time spent waiting on MPI
across all processors. Generally the maximum execution time is lower
for Uintah than the Zoltan algorithms suggesting USFC does a better
job of balancing the the work leading to an increase in performance
using USFC. However the average MPI Wait time for USFC is only
better on lower numbers of processors.
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Figure 6: A Comparison of Uintah’s Task Execution and MPI Wait Time

The increase in wait time is partially due to increase in time spent
in other components related to the number of messages produced.
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Figure 7 shows the effect of the load balancing algorithms on MPI
communication for the 2048 processor run. The left graph shows the
maximum number of messages on any processor for each timestep and
the right graph shows the total number of bytes that are communi-
cated over MPI. USFC tends to cause more MPI messages than the
other load balancers likely causing the the MPI Wait. At the same
time USFC tends to communicate less information on the whole than
the other load balancers. The increase in messages is likely due to
complexities in the Uintah scheduler that determine how messages
are combined. It is likely that with some patch sets messages are not
being combined optimally causing an increase in the number of mes-
sages. At the same time the decrease in the total number of bytes
implies that the USFC algorithm has done a better job of clustering
patches onto processors than the other algorithms.
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Figure 7: The number and volume of MPI messages for a 2048 processor run

More investigation into the increased number of messages is re-
quired. If the number of messages could be lowered to match the
other load balancers it is likely that the USFC load balancer would
see a significant increase in performance. It is clear that currently
USFC appears to be better than ZHSFC. However, it is not clear that
using a space-filling curve algorithm is always optimal. The RCB and
RIB algorithms at times are better than both SFC algorithms.

Figure 8 shows Uintah’s AMR scalability up to 16,384 processors.
This graph is of 20 timesteps of a two material compressible Navier-
Stokes simulation. At 16,384 processors there are approximately 2.5
patches of size 163 per core. The scalability results shown here are
promising as some scaling is being shown even when there are very
few patches per processor. Future tests will include upwards of 64k
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Figure 8: Uintah Scalability up to 16,384 processors

6 Conclusions/Future Work

The effect of load imbalance on large scale simulations can greatly hin-
der performance. Therefore it is important that much care is put into
distributing work evenly among processors such that communication
is minimized. In order for any load balancing algorithm to distribute
work well the amount of work must be predicted accurately. We have
shown that simple forecasting methods produce highly accurate pre-
dictions on the amount of work. These forecasting methods could be
expanded in the future to more complex but more accurate methods
like Kalman filters.

Zoltan implements a variety of load balancing algorithms allowing
the the algorithm to be easily changed. Currently there is no sin-
gle best algorithm in Uintah. However, Uintah’s space-filling curve
algorithm is better than Zoltan’s space-filling curve algorithm giving
upwards of a 11% increase in overall runtime. Uintah’s space-filling
curve algorithm does not always provide an increase in performance
over Zoltan’s RIB and RCB algorithm despite producing a better load
balance. This is likely due to some complexities within the Uintah
framework that need to be further explored. Understanding where
these performance losses occur could result in a significant increase in
performance within Uintah.

Finally Uintah has shown good scalability up to 16,384 processors.
Currently the scalability is limited by the machines that we have access
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too. In the future we hope to gain access to more processors and test
the scalability at even higher limits. Doing so will help us understand
what is needed to move Uintah to a petascale simulation framework.
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