
1

A Comparison of Load Balancing Algorithms for AMR

in Uintah

Qingyu Meng, Justin Luitjens, Martin Berzins

UUSCI-2008-006

Scientific Computing and Imaging Institute
University of Utah

Salt Lake City, UT 84112 USA

October 27, 2008

Abstract:

This technical report discussed load balancing algorithms for AMR and the implementations of
load balancers currently available in Uintah, the multi-physics framework, developed by the Center
for Accidental Fires and Explosions (C-SAFE) to aid the simulation of fires and explosions. We
designed several experiments to compare these load balancers by the execution time, the balance of
work load distribution, the volume of communications and the efficiency. Form the results, we can
verify that we implemented a better new space-curve filling load balancing algorithm comparing to
Zoltan Load Balancing Library of Sandia National Laboratories. Also through these experiments,
it can provide us a detail of how the load balancing effect the overall performance of large scale
parallel applications.

A Comparison of Load Balancing Algorithms for AMR in Uintah

Qingyu Meng, Justin Luitjens, Martin Berzins

October 16, 2008

1 Introduction

As we have to improve the scalability on large computing system which already comes to petascale with
thousands of processors. The load balancing algorithm, controls both the assignment of workload to pro-
cessors and the interprocessor communications, is obviously critical for parallel computation softwares.
We must assign the work load across the processors more balance to lower the processor’s waiting time
for other processor, and also at the same time, we need to put more computing associated parts together
to reduce the communication cost. That means to compute accuracy balancing result is important to
improve the performance on large scale machines.

But the cost of load balancing process itself should also be considered, especially now adaptive mesh
refinement(AMR) [4] is widely used. When AMR is involved to adaptively increase the resolution of the
grid only where it is needed, to reduce the work load, the mesh keeps changing in computation. In this
situation we need dynamic load balancing(DLB) [7] to assign the workload and it will be called many
times according how the mesh is refined. Therefore, a good DLB algorithm should consider both the
result accuracy and the partitioning cost of itself.

Our study based on Uintah [5, 10–12], the multi-physics framework, developed by the Center for
Accidental Fires and Explosions (C-SAFE) to aid in the simulation of fires and explosions. Uintah uses
both parallel and AMR to perform simulations on very large problems with a high degree of accuracy.

2 Dynamic Load Balancing Algorithms

Parallel computing distribute the data among the processors, the owner of that part of data performs all
computations on its data and also performs communications to the neighbor processors if data depen-
dencies among data items owned by different processors. So the time of execution contains the time of
setting up the data, the time of computing on its own data, the time of communications and the time of
waiting others.

The requirement of dynamic load balancing algorithms is to minimize total execution time.

1. Minimizing processor idle time. (the total weight in each partition is approximate equal)

1

2. Minimizing inter-processor communications. (minimum the total cut-weight of the partition)

3. Minimizing the load balancing time.(the load balancing algorithm should be implemented in par-
allel and light weight)

4. Minimizing the cost to redistribute data.

There are two major kinds of load balancing algorithms in practice. Geometry algorithm also called
mesh based or coordinated algorithm. The computation work on a geometric domain which has may
data items, every data items has coordinates to provide their position and weight of computation cost.
Geometric locality is loosely correlated to data dependencies.

Graph algorithm work on a domain that no geometry information is needed, but the connectivity
among data items and the weight of computation cost of each item is known. This domain can be
represented as graph.

2.1 Geometry algorithms

2.1.1 Recursive Bisection Load Balancing

Recursive bisection is a simple and intuitive algorithm. The algorithm choose a direction and then split
the graph (mesh) by making an appropriate perpendicular cut. The position of the cut should be such that
an equal number of graph vertices (elements) fall on either side of it. The sub-domains are then further
divided by recursive application of the same splitting algorithm until the number of partitions equals
the number of processors. The most common geometry recursive bisection algorithms are Recursive
Coordinate Bisection (RCB) [1] and Recursive Inertial Bisection (RIB) [14]. They use different method
to choose the cutting planes.

• RCB: the cutting plane will always be orthogonal to coordinate in turn.

• RIB: the cutting plane will always be orthogonal to the longest direction of the domain, the eigen-
vector of the inertial matrix.

RCB/RIB uses coordinates, potentially geometrical closed elements are likely to be assigned to the
same processor, that can reduce the communications.

2.1.2 Space Filling Curve Load Balancing

Space filling curve(SFC) was purposed to simplify the partition problem by mapping n-dimensional
space to one dimension [13]. We need two functions to partition a domain:

1. Curve generate function: map a point (elements) in one, two or three dimensions into a curve.

2. Interval partitioning function: seeks divide the curve into P intervals each containing the same
weight of objects associated to these intervals.

2

Curve generate function will map physically close elements also close on the curve. In this way, the
algorithm assigns physically close elements to same processor to reduce the communications.

2.2 Graph algorithms

The computation domain can be represented by an dual communication graph G(V,E). G is an undi-
rected graph, V is a set of vertices represent work, E is a set of edges represent the communication. In
this way, the load balancing algorithm can put the exact communication amount into computation instead
of assuming the communication by coordinates. So we need also provide communication costs for these
algorithms, which makes them more complex.

3 Zotlan Toolkit

Zoltan [6] is a toolkit for parallel load balancing and data management in scientific computing developed
by Sandia National Laboratories. It contains bunch of collations of load balancing algorithms, including
geometric (coordinate-based) partitioners such as RCB, RIB, HSFC and Refinement Tree. Zoltan also
supports Graph, Hypergraph partitioners, some of them implemented by Zoltan itself and others are
from some famous third party load balancing library. These features helped Zoltan to build an unified
interface, so that the users can easily switch from one load balancing algorithm to another algorithm.

Zotlan provide object-based, call-back function style interface [2] which makes it easier to be in-
tegrated in Uintah. For the geometry load balancing algorithms, four call-back functions need to be
implemented, which provide the number of elements, the weights array, the number of dimensions and
the coordinates array. The desired algorithm can be selected by set param function, and also there are
many of additional parameters for each algorithm. After everything is setup, call LB Partition and this
function will perform the partition and return the result.

4 Load Balancers in Uintah

The load balancing procedure in Uintah working with the scheduler determines a reasonable allocation
of tasks to processing resources based on predicted weights. These predicted weights are calculated
through certain criteria, such as number of particles, number of patches, number of cells, etc. The DLB
attempts to guarantee that an equal amount of work is distributed to each processor allowing for optimal
scaling of the simulation to multiple processors.

Because we do not predict the commutation costs between the patches, so Uintah only use the geom-
etry partitioners. For now, Uintah provide several load balancing algorithms for user to choice.

These load balancers are implemented in Uintah dynamic load balancing component or by calling
the Zoltan library. We will discuss the detail of implementation and compare the following four load
balancers.

3

/* Zoltan Initialization*/
Zoltan_Initialize(0, NULL, &ver);
/* Create Zotlan Object */
zz = new Zoltan(d_myworld->getComm());
......
/* Choose Zoltan Partition Algorithm */
zz->Set_Param("LB_METHOD", Algorithm);
......
/* Register call-back functions */
zz->Set_Num_Obj_Fn(get_number_of_objects, ...);
zz->Set_Obj_List_Fn(get_object_list, ...);
zz->Set_Num_Geom_Fn(get_number_of_geometry, ...);
zz->Set_Geom_Multi_Fn(get_geometry_list, ...);
......
/* Do partition*/
int rc = zz->LB_Partition(...);

Figure 1: Zoltan functions in Uintah

4.1 Zoltan RCB

Zoltan implemented RCB in parallel [3]. Every processor has part of objects in initial, each subdomain
of processors and the objects that are contained on those processors are divided into two sets based on
which side of the cutting plane each object is on. Either or both of these sets may be empty. After
this cut, the left part of all the processors have will be one subdomain for further cut, and right part of
all processors will be another subdomain. On every cut, Zoltan RCB will try to search the appropriate
cutting plane on every coordinate axes, and choose the coordinate which has the best balancing result.
Zoltan SFC is very fast and efficient, but the partition quality is mediocre and may generate disconnected
subdomains.

4.2 Zoltan RIB

RIB implementation in Zoltan is very similar to RCB. The processor and associated objects are handled
by the same routine as are used by RCB. But RIB need to compute the direction vector for the cutting
plane, instead of trying each coordinate directions in RCB. This make Zotlan RIB more complex and the
cost of this algorithm is slightly higher, but can product better balancing result compare to RCB.

4.3 Zotlan HSFC

The first phase of this algorithm is to generate the space filling curve. The bounding box is build that
contains all of the objects using their two or three dimensional spatial coordinates and also slightly

4

Name Implemented by Description
SingleProcessor Uintah Assigns all patches to one processor

Simple Uintah Assigns clumps of patches on the order of patches
RoundRobin Uintah Assigns patches based on index number mod processor rank

SFC Uintah Dynamic Load Balancing algorithm based on space filling curve
RCB Zoltan Recursive Coordinate Bisection algorithm
RIB Zoltan Recursive Inertial Bisection algorithm

HSFC Zotlan Hilbert Space Filling Curve algorithm
Block Zoltan Similar to RoundRobin, only use the index number of patches

Random Zoltan Randomly assign the pathes, for test and debug

Figure 2: Load balancers in Uintah

expanded to ensure that all objects are strictly interior to the boundary surface. The bounding box is
necessary to calculate the table which is used for Hilbert Space Filling curve generation. By looking up
the table, curve generate functions then can map a point in one, two or three dimensions into the interval
[0, 1] and vice versa.

The second phase of Zoltan HSFC is to divide the curve into P intervals each containing the same
weight of objects associated to these intervals. The unit interval is divided into k(P − 1)+1 bins, where
k is a small positive constant, P is the number of processors. These bins are set to equal size in initial and
form a non-overlapping cover of [0, 1]. So each bin has an left closed endpoint and right open endpoint
[l, r) , this half-open interval represent the bin. The flowing of this algorithm is essentially to continue to
refine the boundary of each intervals, to make every part has some weight as possible.

On every step of integrations, an MPI Allreduce call is made to globally sum the weights in each
bin and also found the maximum and minimum coordinate in each bin. Zoltan HSFC then calculate the
average weight of P intervals then use greedy algorithm to sum the weights of the bins from left to right
until the next bin would cause the weight of this part is more than this average weight. This bin in the
boundary is called ”overflowing” bin. The location of each cut before an ”overflowing” bin, and the size
of its ”overflowing” bin are saved. The algorithm try to divide the overflow bins to balance the weight.
If the bin’s maximum and minimum coordinates are too close relative to double precision resolution, the
bin can not be practically subdivided. The iteration will continue, until no bin can be further divided.
In this progress, the bounder of each partition become more and more clear and keep weight of every
intervals approximate equal.

After these two phases, by looking up the table, these intervals can map back to the original coordi-
nates.

4.4 Unitah SFC

The space filling curve generating phase of Uintah SFC is basically the same with Zotlan HSFC, they
both use HSFC function to generate the curve. Uintah SFC does this through a highly parallel method [9].

5

Uintah SFC Zoltan HSFC
Space Filing Curve Hilbert Curve Hilbert Curve

Curve generate Divided & Sorting Table Driven
Partition method Parallel Parallel

Object size Constant Combine & Split
Iterate operation Reduce MaxCost and Imbalance locally Refine the interval boundary

Iterate halt condition MaxCost not reduce Bin cannot be further divided
Figure 3: Comparison of Uintah SFC vs Zoltan HSFC

Each processor is given a subset of the patches to sort according to the space filling curve. While sorting
the subset of patches each processor generates a unique curve index for each of its patches that are then
used to merge the curves from each processor into a single curve instead of a table driven logic used by
Zoltan HSFC.

In the curve distribution phase, Uintah SFC linearly traverses the patches along the curve while
assigning them to processors. There are two variables to guide the partition of the curve: imbalance
value and max cost threshold. The imbalance value can be calculated by the weight of work assigned to
the current processor and the average weight of unassigned work for the remaining processors. When
Unitah SFC work through the curve, it continues to assign the work to current processors until next point
will cause the imbalance value to raise. Then this point will be assigned to next processors and begin the
assignment process of that processor.

The other condition in the curve partition is to attempt to minimize the maximum assigned work by
not allowing the work on any processor to exceed maxcost threshold Wmax. This threshold is updated
every iteration, we can control Wmax will not increase on every iteration, so that every step will make
progress. When max cost cannot reduce, the iteration will be stopped, the phase of partition the curve is
completed.

5 Testing experiment

The load balancing experiments ran on Ranger of TACC. Ranger has four AMD Opteron Quad-Core
64-bit processors on each node. The interconnection of the system is Infiniband, and Ranger also use
Lustre filesystem run over the Infiniband. We tested four load balancing algorithms, Zoltan RCB, Zoltan
RIB, Zoltan HSFC and Uintah SFC by solving two ICE [8] problems.

5.1 Measurement

To measure the load balancer, we need to determine the quality of load balancing result, the cost of
load balancing algorithm and most important the performance and scalability of whole application. The
quality of load balancing result can be described in two sides: how equal of the weight in each partition
and how much communications across these partitions. In this article, we use imbalance to measure the
work load distribution, and use both messages and datavolume to measure the communications.

6

Imbalance
The imbalance is defined as:

I = Wmax
Wavg

− 1

Where Wmax is the maximum weight of result partitions and Wavg is the average weight of the result
partitions. In ideal scene, when every partition has equal weight, Wmax = Wavg, I will equal to zero.
Wavg is determined by the total weights of the whole domain, while load balancer intended minimum the
Wmax to reduce the idle time wasted for waiting other partitions. So the less imbalance value indicates
the weight distribution result is better. We collected the weights of all partitions once load balancer was
called, calculated the imbalance value and stored it to output file.

Number of messages and data volume
Unlike imbalance is calculated after every load balancing, in our experiment communication mes-

sages and volume are collected during the execution of each partition. We use two counters on every rank
to record the MPI message sends, one for the number of messages and another one for the data volume
of that communication.

Data volume on rank(i) : Di =
∑Ni

k=1 Sk, Number of messages on rank (i) : Ni

Where Sk is the message size of that particular MPI call.
At the end of every simulation time step, MPI Allreduce will be called to calculate the average and

maximum number of messages (Navg and Nmax), and average and maximum data volume (Davg and
Dmax). The real cost of communication is related both the number of messages and data volumes:

Ti =
∑Ni

k=1 Tstartup + Sk/Bandwith = Ni ∗ Tstartup + Vi/Bandwith

Tstartup and Bandwith are determined by the architecture and network topology, but it will be a good
load balancing result if we can lower both the number of messages and the data volumes.

Component timing
Component timing can help us to find out the cost of load balancer itself, the execution time of task

, the overhead of data preparation and the time wasted on waiting for data. We insert serval timers in
the source code to generate the detail time cost for each component. Also MPI Barrier is inserted when
needed to make the measurement more accuracy.

5.2 Some Issues

Serval issues was solved in the experiment phase. First, MVAPICH 1.0 on Ranger do not correctly release
memory associated with the communicator during MPI Comm free. This will lead to a memory leek
resulting in growing memory use over multiple invocations of RCB or RIB in Zoltan library. Because
Zoltan partitioning methods RCB and RIB use MPI Comm dup and MPI Comm split to recursively
create communicators with subsets of processors. Fortunately, there is an undocumented parameter in
Zoltan, which can use an alternate implementation that doesn’t use MPI Comm split to be invoked.

7

Figure 4: Total Runtime of two ICE problem, resolutions: 643(left) 1283(right)

Second, a potential deadlock is founded in Zoltan library. This bug can been seen in Ranger ma-
chine when running with more than 1024 processors. A paired MPI Send and MPI Recv is not well
ordered when creating processor lists in RCB or RIB algorithm. This bug have been submitted to Zoltan
development team.

6 Results

From the result generated at the testing phase, we will look through how well the requirements discussed
on the second part are accomplished by the four load balancing algorithms and how these factors effect
the overall performance and scalability of Uintah.

6.1 Overall runtime and scalability

Figure. 4 shows the scalability comparison of these four algorithms, these scaling data are the overall
runtime of Uintah program on processors from 128 to 4096 on two different resolutions of ICE problem.
This figure is a loglog based graph which can represent the scaling trend well but lost the detail of
comparison . Figure. 5 is produced to show the runtime comparison of these algorithms by normalizing
based on the execution time of Uintah SFC.

From the graph, we can see for the overall performance on execution time, Uintah SFC is significant
better than Zoltan HSFC. But in some case, Zotlan RCB and Zoltan RIB drive better performance.

6.2 Workload distribution and Imbalance result

The result of workload distribution can help us to understand where the significant difference of Uintah
SFC and Zoltan HSFC comes from. Figure. 4 shows the weight assigned to each rank after load bal-

8

Figure 5: Execution time comparison, normalized based on Uintah SFC

Figure 6: The work load distribution over 2048 processors, Uintah SFC(left) and Zoltan HSFC(right)

ancing, the data is generated on a 2048 processor run. X axis represents the number of rank and Y axis
represents the weight of assignment.

We can clearly see the figure of Uintah SFC is more smooth than Zoltan HSFC. All the weights of
Uintah SFC is limited by the threshold according to the algorithm, but Zoltan HSFC does not have such
threshold and produced some very high weight on particular rank. As our goal is to limited the max
weight, Uintah SFC does a better job. To make a quantify comparison, Figure. 7 shows the imbalance
value runs from 64 to 4096 processors. We can clearly see the imbalance value of Uintah SFC is smaller
than Zoltan SFC, which means the result of Uintah SFC is more balanced.

9

Figure 7: The imbalance value from 64 to 4096 processors

Figure 8: The number of messages and data volumes during the simulation

6.3 Communications

According to the Figure. 8, from both number of messages and data volumes view, the two space-filling
curve algorithms are the best and track each other remarkably well. Zoltan RCB is the worst and Zoltan
RIB does fairly well but appears to be getting worse toward the end of the run. Clearly, SFC load
balancing algorithms will give a better communication result comparing to RB based algorithm.

6.4 Load balancing algorithm cost

Figure. 9 shows the execution time of load balancer itself from 128 to 4096 processors. For the two space-
filling curve algorithms, Uintah SFC algorithm is clearly better than Zoltan HSFC algorithm. Zoltan’s
HSFC algorithm cost more than four times than Uintah SFC on 4096 processors. For the two RB based
algorithms, as we expected, these two algorithms are every light weight and efficient.

10

Figure 9: Comparison of load balancer running time.

7 Summary

Uintah implemented a new SFC load balance algorithm through sorting and heuristic threshold. We
integrated Zoltan load balancers into Uintah and compared with our SFC algorithm. Through the com-
parison, we explained and observed different character and behavior of these algorithms on aspects of
work load assignment, communications, algorithm cost and effect to performance and scalability of Uin-
tah. From the result of these comparison, we verified that Uintah SFC algorithm can produce better load
balancing partitions than Zoltan HSFC, also the cost of Uintah SFC is much lower.

8 Acknowledgement

This work was supported by the University of Utah’s Center for the Simulation of Accidental Fires and
Explosions (C-SAFE) and funded by both the Department of Energy, under subcontract No. B524196
and the National Science Foundation under subcontract No. OCI0721659.

11

References

[1] M. J. Berger and S. H. Bokhari. A partitioning strategy for nonuniform problems on multiproces-
sors. IEEE Trans. Comput., 36(5):570–580, 1987.

[2] Erik Boman, Karen Devine, Robert Heaphy, Bruce Hendrickson, Vitus Leung, Lee Ann Riesen,
Courtenay Vaughan, Umit Catalyurek, Doruk Bozdag, William Mitchell, and James Teresco. Zoltan
3.0: Parallel Partitioning, Load Balancing, and Data-Management Services; User’s Guide. Sandia
National Laboratories, Albuquerque, NM, 2007. Tech. Report SAND2007-4748W http://www.
cs.sandia.gov/Zoltan/ug_html/ug.html.

[3] Erik Boman, Karen Devine, Robert Heaphy, Bruce Hendrickson, Vitus Leung, Lee Ann Riesen,
Courtenay Vaughan, Umit Catalyurek, Doruk Bozdag, William Mitchell, and James Teresco. Zoltan
3.0: Parallel Partitioning, Load Balancing, and Data-Management Services; Developer’s Guide.
Sandia National Laboratories, Albuquerque, NM, 2007. Tech. Report SAND2007-4749W http:
//www.cs.sandia.gov/Zoltan/dev_html/dev.html.

[4] Phillip Colella, John Bell, Noel Keen, Terry Ligocki, Michael Lijewski, and Brian van Straalen.
Performance and scaling of locally-structured grid methods for partial differential equations. Jour-
nal of Physics: Conference Series, 78:012013 (13pp), 2007.

[5] J. Davison, St. Germain, John Mccorquodale, Steven G. Parker, and Christopher R. Johnson. Uin-
tah: A massively parallel problem solving environment, 2000.

[6] Karen Devine, Erik Boman, Robert Heaphy, Bruce Hendrickson, and Courtenay Vaughan. Zoltan
data management services for parallel dynamic applications. Computing in Science and Engineer-
ing, 4(2):90–97, 2002.

[7] Karen D. Devine, Erik G. Boman, Robert T. Heaphy, Bruce A. Hendrickson, James D. Teresco,
Jamal Faik, Joseph E. Flaherty, and Luis G. Gervasio. New challenges in dynamic load balancing.
Appl. Numer. Math, 52:2005, 2004.

[8] Thomas C. Henderson, Patrick A. McMurtry, Philip J. Smith, Gregory A. Voth, Charles A. Wight,
and David W. Pershing. Simulating accidental fires and explosions. Comput. Sci. Eng., 2(2):64–76,
2000.

[9] J. Luitjens, M. Berzins, and T. Henderson. Parallel space-filling curve generation through sorting:
Research articles. Concurr. Comput. : Pract. Exper., 19(10):1387–1402, 2007.

[10] J. Luitjens, B. Worthen, M. Berzins, and T.C. Henderson. Scalable parallel amr for the uintah mul-
tiphysics code. In D. Bader, editor, Petascale Computing Algorithms and Applications. Chapman
and Hall/CRC, 2007.

12

[11] Steven G. Parker. A component-based architecture for parallel multi-physics pde simulation. Future
Gener. Comput. Syst., 22(1):204–216, 2006.

[12] Steven G. Parker, James Guilkey, and Todd Harman. A component-based parallel infrastructure for
the simulation of fluid structure interaction. Eng. with Comput., 22(3):277–292, 2006.

[13] Hans Sagan. Space-Filling Curves. Springer-Verlag, 1994. ISBN 0387942653.

[14] Valerie E. Taylor and Bahram Nour-omid. A study of the factorization fill-in for a parallel imple-
mentation of the finite element method. Int. J. Numer. Meth. Engng, 37:3809–3823, 1994.

13

	SCI-TR_template
	report

