
1

Uintah Application Development

John A. Schmidt

UUSCI-2008-005

Scientific Computing and Imaging Institute
University of Utah

Salt Lake City, UT 84112 USA

November 6, 2008

Abstract:

The Uintah framework for solving partial differential equations on structured adaptive mesh
refinement grids is described so that individuals wishing to understand and develop new compo-
nents can do so. An overview of the installation procedure for Uintah, as well as the framework
components including a high level view of the scheduler, and the tasks is presented. A simple
poisson solver example is developed that outlines the basic elements that are required to implement
a new computational component. The poisson solver is then extended to illustrate the novel
features of the scheduling algorithm that are required for any iterative algorithm. This is then
followed by a description of a component that solves the Burger equation. Finally, discussions
of the boundary conditions both within the component and in the input file are described with
additional information about the input file format for a generic Uintah component.

Uintah Application Development

John A. Schmidt

November 6, 2008

Contents

1 Uintah Software Components 2

1.0.1 Downloading the Software 2
1.0.2 Installing Thirdparty, SCIRun, and Uintah 2

2 Overview of the Uintah Framework 4

2.1 Scheduler . 5
2.2 Tasks . 5
2.3 Tasks and Scheduler Description – Programmer Interface . . . 6

2.3.1 Simulation Component Class Description 6
2.3.2 Data Storage Concepts 9

3 Examples 10

3.1 Poisson1 . 10
3.1.1 Description of Scheduling Functions 12
3.1.2 Description of Computational Functions 15

3.2 Poisson2 . 22
3.3 Burger . 26

4 Specifying Boundary Conditions 30

5 Input File Specification 33

1

Chapter 1

Uintah Software Components

Three software components need to be installed in order to develop and cus-
tomize Uintah. These include Thirdpary, SCIRun, and Uintah. Thirdparty is
composed of several libraries needed to build the visualization tool, SCIRun.
SCIRun is a dataflow visualization tool which understands the data output
format of Uintah. And finally, Uintah is a framework for performed struc-
tured Adaptive Mesh Refinement calculations for partial differential equa-
tions.

1.0.1 Downloading the Software

Uintah/SCIRun can be obtained via svn from the following website:

svn co https://code.sci.utah.edu/svn/SCIRun/trunk SCIRun

The above command checks out the SCIRun source tree and installs it
into a directory called SCIRun in the users home directory.

The Thirdparty library can similarly be obtained via:

svn co https://code.sci.utah.edu/svn/Thirdparty/3.1.0 Thirdparty

The Thirdparty library source code is downloaded into a directory called
Thirdparty.

1.0.2 Installing Thirdparty, SCIRun, and Uintah

Thirdparty Install

Please read the README.txt found in /Thirdparty.

2

Thirdparty should be installed in /usr/local/Thirdparty. As root, create
this directory:

mkdir /usr/local/Thirdparty

Chang to the Thirdparty directory you checked out, i.e. cd /Thirdpar-
tythirdparty.src/

After reading the README.txt file type the follow as the root user:

./install.sh /usr/local/Thirdparty/

Configuring Uintah

cd to /SCIRun and create the following directories: dbg and opt
cd to dbg and type the following to configure for a debug build:

./src/configure --enable-debug --enable-sci-malloc

--enable-package=Uintah

--with-thirdparty=/usr/local/Thirdparty/3.1.0/Linux/gcc-4.3.1-2-32bit/

Then build the software by typing make at the command line. Once the
debug build has finished which can take roughly an hour on a single processor
Pentium IV computer, cd to the opt/ and type the following to configure for
an optimized build:

./src/configure ’--enable-optimze=-march=pentium4 -msse -msse2

-mfpmath=sse -03’ --disable-sci-malloc --enable-assertion-level=0

--enable-package=Uintah

--with-thirdparty=/usr/local/Thirdparty/3.1.0/Linux/gcc-4.3.1-2-32bit/

Then build the software by typing make at the command line

3

Chapter 2

Overview of the Uintah

Framework

The Uintah Computational Framework, i.e. Uintah consists of a set of soft-
ware components and libraries that facilitate the solution of Partial Differ-
ential Equations (PDEs) on Structured AMR (SAMR) grids using hundreds
to thousands of processors.

One of the challenges in designing a parallel, component-based multi-
physics application is determining how to efficiently decompose the problem
domain. Components, by definition, make local decisions. Yet parallel ef-
ficiency is only obtained through a globally optimal domain decomposition
and scheduling of computational tasks. Typical techniques include allocating
disjoint sets of processing resources to each component, or defining a single
domain decomposition that is a compromise between the ideal load balance
of multiple components. However, neither of these techniques will achieve
maximum efficiency for complex multi-physics problems.

Uintah uses a non-traditional approach to achieving parallelism, employ-
ing an abstract taskgraph representation to describe computation and com-
munication. The taskgraph is an explicit representation of the computation
and communication that occur in the coarse of a single iteration of the simu-
lation (typically a timestep or nonlinear solver iteration). Uintah components
delegate decisions about parallelism to a scheduler component, using variable
dependencies to describe communication patterns and characterizing compu-
tational workloads to facilitate a global resource optimization. The taskgraph
representation has a number of advantages, including efficient fine-grained
coupling of multi-physics components, flexible load balancing mechanisms

4

and a separation of application concerns from parallelism concerns. How-
ever, it creates a challenge for scalability which we overcome by creating an
implicit definition of this graph and representing it in a distributed fashion.

The primary advantage of a component-based approach is that it facil-
itates the separate development of simulation algorithms, models, and in-
frastructure. Components of the simulation can evolve independently. The
component-based architecture allows pieces of the system to be implemented
in a rudimentary form at first and then evolve as the technologies mature.
Most importantly, Uintah allows the aspects of parallelism (schedulers, load-
balancers, parallel input/output, and so forth) to evolve independently of
the simulation components. Furthermore, components enable replacement
of computation pieces without complex decision logic in the code itself.

2.1 Scheduler

The Scheduler in Uintah is responsible for determining the order of tasks
and ensuring that the correct inter-processor data is made available when
necessary. Each software component passes a set of tasks to the scheduler.
Each task is responsible for computing some subset of variables, and may
require previously computed variables, possibly from different processors.
The scheduler will then compile this task information into a task graph, and
the task graph will contain a sorted order of tasks, along with any information
necessary to perform inter-process communication via MPI. Then, when the
scheduler is executed, the tasks will execute in the pre-determined order.

2.2 Tasks

A task contains two essential components: a pointer to a function that per-
forms the actual computations, and the data inputs and outputs, i.e. the
data dependencies required by the function. When a task requests a previ-
ously computed variable from the data warehouse, the number of ghost cells
are also specified. The Unitah framework uses the ghost cell information
to excecute inter-process communication to retrieve the necessary ghost cell
data.

An example of a task description is presented showing the essential fea-
tures that are commonly used by the application developer when imple-

5

menting an algorithm within the Uintah framework. The task component
is assigned a name and in this particular example, it is called taskexample

and a funtion pointer, &Example::taskexample. Following the instantiation
of the task itself, the dependency information is assigned to the tasks. In
the following example, the task requires data from the previous timestep
(Task::OldDW) associated with the name variable1 label and requires one
ghost node (Ghost::AroundNodes,1) level of information which will be re-
trieved from another processor via MPI. In addition, the task will com-
pute two new pieces of data each associated with different variables, i.e.
variable1 label, and variable2 label. Finally, the task is added to the
scheduler component with specifications about what patches and materials
are associated with the actual computation.

Task* task = scinew Task("Example::taskexample",this,

&Example::taskexample);

task->requires(Task::OldDW, variable1_label, Ghost::AroundNodes, 1);

task->computes(variable1_label);

task->computes(variable2_label);

sched->addTask(task, level->eachPatch(), sharedState_->allMaterials());

For more complex problems involving multiple materials and multi-physics
calculations, a subset of the materials may only be used in the calculation of
particular tasks. The Uintah framework allows for the independent schedul-
ing and computation of multi-material within a multi-physics calculation.

2.3 Tasks and Scheduler Description – Pro-

grammer Interface

2.3.1 Simulation Component Class Description

Each Uintah component can be described as a C++ class that is derived
from two other classes: UintahParallelComponent and a SimulationIn-

terface. The new derived class must provide the following virtual methods:
problemSetup, scheduleInitialize, scheduleComputeStableTimestep, and
scheduleTimeAdvance. Here is an example of the typical *.h file that needs
to be created for a new component.

6

class Example : public UintahParallelComponent, public SimulationInterface {

public:

virtual void problemSetup(const ProblemSpecP& params,

const ProblemSpecP& restart_prob_spec,

GridP& grid, SimulationStateP&);

virtual void scheduleInitialize(const LevelP& level,SchedulerP& sched);

virtual void scheduleComputeStableTimestep(const LevelP& level,

SchedulerP&);

virtual void scheduleTimeAdvance(const LevelP& level, SchedulerP&);

private:

Example(const ProcessorGroup* myworld);

virtual ~Example();

void initialize(const ProcessorGroup*,

const PatchSubset* patches,

const MaterialSubset* matls,

DataWarehouse* old_dw,

DataWarehouse* new_dw);

void computeStableTimestep(const ProcessorGroup*,

const PatchSubset* patches,

const MaterialSubset* matls,

DataWarehouse* old_dw,

DataWarehouse* new_dw);

void timeAdvance(const ProcessorGroup*,

const PatchSubset* patches,

const MaterialSubset* matls,

DataWarehouse* old_dw,

7

DataWarehouse* new_dw);

}

Each new component inherits from the classes UintahParrallelCom-

ponent and SimulationInterface. The component overrides default im-
plementations of various methods. The above methods are the essential
functions that a new component must implement. Additional methods to do
AMR will be described as more complex examples are presented.

The roles of each of the scheduling methods are described below. Each
scheduling method, i.e. scheduleInitialize, scheduleComputeStableTimestep,
and scheduleTimeAdvance describe

ProblemSetup

The purpose of this method is to read a problem specification which requires
a minimum of information about the grid used, time information, i.e. time
step size, length of time for simulation, etc, and where and what data is
actually saved. Depending on the problem that is solved, the input file can
be rather complex, and this method would evolve to establish any and all
parameters needed to initially setup the problem.

ScheduleInitialize

The purpose of this method is to initialize the grid data with values read in
from the problemSetup and to define what variables are actually computed in
the TimeAdvance stage of the simulation. A task is defined which references
a function pointer called initialize.

ScheduleComputeStableTimestep

The purpose of this method is to compute the next timestep in the simulation.
A task is defined which references a function pointer called computeStableTimestep.

ScheduleTimeAdvance

The purpose of this method is to schedule the actual algorithmic implementa-
tion. For simple algorithms, there is only one task defined with a minimal set

8

of data dependencies specified. However, for more complicated algorithms,
the best way to schedule the algorithm is to break it down into individual
tasks. Each task of the algorithm will have its own data dependencies and
function pointers that reference individual computational methods.

2.3.2 Data Storage Concepts

During the course of the simulation, data is computed and stored in a data
structure called the DataWarehouse. Data that is from a previous timestep
is stored in the Old DataWarehouse, called OldDW, and data that is computed
in current timestep is stored in the New DataWarehouse, called NewDW. At
the end of the timestep, current timestep data is moved to the old data
warehouse for the next timestep in the simulation.

9

Chapter 3

Examples

This chapter will describe a set of example problems showing various stages
of algorithm complexity and how the Uintah framework is used to solve the
discretized form of the solutions. Emphasis will not be on the most efficient or
fast algorithms, but intead will demonstrate straightforward implementations
of well known algorithms within the Uintah Framework. Several examples
will be given that show an increasing level of complexity that will serve as
a guide to others interested in implmenting structured AMR algorithms for
PDEs.

All examples described are found in the directory SCIRun/src/Pack-
ages/Uintah/CCA/Components/Examples

3.1 Poisson1

Poisson1 is solves Poisson’s equation on a grid using Jacobi iteration. Since
this is not a time dependent problem and Uintah is fundamentally designed
for time dependent problems, each Jacobi iteration is considered to be a
timestep. The timestep specified and computed is a fixed value obtained
from the input file and has no bearing on the actual computation.

The following equation is discretized and solved using an iterative method.
Each timestep is one iteration. At the end of the timestep, we the residual
is computed showing the convergence of the solution and the next iteration
is computed until.

The following shows a simplified form of the Poisson1 of the .h and .cc
files found in the Examples directory. The argument list for some of the

10

methods are eliminated for readibility purposes. Please refer to the actual
source for a complete description of the arguments required for each method.

class Poisson1 : public UintahParallelComponent, public SimulationInterface {

public:

Poisson1(const ProcessorGroup* myworld);

virtual ~Poisson1();

virtual void problemSetup(const ProblemSpecP& params,

const ProblemSpecP& restart_prob_spec,

GridP& grid, SimulationStateP&);

virtual void scheduleInitialize(const LevelP& level,SchedulerP& sched);

virtual void scheduleComputeStableTimestep(const LevelP& level,SchedulerP&);

virtual void scheduleTimeAdvance(const LevelP& level,SchedulerP&);

private:

void initialize(const ProcessorGroup*, const PatchSubset* patches,

const MaterialSubset* matls, DataWarehouse* old_dw,

DataWarehouse* new_dw);

void computeStableTimestep(const ProcessorGroup*,const PatchSubset* patches,

const MaterialSubset* matls,DataWarehouse* old_dw,

DataWarehouse* new_dw);

void timeAdvance(const ProcessorGroup,const PatchSubset* patches,

const MaterialSubset* matls,DataWarehouse* old_dw,

DataWarehouse* new_dw);

SimulationStateP sharedState_;

double delt_;

const VarLabel* phi_label;

const VarLabel* residual_label;

SimpleMaterial* mymat_;

Poisson1(const Poisson1&);

11

Poisson1& operator=(const Poisson1&);

};

The private methods and data shown are the functions that are function
pointers referred to in the task descriptions. The VarLabel data type stores
the names of the various data that can be referenced uniquely by the data
warehouse. The SimulationStateP data type is essentially a global variable
that stores information about the materials that are needed by other internal
Uintah framework components. SimpleMaterial is a data type that refers
to the material properties.

Within each schedule function, i.e. sheduleInitialize, scheduleComputeStableTimestep,
and scheduleTimeAdvance, a task is specified that has a function pointer
associated with it. The function pointers point to the actual implementation
of the specific task and have a different argument list than the associated
schedule method.

The typical task implementation, i.e. timeAdvance() contains the follow-
ing arguments: ProcessorGroup, PatchSubset, MaterialSubset, and two
DataWarehouse objects. The purpose of the ProcessorGroup is to hold vari-
ous MPI information such as the MPI Communicator, the rank of the process
and the number of processes that are actually being used.

3.1.1 Description of Scheduling Functions

The actual implementation with descriptions are presented following the code
snippets.

Poisson1::Poisson1(const ProcessorGroup* myworld)

: UintahParallelComponent(myworld)

{

phi_label = VarLabel::create("phi",

NCVariable<double>::getTypeDescription());

residual_label = VarLabel::create("residual",

sum_vartype::getTypeDescription());

}

Poisson1::~Poisson1()

{

12

VarLabel::destroy(phi_label);

VarLabel::destroy(residual_label);

}

Typical constructor and destructor for simple examples where the data
label names (phi and residual) are created for data wharehouse storage
and retrieval.

void Poisson1::problemSetup(const ProblemSpecP& params,

const ProblemSpecP& restart_prob_spec,

GridP& /*grid*/,

SimulationStateP& sharedState)

{

sharedState_ = sharedState;

ProblemSpecP poisson = params->findBlock("Poisson");

poisson->require("delt", delt_);

mymat_ = scinew SimpleMaterial();

sharedState->registerSimpleMaterial(mymat_);

}

The problemSetup is based in a xml description of the input file. The
input file is parsed and the delt tag is set. The sharedState is assigned and
is used to register a material and store it for later use by the Uintah internals.

void Poisson1::scheduleInitialize(const LevelP& level,

SchedulerP& sched)

{

Task* task = scinew Task("Poisson1::initialize",

this, &Poisson1::initialize);

task->computes(phi_label);

task->computes(residual_label);

sched->addTask(task, level->eachPatch(), sharedState_->allMaterials());

}

13

A task is defined which contains a name and a function pointer, i.e.
initialize which is described later in Poisson1.cc The task defines two
variables that are computed in the initialize function, phi and residual.
The task is then added to the scheduler. This task is only computed once at
the beginning of the simulation.

void Poisson1::scheduleComputeStableTimestep(const LevelP& level,

SchedulerP& sched)

{

Task* task = scinew Task("Poisson1::computeStableTimestep",

this, &Poisson1::computeStableTimestep);

task->requires(Task::NewDW, residual_label);

task->computes(sharedState_->get_delt_label());

sched->addTask(task, level->eachPatch(), sharedState_->allMaterials());

}

A task is defined for the computing the stable timestep and uses the
function pointer, computeStableTimestep defined later in Poisson1.cc. This
requires data from the New DataWarehouse, and the next timestep size is
computed and stored.

void

Poisson1::scheduleTimeAdvance(const LevelP& level,

SchedulerP& sched)

{

Task* task = scinew Task("Poisson1::timeAdvance",

this, &Poisson1::timeAdvance);

task->requires(Task::OldDW, phi_label, Ghost::AroundNodes, 1);

task->computes(phi_label);

task->computes(residual_label);

sched->addTask(task, level->eachPatch(), sharedState_->allMaterials());

}

The timeAdvance function is the main function that describes the com-
putational algorithm. For simple examples, the entire algorithm is usually

14

defined by one task with a small set of data dependencies. However, for more
complicated algorithms, it is best to break the algorithm down into a set of
tasks with each task describing its own set of data dependencies.

For this example, a single task is described and the timeAdvance function
pointer is specified. Data from the previous timestep (OldDW) is required for
the current timestep. For a simple seven (7) point stencil, only one level
of ghost cells is required. The algorithm is set up for nodal values, the
ghost cells are specified by the the Ghost::AroundNodes syntax. The task
computes both the new data values for phi and a residual.

3.1.2 Description of Computational Functions

void Poisson1::computeStableTimestep(const ProcessorGroup* pg,

const PatchSubset* /*patches*/,

const MaterialSubset* /*matls*/,

DataWarehouse*,

DataWarehouse* new_dw)

{

if(pg->myrank() == 0){

sum_vartype residual;

new_dw->get(residual, residual_label);

cerr << "Residual=" << residual << ’\n’;

}

new_dw->put(delt_vartype(delt_), sharedState_->get_delt_label());

}

In this particular example, no timestep is actually computed, instead the
original timestep specified in the input file is used and stored in the data ware-
house (new dw->put(delt vartype(delt), sharedState >get delt label())).
The residual computed in the main timeAdvance function is retrieved from
the data warehouse and printed out to standard error for only the processor
with a rank of 0.

void Poisson1::initialize(const ProcessorGroup*,

const PatchSubset* patches,

const MaterialSubset* matls,

15

DataWarehouse* /*old_dw*/, DataWarehouse* new_dw)

{

int matl = 0;

for(int p=0;p<patches->size();p++){

const Patch* patch = patches->get(p);

The node centered variable (NCVariable<double> phi) has space re-
served in the DataWarehouse for the given patch and the given material
(int matl = 0;). The phi variable is initialized to 0 for every grid node on
the patch.

NCVariable<double> phi;

new_dw->allocateAndPut(phi, phi_label, matl, patch);

phi.initialize(0.);

The boundary conditions are applied to each face of the compuational
domain using the construct given below. In this particular example based on
the input file described a bit later, the value of 1.0 is applied to the xminus
face. All other faces will have the Phi variable assigned the value of 0.0.

for (Patch::FaceType face = Patch::startFace; face <= Patch::endFace;

face=Patch::nextFace(face)) {

if (patch->getBCType(face) == Patch::None) {

int numChildren = patch->getBCDataArray(face)->getNumberChildren(matl);

for (int child = 0; child < numChildren; child++) {

Iterator nbound_ptr, nu;

const BoundCondBase* bcb = patch->getArrayBCValues(face,matl,"Phi",nu,

nbound_ptr,child);

const BoundCond<double>* bc =

dynamic_cast<const BoundCond<double>*>(bcb);

double value = bc->getValue();

for (nbound_ptr.reset(); !nbound_ptr.done();nbound_ptr++) {

phi[*nbound_ptr]=value;

16

}

}

}

}

new_dw->put(sum_vartype(-1), residual_label);

}

}

The initial residual value of -1 is stored at the beginning of the simulation.
The main computational algorithm is defined in the timeAdvance func-

tion. The overall algorithm is based on a simple Jacobi iteration step.

void Poisson1::timeAdvance(const ProcessorGroup*,

const PatchSubset* patches,

const MaterialSubset* matls,

DataWarehouse* old_dw,

DataWarehouse* new_dw)

{

int matl = 0;

for(int p=0;p<patches->size();p++){

const Patch* patch = patches->get(p);

constNCVariable<double> phi;

Data from the previous timestep is retrieved from the data warehouse
and copied to the current timestep’s phi variable (newphi).

old_dw->get(phi, phi_label, matl, patch, Ghost::AroundNodes, 1);

NCVariable<double> newphi;

new_dw->allocateAndPut(newphi, phi_label, matl, patch);

newphi.copyPatch(phi, newphi.getLowIndex(), newphi.getHighIndex());

17

The indices for the patch are obtained and altered depending on whether
or not the patch’s internal boundaries are on the coincident with the grid do-
main. If the patch boundaries are the same as the grid domain, the boundary
values are not overwritten since the lower and upper indices are modified to
only specify internal nodal grid points.

double residual=0;

IntVector l = patch->getNodeLowIndex__New();

IntVector h = patch->getNodeHighIndex__New();

l += IntVector(patch->getBCType(Patch::xminus) == Patch::Neighbor?0:1,

patch->getBCType(Patch::yminus) == Patch::Neighbor?0:1,

patch->getBCType(Patch::zminus) == Patch::Neighbor?0:1);

h -= IntVector(patch->getBCType(Patch::xplus) == Patch::Neighbor?0:1,

patch->getBCType(Patch::yplus) == Patch::Neighbor?0:1,

patch->getBCType(Patch::zplus) == Patch::Neighbor?0:1);

The Jacobi iteration step is applied at each internal grid node. The resid-
ual is computed based on the old and new values and stored as a reduction
variable (sum vartype) in the data warehouse.

//__________________________________

// Stencil

for(NodeIterator iter(l, h);!iter.done(); iter++){

IntVector n = *iter;

newphi[n]=(1./6)*(

phi[n+IntVector(1,0,0)] + phi[n+IntVector(-1,0,0)] +

phi[n+IntVector(0,1,0)] + phi[n+IntVector(0,-1,0)] +

phi[n+IntVector(0,0,1)] + phi[n+IntVector(0,0,-1)]);

double diff = newphi[n] - phi[n];

residual += diff * diff;

}

new_dw->put(sum_vartype(residual), residual_label);

}

18

}

The input file that is used to run this example is given below and is given
in SCIRun/src/Packages/Uintah/StandAlone/inputs/Examples/poisson1.ups.
Relevant sections of the input file that can be modified are found in the
<Time> section, and the <Grid> section, specifically, the boundary condi-
tions, the number of patches and the grid resolution.

<Uintah_specification>

<Meta>

<title>Poisson1 test</title>

</Meta>

<SimulationComponent>

<type> poisson1 </type>

</SimulationComponent>

<!--__________________________________-->

<Time>

<maxTime> 1.0 </maxTime>

<initTime> 0.0 </initTime>

<delt_min> 0.00001 </delt_min>

<delt_max> 1 </delt_max>

<max_Timesteps> 100 </max_Timesteps>

<timestep_multiplier> 1 </timestep_multiplier>

</Time>

<!--__________________________________-->

<DataArchiver>

<filebase>poisson.uda</filebase>

<outputTimestepInterval>1</outputTimestepInterval>

<save label = "phi"/>

<save label = "residual"/>

<checkpoint cycle = "2" timestepInterval = "1"/>

</DataArchiver>

19

<!--__________________________________-->

<Poisson>

<delt>.01</delt>

<maxresidual>.01</maxresidual>

</Poisson>

<!--__________________________________-->

<Grid>

<BoundaryConditions>

<Face side = "x-">

<BCType id = "0" label = "Phi" var = "Dirichlet">

<value> 1. </value>

</BCType>

</Face>

<Face side = "x+">

<BCType id = "0" label = "Phi" var = "Dirichlet">

<value> 0. </value>

</BCType>

</Face>

<Face side = "y-">

<BCType id = "0" label = "Phi" var = "Dirichlet">

<value> 0. </value>

</BCType>

</Face>

<Face side = "y+">

<BCType id = "0" label = "Phi" var = "Dirichlet">

<value> 0. </value>

</BCType>

</Face>

<Face side = "z-">

<BCType id = "0" label = "Phi" var = "Dirichlet">

<value> 0. </value>

</BCType>

</Face>

<Face side = "z+">

<BCType id = "0" label = "Phi" var = "Dirichlet">

<value> 0. </value>

20

</BCType>

</Face>

</BoundaryConditions>

<Level>

<Box label = "1">

<lower> [0,0,0] </lower>

<upper> [1.0,1.0,1.0] </upper>

<resolution>[50,50,50] </resolution>

<patches> [2,1,1] </patches>

</Box>

</Level>

</Grid>

</Uintah_specification>

Running the Poisson1 Example

To run the poisson1.ups example,

cd ~/SCIRun/dbg/Packages/Uintah/StandAlone/

create a symbolic link to the inputs directory:

ln -s ~/SCIRun/src/Packages/Uintah/StandAlone/inputs

For a single processor run type the following:

sus inputs/Examples/poisson1.ups

For a two processor run, type the following:

mpirun -np 2 sus -mpi inputs/Examples/poisson1.ups

Changing the number of patches in the poisson1.ups and the resolution,
enables you to run a more refined problem on more processors.

ADVICE: For non-AMR problems, it is advised to have at least the
same number of patches as processors. You can always have more patches
than processors, but you cannot have fewer patches than processors.

21

3.2 Poisson2

The next example also solves the Poisson’s equation but instead of iterating
in time, the subscheduler feature iterates within a given timestep, thus solv-
ing the problem in one timestep. The use of the subcheduler is important
for implementing algorithms which solve non-linear problems which require
iterating on a solution for each timestep.

The majority of the schedule and computational functions are similar
to the Poisson1 example and are not repeated. Only the revised code is
presented with explanations about the new features of Uintah.

void Poisson2::scheduleTimeAdvance(const LevelP& level, SchedulerP& sched)

{

Task* task = scinew Task("timeAdvance",

this, &Poisson2::timeAdvance,

level, sched.get_rep());

task->hasSubScheduler();

task->requires(Task::OldDW, phi_label, Ghost::AroundNodes, 1);

task->computes(phi_label);

LoadBalancer* lb = sched->getLoadBalancer();

const PatchSet* perproc_patches = lb->getPerProcessorPatchSet(level);

sched->addTask(task, perproc_patches, sharedState_->allMaterials());

}

Within this function, the task is specified with two additional arguments,
the level and the scheduler sched.get rep(). The task must also set the
flag that a subscheduler will be used within the scheduling of the various
tasks. Similar code to the Poisson1 example is used to specify what data
is required and computed during the actual task execution. In addition, a
loadbalancer component is required to query the patch distribution for each
level of the grid. The task is then added to the top level scheduler with the
requisite information, i.e. patches and materials.

The actual implementation of the timeAdvance function is also different
from the Poisson1 example. The code is specified below with text explaining
the use of the subscheduler. The new feature of the subscheduler shows
the creation of a the iterate task within the subscheduler. This task will
perform the actual Jacobi iteration for a given timestep.

22

void Poisson2::timeAdvance(const ProcessorGroup* pg,

const PatchSubset* patches,

const MaterialSubset* matls,

DataWarehouse* old_dw, DataWarehouse* new_dw,

LevelP level, Scheduler* sched)

{

The subscheduler is instantiated and initialized.

SchedulerP subsched = sched->createSubScheduler();

subsched->initialize();

GridP grid = level->getGrid();

An iterate task is created and added to the subscheduler. The typical
computes and requires are specified for a 7 point stencil used in Jacobi it-
eration scheme with one layer of ghost cells. The new task is added to the
subscheduler. A residual variable is only computed within the subscheduler
and not passed back to the main scheduler. This is in contrast to the phi

variable which was specified in scheduleTimeAdvance in the computes, as
well as being specified in the computes for the subscheduler. Any variables
that are only computed and used in an iterative step of an algorithm do not
need to be added to the dependency specification for the top level task.

// Create the tasks

Task* task = scinew Task("iterate",

this, &Poisson2::iterate);

task->requires(Task::OldDW, phi_label, Ghost::AroundNodes, 1);

task->computes(phi_label);

task->computes(residual_label);

subsched->addTask(task, level->eachPatch(), sharedState_->allMaterials());

The subscheduler has its own data wharehouse that is separate from the
top level’s scheduler’s data warehouse. This data warehouse must be initial-
ized and any data from the top level’s data warehouse must be passed to
the subscheduler’s version. This data resides in the data warehouse position
NewDW.

23

// Compile the scheduler

subsched->advanceDataWarehouse(grid);

subsched->compile();

int count = 0;

double residual;

subsched->get_dw(1)->transferFrom(old_dw, phi_label, patches, matls);

Within each iteration, the following must occur for the subscheduler: the
data warehouse’s new data must be moved to the OldDW position, since any
new values will be stored in NewDW and the old values cannot be overwritten.
The OldDW is referred to in the subscheduler via the subsched->get dw(0)

and the NewDW is referred to in the subscheduler via subsched->get dw(1).
Once the iteration is deemed to have met the tolerance, the data from the
subscheduler is transferred to the scheduler’s data warehouse.

// Iterate

do {

subsched->advanceDataWarehouse(grid);

subsched->get_dw(0)->setScrubbing(DataWarehouse::ScrubComplete);

subsched->get_dw(1)->setScrubbing(DataWarehouse::ScrubNonPermanent);

subsched->execute();

sum_vartype residual_var;

subsched->get_dw(1)->get(residual_var, residual_label);

residual = residual_var;

if(pg->myrank() == 0)

cerr << "Iteration " << count++ << ", residual=" << residual << ’\n’;

} while(residual > maxresidual_);

new_dw->transferFrom(subsched->get_dw(1), phi_label, patches, matls);

}

The iteration cycle is identical to Poisson1’s timeAdvance algorithm
using Jacobi iteration with a 7 point stencil. Refer to the discussion about
the algorithm implementation in the Poisson1 description.

24

void Poisson2::iterate(const ProcessorGroup*,

const PatchSubset* patches,

const MaterialSubset* matls,

DataWarehouse* old_dw, DataWarehouse* new_dw)

{

for(int p=0;p<patches->size();p++){

const Patch* patch = patches->get(p);

for(int m = 0;m<matls->size();m++){

int matl = matls->get(m);

constNCVariable<double> phi;

old_dw->get(phi, phi_label, matl, patch, Ghost::AroundNodes, 1);

NCVariable<double> newphi;

new_dw->allocateAndPut(newphi, phi_label, matl, patch);

newphi.copyPatch(phi, newphi.getLow(), newphi.getHigh());

double residual=0;

IntVector l = patch->getNodeLowIndex__New();

IntVector h = patch->getNodeHighIndex__New();

l += IntVector(patch->getBCType(Patch::xminus) == Patch::Neighbor?0:1,

patch->getBCType(Patch::yminus) == Patch::Neighbor?0:1,

patch->getBCType(Patch::zminus) == Patch::Neighbor?0:1);

h -= IntVector(patch->getBCType(Patch::xplus) == Patch::Neighbor?0:1,

patch->getBCType(Patch::yplus) == Patch::Neighbor?0:1,

patch->getBCType(Patch::zplus) == Patch::Neighbor?0:1);

for(NodeIterator iter(l, h);!iter.done(); iter++){

newphi[*iter]=(1./6)*(

phi[*iter+IntVector(1,0,0)]+phi[*iter+IntVector(-1,0,0)]+

phi[*iter+IntVector(0,1,0)]+phi[*iter+IntVector(0,-1,0)]+

phi[*iter+IntVector(0,0,1)]+phi[*iter+IntVector(0,0,-1)]);

double diff = newphi[*iter]-phi[*iter];

residual += diff*diff;

}

new_dw->put(sum_vartype(residual), residual_label);

}

}

}

The input file /SCIRun/src/Packages/Uintah/StandAlone/inputs/Ex-

25

amples/poisson2.ups is very similar to the poisson1.ups file shown above.
The only additional tag that is used is the <maxresidual> specifying the
tolerance within the iteration performed in the subscheduler.

To run the poisson2 input file execute the following in the /SCIRun/d-
bg/Packages/Uintah/StandAlone directory:

sus inputs/Examples/poisson2.ups

3.3 Burger

In this example, the inviscid Burger’s equation is solved in three dimensions:

du/dt = -u du/dx

with the following initial conditions:

u = sin(pi x) + sin(2pi y) + sin(3pi z)

using Euler’s method to advance in time. The majority of the code is
very similar to the Poisson1 example code with the differences shown below.

The initialization of the grid values for the unknown variable, u, is done at
every grid node using the NodeIterator construct. The x,y,z values for a given
grid node is determined using the function, patch->getNodePosition(n),
where n is the nodal index in i,j,k space.

void Burger::initialize(const ProcessorGroup*,

const PatchSubset* patches,

const MaterialSubset* matls,

DataWarehouse*,

DataWarehouse* new_dw)

{

int matl = 0;

for(int p=0;p<patches->size();p++){

const Patch* patch = patches->get(p);

NCVariable<double> u;

new_dw->allocateAndPut(u, u_label, matl, patch);

26

//Initialize

// u = sin(pi*x) + sin(pi*2*y) + sin(pi*3z)

IntVector l = patch->getNodeLowIndex__New();

IntVector h = patch->getNodeHighIndex__New();

for(NodeIterator iter=patch->getNodeIterator__New(); !iter.done(); iter++

IntVector n = *iter;

Point p = patch->nodePosition(n);

u[n] = sin(p.x() * 3.14159265358) + sin(p.y() * 2*3.14159265358) + sin(

}

}

}

The timeAdvance function is quite similar to the Poisson1’s timeAdvance
routine. The relavant differences are only shown.

void Burger::timeAdvance(const ProcessorGroup*,

const PatchSubset* patches,

const MaterialSubset* matls,

DataWarehouse* old_dw,

DataWarehouse* new_dw)

{

int matl = 0;

//Loop for all patches on this processor

for(int p=0;p<patches->size();p++){

const Patch* patch = patches->get(p);

.

The grid spacing and timestep values are stored.

// dt, dx

Vector dx = patch->getLevel()->dCell();

delt_vartype dt;

old_dw->get(dt, sharedState_->get_delt_label());

.

27

Refer to the description in Poisson1 about the specification of the NodeIterator
limits. The Euler algorithm is applied to solve the ordinary differential equa-
tion in time.

//Iterate through all the nodes

for(NodeIterator iter(l, h);!iter.done(); iter++){

IntVector n = *iter;

double dudx = (u[n+IntVector(1,0,0)] - u[n-IntVector(1,0,0)]) /(2.0 * dx.x());

double dudy = (u[n+IntVector(0,1,0)] - u[n-IntVector(0,1,0)]) /(2.0 * dx.y());

double dudz = (u[n+IntVector(0,0,1)] - u[n-IntVector(0,0,1)]) /(2.0 * dx.z());

double du = - u[n] * dt * (dudx + dudy + dudz);

new_u[n]= u[n] + du;

}

Zero flux Neumann boundary conditions are applied to the node points
on each of the grid faces.

//__________________________________

// Boundary conditions: Neumann

// Iterate over the faces encompassing the domain

vector<Patch::FaceType>::const_iterator iter;

vector<Patch::FaceType> bf;

patch->getBoundaryFaces(bf);

for (iter = bf.begin(); iter != bf.end(); ++iter){

Patch::FaceType face = *iter;

IntVector axes = patch->faceAxes(face);

int P_dir = axes[0]; // find the principal dir of that face

IntVector offset(0,0,0);

if (face == Patch::xminus || face == Patch::yminus || face == Patch::zminus){

offset[P_dir] += 1;

}

if (face == Patch::xplus || face == Patch::yplus || face == Patch::zplus){

offset[P_dir] -= 1;

}

28

Patch::FaceIteratorType FN = Patch::FaceNodes;

for (CellIterator iter = patch->getFaceIterator__New(face,FN);!iter.done();

IntVector n = *iter;

new_u[n] = new_u[n + offset];

}

}

}

}

The input file for the Burger (burger.ups) problem is very similar to the
poisson1.ups with the addition, that the timestep increment used in the
timeAdvance is quite small, 1.e-4 for stability reasons.

To run the Burger input file execute the following in the /SCIRun/dbg/-
Packages/Uintah/StandAlone directory:

sus inputs/Examples/burger.ups

29

Chapter 4

Specifying Boundary

Conditions

The input file has a section under the tag BoundaryConditions with the
following format:

<Face side = "x+">

<BCType id = "0" label = "Phi" var = "Dirichlet">

<value> 0. </value>

</BCType>

</Face>

The id stands for the material number and can be either an integer start-
ing from 0 or it can be set to all. The label denotes the string variable
name that is actually specified in the algorithmic section of the component
and will be further described below. The var is usually either Dirichlet or
Neumann, but it is really up to the algorithmic component to describe how
the boundary condition is applied. Finally, there is the value tag that can
either be a floating point value or a vector value specified in the following
manner, [0.,0.,0.]

Typically within the application of the boundary conditions, different
routines are derived based on a Neumann or Dirichlet boundary condition.
A common way of applying the boundary conditions and described below in
the following code snippet is to loop over all the faces. Then check to see if
a patch face is not on the interior (getBCType(face) == Patch::None), then
retrieve the actual boundary condition information.

30

Within each face, boundary conditions may be assigned as the compo-
sition of various geometry regions. The most common configuration is the
side shown above. However, one can assign boundary conditions that would
approximate an inlet or outlet condition, that is a circle within a side given
as:

<Face side = "x+">

<BCType id = "0" label = "Phi" var = "Dirichlet">

<value> 0. </value>

</BCType>

</Face>

<Face cirlce = "x+" origin = "0 0 0" radius = "1.0">

<BCType id = "0" label = "Phi" var = "Dirichlet">

<value> 0. </value>

</BCType>

</Face>

With situations such as this, the application code must loop over all of
the geometry regions denoted by the following.

int numChildren =

patch->getBCDataArray(face)->getNumberChildren(matl);

for (int child = 0; child < numChildren; child++) {

for (Patch::FaceType face = Patch::startFace; face <= Patch::endFace;

face=Patch::nextFace(face)) {

if (patch->getBCType(face) == Patch::None) {

int numChildren =

patch->getBCDataArray(face)->getNumberChildren(matl);

for (int child = 0; child < numChildren; child++) {

Iterator nbound_ptr, nu;

const BoundCondBase* bcb = patch->getArrayBCValues(face,matl,"Phi",

31

nu,nbound_ptr,

child);

const BoundCond<double>* bc =

dynamic_cast<const BoundCond<double>*>(bcb);

double value = bc->getValue();

string type = bc->getType();

if (type == "Dirichlet")

for (nbound_ptr.reset(); !nbound_ptr.done();nbound_ptr++)

phi[*nbound_ptr]=value;

}

}

}

Within each face, an Iterator is returned that contains the list of cells
and nodes that must be visited with the boundary conditions. In the above
example, the nodal boundary points are returned and are subsequently used
to apply the Dirichlet boundary conditions. In the above example, the nu
is used to denote the not-used cell iterator. However, if the algorithm were
cell-centered, a snippet of code would look like this:

Iterator cells,nodes;

const BoundCondBase* bcb = patch->getArrayBCValues(face,matl,"Phi",cells,

nodes,child);

for (cells.reset(); !cells.done();cells++)

phi[*cells] = value;

32

Chapter 5

Input File Specification

The Uintah framework uses xml input files to specify the various parameters
required in any simulation component. The application developer is free to
use any tags to specify the data needed by the simulation. The essential tags
that are required by Uintah include the following:

<Uintah_specification>

<SimulationComponent>

<Time>

<DataArchiver>

<Grid>

The poisson1.ups file (found in /inputs/Examples/poisson1.ups) is ex-
amined closely to illustrate essential features of what each of the above tags
mean and any subsequent tags that required to fill out the problem descrip-
tion.

Each input file must contain the tag Uintah specification and within
this tag each of the major tags are specified including SimulationCompo-

nent, Time, DataArchiver, and Grid.

33

<Uintah_specification>

<SimulationComponent>

<type> poisson1 </type>

</SimulationComponent>

The SimulationComponent indicates which component is called from
the many components that are a part of the Uintah framework.

<Time>

<maxTime> 1.0 </maxTime>

<initTime> 0.0 </initTime>

<delt_min> 0.00001 </delt_min>

<delt_max> 1 </delt_max>

<max_Timesteps> 10 </max_Timesteps>

<timestep_multiplier> 1 </timestep_multiplier>

</Time>

Within the Time tag, the maximum time (maxTime), the initial time
(initTime), the initial timestep size (delt min), the maximum timestep size
(delt max), the number of timesteps (max Timesteps), and the timestep
multiplier (timestep multiplier) are specified. The max Timesteps is an
optional tag and can be used to aid for debugging and algorithm implemen-
tation and verification. The units of time are completely problem dependent,
but consistency must be followed.

<DataArchiver>

<filebase>poisson.uda</filebase>

<outputTimestepInterval>1</outputTimestepInterval>

<save label = "phi"/>

<save label = "residual"/>

<checkpoint cycle = "2" timestepInterval = "1"/>

</DataArchiver>

The DataArchiver describes the directory containing all of the simu-
lation data generated and what data is saved during the computation. In

34

the above example, data is stored in the directory poisson.uda. By conven-
tion, the “.uda” designation is affixed to represent the Uintah Data Archive
name. The tag outputTimestepInterval describes how frequently data is
saved. In this case, data is saved for each timestep. The tag save describe
the various data that is saved. In the above case, two pieces of data are
saved, the Phi variable and the residual. Finally, there is the restarting a
long running simulation by checkpointing the data with a certain frequency
(timestepInterval) and how many checkpointed data sets are retained be-
fore being overwritten (cycle).

Each simulation component has its own section that is completely user
defined. In the case of the Poisson example, there is a section of the input
file that relates to input parameters to the poisson solver.

<Poisson>

<delt>.01</delt>

<maxresidual>.01</maxresidual>

</Poisson>

The tags delt and maxresidual are specified. Depending on the com-
plexity of the component, this section of the input file can be either very
simple such as above, or very detailed.

Finally, the Grid tag is used to describe both the boundary conditions
and the description of the grid. The boundary conditions are specified for
each face of the domain and can have any number of BCType tags depend-
ing on the complexity of the equations.

Within the Grid section, the domain boundaries (lower and upper)
are specified as well as the resolution. The Uintah framework allows for easy
parallelization and the tag patches describe how many patches are allocated
along each dimension. In this example, the grid domain is decomposed into
2 patches along the x direction and 1 in each the y and z directions.

<Grid>

<BoundaryConditions>

<Face side = "x-">

<BCType id = "0" label = "Phi" var = "Dirichlet">

<value> 1. </value>

</BCType>

35

</Face>

. . . .

</BoundaryConditions>

<Level>

<Box label = "1">

<lower> [0,0,0] </lower>

<upper> [1.0,1.0,1.0] </upper>

<resolution>[50,50,50] </resolution>

<patches> [2,1,1] </patches>

</Box>

</Level>

</Grid>

36

