
1

Adaptive Visualization of Dynamic Unstructured

Meshes

Steven P. Callahan

UUSCI-2008-003

Scientific Computing and Imaging Institute
University of Utah

Salt Lake City, UT 84112 USA

June 10, 2008

Abstract:

The amount of data available from simulation and measurement is growing at an incredible rate. A
major challenge for the visualization community is to develop methods that allow users to explore
these data interactively. For three-dimensional scalar fields, direct volume rendering has become
an important technique in research and commercial settings. Interactive volume rendering requires
the efficient use of available computational resources to keep pace with the disparity, resolution,
and complexity of the volumes that are commonly produced from simulations (e.g., computational
fluid dynamics or structural mechanics) and measurements (e.g., environmental observation and
forecasting systems). For structured grids, direct volume rendering is well-studied and sufficiently
straightforward with modern graphics hardware. This is not the case with unstructured volumes,
because the elements that compose the mesh do not so easily map to current hardware. These
datasets may be extremely large and contain more than a single static instance. Therefore,
advanced solutions are required to achieve interactive visualization of this type of data. (See page
6 for complete abstract.)
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ABSTRACT

The amount of data available from simulation and measurement is growing at an incredible

rate. A major challenge for the visualization community is to develop methods that allow users

to explore these data interactively. For three-dimensional scalar fields, direct volume rendering

has become an important technique in research and commercial settings. Interactive volume

rendering requires the efficient use of available computational resources to keep pace with the

disparity, resolution, and complexity of the volumes that are commonly produced from simula-

tions (e.g., computational fluid dynamics or structural mechanics) and measurements (e.g., envi-

ronmental observation and forecasting systems). For structured grids, direct volume rendering is

well-studied and sufficiently straightforward with modern graphics hardware. This is not the case

with unstructured volumes, because the elements that compose the mesh do not so easily map to

current hardware. These datasets may be extremely large and contain more than a single static

instance. Therefore, advanced solutions are required to achieve interactive visualization of this

type of data.

The goal of this dissertation is to provide several new techniques to facilitate the visualization

of disparate unstructured meshes. Two new methods are proposed to accelerate volume rendering

for the case of static data, one of which operates in object-space and the other in image-space.

Acceleration methods may not always be enough, however, to allow interactive visualization for

data that are too large to fit in the main memory of a computer. Therefore, a new progressive

rendering approach is proposed that adaptively refines a visualization using remote resources.

These new techniques are of great assistance for a large class of static imagery. However, dynamic

volumes that change over time create unique challenges because of the amount of data that needs

to be transmitted at each step. To address this issue, a new method for efficiently handling time-

varying unstructured volumes is also presented in this dissertation.

Together, these methods for interactive visualization provide a powerful framework for ana-

lyzing large amounts of unstructured data. To demonstrate this, a final application for transfer

function design that combines many of these approaches is presented. This application includes

an evaluation performed by a group of expert users to elaborate on the importance of these

proposed techniques for interactive visualization.
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direction of Cláudio Silva). Of these groups, I would especially like to thank Juliana Freire,

David Koop, Emanuele Santos, and Huy Vo. The entire staff of the Scientific Computing and

Imaging Institute and the School of Computing at the University of Utah have been very helpful.

I would like to thank Karen Feinauer and Deborah Zemek for their assistance in completing the

necessary documentation to finish this dissertation.

I would like to thank J. Schneider for his vector quantization code and acknowledge Hopenfeld

and MacLeod (University of Utah) for the heart dataset, O’Hallaron and Shewchuk (CMU) for

the earthquake dataset, Notrosso (electricite de France) for the SPX dataset, Neely and Batina for

the fighter dataset, Tremel (EADS-Military) for the F16 dataset, Ma (UC Davis) for the Turbulent

Jet and Five Jets datasets. I thank NVIDIA and ATI for donating hardware for this research. My

work has been partially funded by the Department of Energy under the ASCI VIEWS program

and the MICS office, the National Science Foundation (grants CCF-0401498, EIA-0323604,

OISE-0405402, IIS-0513692, CCF-0528201), Sandia National Laboratories, Lawrence Liver-

more National Laboratory, the Army Research Office, an IBM Faculty Award, a University of

Utah Seed Grant, and a University of Utah Graduate Research Fellowship.

Finally, I would like to thank my family. I am extremely grateful to my wife, Kristy, for her

unending patience and support. Without her I probably would not have embarked on this five-year

detour, and I certainly would not have survived it. I am also grateful to my parents, Janice and



Lowell, for instilling the importance of education at an early age and to Kristy’s parents, Helen

and Verlon, for valuable encouragement.

xiii



CHAPTER 1

INTRODUCTION

In scientific computing, large scale simulations are frequently performed on large clusters of

parallel machines. The ability to simulate phenomena that are not easily tested in the field is of the

utmost importance for fields such as computational fluid dynamics and structural mechanics. A

major concern for the simulation scientists is that the amount of data being generated far outpaces

the ability to analyze it. Visualization is an important piece in the analysis process, because it

presents the data in a manner that makes it easier to understand [97]. Future advances in science

depend on the ability to comprehend these vast amounts of data being produced and acquired.

For 3D scalar fields, direct volume rendering has become an important method for gaining

insight into large volumes of data. Interactive volume rendering for large unstructured volumes

has been the subject of much research in the visualization community [124]. However, current

techniques are still not capable of keeping pace with the size, disparity, and complexity of

the volumes that are being produced. Thus, the problem is likely to be a challenge for the

visualization community for years to come [85]. This dissertation presents several methods

to improve the manner in which unstructured volumes are visualized through direct volume

rendering.

It is common to represent a scalar function f : D ⊆ R3 → R as sampled data by defining it

over a domain D, which is represented by a tetrahedral mesh. For visualization purposes, we

define the function f as linear inside each tetrahedron of the mesh. In this case, the function

is completely defined by assigning values at each vertex vi(x,y,z), and is piecewise-linear over

the whole domain. The domain D becomes a 3D simplicial complex defined by a collection of

simplices ci. It is important to distinguish the domain D from the scalar field f . The purpose of

visualization techniques, such as direct volume rendering, is to study intrinsic properties of the

scalar field f .
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1.1 Direct Volume Rendering of Unstructured Meshes
For the visualization of three-dimensional scalar fields, direct volume rendering has emerged

as a leading, and often preferred, method. In rendering volumetric data directly, a participating

medium is composed of semitransparent material that can emit, transmit, and absorb light, thereby

allowing one to “see through” (or see inside) the data. By changing the optical properties of the

material, different lighting effects can be achieved [92]. Figure 1.1 shows an example of a volume

rendering of the air flow around a fighter jet.

Direct volume rendering consists of three major components: sampling, classifying, and

compositing [20]. To compute an image, the effects of the optical properties must be continuously

integrated throughout the volume. However, since the volume is represented by discrete cells, this

needs to be done in a piecewise manner. Sampling deals with selecting the piecewise steps that are

taken through the volume, classification is the process of computing a color and opacity for each

step, and compositing is the how these classified steps are blended together to form an image.

1.1.1 Sampling
The most difficult aspect for volume rendering unstructured grids is finding the sample loca-

tions throughout the volume that can be combined to create a final image. Sampling strategies

generally fall into three categories: image-space, object-space, and hybrid approaches.

Image-space techniques compute the image by sampling the volume from the pixel plane of

the image. Raycasting [50, 15] unstructured grids involves sending rays for each pixel in the

image that originate from the viewpoint and pass through the volume. The cells are sampled

at the locations where the ray intersects the boundary faces. Because the cells are traversed in

the order they are encountered, ordering the samples happens automatically. Performing this

raycasting using graphics hardware has been a popular subject of research [9, 138, 140, 96].

Object-space techniques view the problem from the other direction. Each cell in the volume is

projected onto the image plane, resulting in an image. For correct compositing, the cells require a

strict front-to-back or back-to-front ordering before the projection [144, 28, 125, 66, 30]. Because

a projected cell can be decomposed into triangles [123], much of the algorithm can be performed

on graphics hardware [67, 139, 149].

A final classification of sampling strategies are those that are hybrid—they operate in both

object-space and image-space. Examples of hybrid algorithms are those that incrementally slice

the volume with image-aligned planes [111, 51], and those that project the cells in object-space,

but sort the fragments in image-space [24, 45, 22].
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Figure 1.1. Direct volume rendering of an unstructured volume simulating the pressure in the air
around a fighter jet. The volume is shown as a transparent cloud that allows internal features to
be distinguished.

1.1.2 Classification
Direct volume rendering requires the use of optical models to simulate the look of a real

medium that both occludes light (absorption) and adds to it (emmission) [12, 92, 60, 117]. The

low albedo model is frequently used because it generates a high level of realism, but remains

tractable because it does not involve multiple scattering effects.

Consider a cylindrical region of the volume with base B of area E and thickness ∆s that

contains ρ particles per unit that have a projected area A on B (see Figure 1.2). The volume of the

cylinder can be expressed as E∆s, from which the area occluded on the base can be computed:

ρAE∆s. This leads to a ratio of occluded area ρAE∆s/E, or just ρA∆s, from which the intensity

of light I can be expressed, using the following differential equation:

dI
ds

= C(s)ρ(s)A−ρ(s)AI(s) (1.1)

where the emissive term C denotes a glow per unit projected area. This equation has the solution

I(D) = I0e−
∫ D

0 ρ(t)Adt +
∫ D

0
C(s)ρ(s)Ae−

∫ D
s ρ(t)Adtds (1.2)
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Figure 1.2. A cylinder of semitransparent particles.

where s = 0 at the edge of the volume and s = D at the eye. An approximation to this equation

can be derived using a Reimann Sum. The results divide the integral into n equal segments of

size ∆x:

I(D)≈ I0

n

∏
i=1

ti +
n

∑
i=1

gi

n

∏
j=i+1

t j (1.3)

where

ti = e−ρ(i∆x)A∆x, (1.4)

gi = C(i∆x)ρ(i∆x)A. (1.5)

Classification has received a lot of attention in the research commmunity, in terms selecting

transfer functions that map the scalar value to colors [4, 61, 62, 104] as well as precomputing the

optical properties for efficient lookup [41, 114, 94].

1.1.3 Compositing
Once a sample has been classified, the contribution is combined into the final image using

alpha compositing [107]. For back-to-front compositing, the compositing equations are computed

as a function of color and opacity:

ci = ciαi + ci+1(1−αi) (1.6)

or similarly for front-to-back compositing:

ci = ci−1 + ciαi(1−αi−1) (1.7)

αi = αi−1 +αi(1−αi−1) (1.8)

for the steps before (i−1) or after (i+1) the current step (i), RGB colors (c), and transparencies

(α). The resulting color is considered premultiplied by alpha. Compositing in this form requires

a strict ordering, such as the one imposed by marching a ray through the volume or imposed by

sorting cells, because the equations are not commutative.
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1.2 Dissertation Motivation
The time and space complexity of existing techniques for direct volume rendering are heavily

dependent on the size (or number of simplices) and shape of the volume. Even for modestly

sized volumes, existing techniques fail to remain interactive. Furthermore, visualizing volumes

that are too large to fit in memory is very difficult, because most existing algorithms are not set

up to operate outside memory constraints. The problem of interactive visualization is further

complicated when the scalar field changes dynamically. Outside of the research presented in this

dissertation, there are no methods available for handling this complex type of data.

The most common manner in which this problem is handled is to simplify or reduce the

volume representation to one that is more manageable [49, 136]. However, fundamentally this is

not an acceptable solution because reducing the resolution of the volume for analysis defeats the

entire purpose of running simulations at a high resolution. Important features may be removed

in a reduced representation. A more acceptable solution is to provide acceleration techniques for

visualizing the data that create efficient approximations of the data for interaction. Returning to a

full quality representation should always be possible so that high resolution features are not lost.

The user should be allowed to control the speed versus quality trade-off in the analysis process.

1.3 Thesis Statement
Interactive volume rendering of dynamic unstructured grids requires a combination of novel

software algorithms and frameworks that efficiently amortize recent hardware configurations.

1.4 Dissertation Objectives
This dissertation presents several methods for accelerating the visualization of large static

and dynamic unstructured meshes through direct volume rendering. The goal is to provide a

framework that enables interactive exploration of these volumes at a scale that until now has not

been possible. The outline of this dissertation can be separated into five distinct contributions:

• A method is presented for volume rendering that simplifies the problem of projecting cells

by approximating them with points [3]. This object-space method reduces the amount of

geometry that is processed by graphics hardware and results in substantial savings for large

static volumes.

• A complementary acceleration technique is introduced that operates in image-space. The

algorithm is based on upsampling images computed at low resolutions and can be added to

virtually any existing volume rendering algorithm to provide fast intermediate visualizations
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during user interaction [23]

• A technique is described for performing progressive volume rendering of static volumes too

large for conventional methods. A data server incrementally streams portions of the volume

to a remote thin client that combines each piece into a final image [18, 19]. Intermediate

representations are updated continuously, leaving the application interactive for the user.

• A framework is outlined for efficiently rendering volumes with dynamic, or time-varying

scalar fields. A careful balance of computational resources is used to distribute the load and

allow for interactivity [6, 7].

• Combining these new interactive techniques, an application is described for designing trans-

fer functions within large, static and dynamic volumes. The result is a tool that is useful

for analyzing and exploring disparate unstructured volumes [8]. An evaluation of the

application is provided by expert users to validate the effectiveness of the methodology.

The rest of this dissertation is outlined as follows. Chapter 3 describes the object-space accel-

eration algorithm and Chapter 4 describes the image-space acceleration algorithm. Progressive

volume rendering is outlined in Chapter 5 and the framework for dynamic scalar fields is provided

in Chapter 6. Finally, the application and evaluation are given in Chapter 7 and conclusions and

future work are presented in Chapter 8.



CHAPTER 2

BACKGROUND

This chapter provides a background of work related to that which is proposed in this disserta-

tion. Volume rendering for unstructured grids using graphics hardware is described in Section 2.1

and additional acceleration techniques are described in Section 2.2. A brief summary of the

bilateral filter for image processing is described in Section 2.3. Related work on handling remote

and time-varying visualization is described in Sections 2.4 and 2.5, respectively. Finally, a

synopsis of existing techniques for specifying transfer functions is given in Section 2.6.

2.1 Hardware Assisted Volume Rendering of
Unstructured Grids

Volume rendering on a commodity PC has been the subject of much research recently, due

to the steady increase in processing power on graphics processing units (GPUs) and the advent

of programmable shaders. Here the state-of-the-art for hardware-assisted volume rendering of

unstructured grids is summarized; for more detail the reader is refered to recent surveys by Silva et

al. [124] and Krüger and Westermann [68].

For unstructured grids, volume rendering algorithms generally fall into three categories: ray-

casting, splatting, and hybrid approaches. Recently, Weiler et al. [138] proposed an algorithm to

perform ray-casting completely on the GPU by storing the mesh and traversal structure in GPU

memory. This algorithm was made more efficient and extended to handle nonconvex meshes in

subsequent work by Weiler et al. [140] and Bernardon et al. [9]. These algorithms benefit from

low latency because they avoid CPU to GPU data transfers. However, the limited memory of

GPUs prevents these algorithms from rendering even moderately sized datasets. To address this

problem, Muigg et al. [96] proposed a method for bricking the volume in memory so that portions

of the mesh can be passed to the GPU separately. The idea is to treat the CPU memory as a cache

system for the GPU, resulting in a more scalable approach for hardware raycasting.

Pioneering work on tetrahedral splatting by Shirley and Tuchman [123] introduced the Pro-

jected Tetrahedra (PT) algorithm. For each viewpoint, PT decomposes a tetrahedron into one
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to four triangles that can be rendered efficiently in hardware. Subsequent work by Roettger et

al. [115] improves upon the quality of the projection by incorporating arbitrary transfer func-

tions. Similarly, Kraus et al. [67] presented another technique that uses programmable shaders to

improve compositing and handle perspective projections. Unfortunately, the compositing of the

triangles using PT requires an explicit visibility ordering that is implicit to raycasting. Many al-

gorithms have been proposed to perform the visibility ordering in object-space [144, 28, 125, 30])

The goal of much of the recent work on PT has been to push more of algorithm onto the GPU.

Wylie et al. [149] described how the decomposition of tetrahedra into triangles can be performed

using graphics hardware. Marroquim et al. [91] extend this further to perform an approximate

visibility sorting on the GPU as well.

Another efficient way for splatting is to represent the mesh as points instead of cells. Point-

based representations of underlying meshes have been well-studied [116, 105, 13]. For structured

grids, Zwicker et al. [155] introduced the use of convolution kernels to help mitigate errors

associated with representing a full tetrahedron with a single point. This work was improved by

Xue and Crawfis [150] as well as Chen et al. [25] to enhance the performance using graphics

hardware. The work of Mao et al. [89] and Laur et al. [70] for point-based representations

of triangle meshes formed a basis of Museth and Lombeyda’s TetSplat [98] for unstructured

volumes. TetSplat creates hierarchies of points at different resolutions to perform rendering of

datasets at a large-scale using a limited, albeit useful, opaque representation of the volume that

can be probed by cutting pieces away.

Hybrid approaches have also been introduced that combine some elements from raycasting

and others from splatting. Incrementally slicing the tetrahedron in a series of screen-aligned

planes was originally proposed by Reed et al. [111] and more recently adapted using geometry

shaders by Georgii et al. [51]. A different approach introduced by Shareef et al. [121] represents

the unstructured mesh as a Pixel Ray Image (PRI), a data structure that stores a series of rays

cast from canonical planes that intersect cells in the mesh. This representation is then stored

in textures and rendered using a slice based-approach. Recent work by Callahan et al. [22, 17]

introduced the Hardware-Assisted Visibility Sorting (HAVS) algorithm which sorts in object-

space and image-space. The algorithm operates on the triangles that compose the tetrahedral

mesh. For each new view, the triangles are approximately sorted in object-space based on their

centers. Then, in image-space, a data structured called the k-buffer is used to maintain a fixed list

of fragments for each pixel that can be used to finalize the sorted order at a fragment level. The

HAVS algorithm is fast, efficient, and flexible enough to handle dynamically changing data, and
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thus, it is used as a basis for the techniques proposed in Chapters 3, 5, 6, and 7 of this dissertation.

Graphics hardware has also been used in recent research to visualize isosurfaces of volumetric

data. The classic Marching Cubes algorithm [79] and subsequent Marching Tetrahedra algo-

rithm [34] provide a simple way to extract geometry from structured and unstructured meshes

in object space. However, image-space techniques are generally more suitable for graphics

hardware. One such algorithm, proposed by Sutherland et al. [127], uses alpha-test functionality

and a stencil buffer to perform plane-tetrahedron intersections. Isosurfaces are computed by

interpolating alpha between front and back faces and using XOR operation with the stencil

buffer. Later, Röttger et al. [115] revised this algorithm and extended the PT algorithm to perform

isosurfacing. Instead of breaking up the tetrahedra into triangles, the algorithm creates smaller

tetrahedra which can be projected as triangles and tested for isosurface intersection using a 2D

texture. More recent work by Pascucci [102] uses programmable hardware to compute isosur-

faces. The algorithm considers each tetrahedron as a quadrilateral, which is sent to the GPU where

the vertices are repositioned in a vertex shader to represent the isosurface. Chapter 6 extends the

HAVS algorithm [22] described above to perform isosurface extraction of time-varying scalar

fields.

2.2 Acceleration Techniques for Volume Rendering
Acceleration techniques for direct volume rendering have been the subject of much research

in the visualization community. For a more complete summary of volume rendering algorithms

for structured and unstructured grids, the reader is referred to recent surveys [109, 55, 124].

For structured grids, some of the original acceleration techniques are performed in image-

space, and are still in use today to make ray casting more efficient. Levoy introduced the

idea of casting one ray for multiple pixels [74], casting more rays in areas that vary across

neighboring rays [73], or by not casting any rays in regions that do not contribute to the final

image [72]. Extending these ideas, Danskin and Hanrahan [32] introduced adaptive ray sampling

to sparsely sample along viewing rays in homogeneous regions. A similar object-space approach

was introduced by Parker et al. [100], where the volume is partitioned into bricks that can

be skipped during ray traversal. One class of acceleration techniques are multiresolution or

level-of-detail (LOD) methods, which trade off quality of results for speed in rendering. With the

advent of hardware-accelerated texture-based volume rendering [16], LaMar et al. [69] introduced

a multiresolution approach for slicing regions of the volume at different resolutions that are stored

in an octree. This allowed regions of less interest, such as those farthest from the view point, to
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be drawn at a coarser resolution. Weiler et al. [141] improved upon this idea by making it more

efficient and guaranteeing consistent interpolation between different resolution levels.

For unstructured grids, the image-space approaches for ray casting introduced by Levoy

for structured grids are still applicable. However, object-space approaches are not so easily

adapted. To mitigate this problem, Leven et al. [71] sampled the unstructured grid regularly

into an octree hierarchy that can be rendered using LOD techniques for structured grids. Volume

simplification techniques, such as edge collapsing via the quadric error metric [49], provide the

means for reducing the geometry representation to improve rendering performance. Adapting

the simplification paradigm for LOD, Cignoni et al. [27] proposed a technique for creating a

progressive hierarchy of tetrahedra that are stored in a multitriangulation data structure that is

updated dynamically for interactivity. More recently, Callahan et al. [21, 17] introduced a simpler

approach that samples the geometry during rendering based on a pre-computed importance. This

approach avoids hierarchies and maintains interactivity by dynamically adjusting the amount of

geometry rendered at each frame. This method is adapted in Chapter 6 of this dissertation to

handle dyanamic geometry as well.

Several systems have previously taken advantage of multiple processors and multithreading

to increase performance. The iWalk system [31] by Correa et al. uses multiple threads to prefetch

geometry and manage a working set of renderable primitives for large triangles scenes. More

recent work by Vo et al. [137] extends this idea to perform out-of-core management and rendering

of large volumetric meshes. In Chapters 5 and 6 of this dissertation, algorithms are introduced

that also take advantage of multiple processors to balance computation.

2.3 The Bilateral Filter
Since first introduced for image denoising [129], the bilateral filter has been used for many

image processing applications, such as tone mapping for high dynamic range imaging [37]. The

filter has also been used for problems other than image processing, such as mesh denoising [46].

For upsampling, the use of the bilateral filter is relatively new and has seen less use. Durand et

al. [38] applied it to compute advanced shading effects with fewer samples. Sawhney et al. [118]

adapted the filter for stereoscopic images at different resolutions. More recently, Kopf et al. [65]

showed how joint bilateral upsampling could be used for computing downsampled solutions

over an image and combining them with the original image. They demonstrated tone-mapping,

colorization, stereo depth, and graph cuts as applications for the approach. In Chapter 4 of this

dissertation, a method is presented for accelerating volume rendering that is similar to this latter
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technique. However, instead of enhancing an image with a downsampled solution, the method

renders the image at a small resolution for increased performance, upsamples the image, then

enhances it with a computed solution to achieve a high quality approximation.

2.4 Remote Visualization
The problem of remotely visualizing large datasets has been the subject of research for many

years. The most widely recognized solutions perform the visualization task on large clusters using

software algorithms [101] or with hardware-assisted algorithms [95] through the use of special-

ized graphics hardware [57]. Typically, an image is created using the cluster, then compressed

for transmission to the client, where it is decompressed and displayed to the user [43]. Systems

such as Vizserver [135] are available from vendors for performing client-server visualization in

this manner. The Visapult system introduced by Bethel et al. [10] was developed to push more

of the burden onto the client. This is done by rendering blocks of the data from the server in a

distributed system and compositing the results on the client.

A less restrictive class of algorithms performs the visualization on more limited resources by

assuming a simple server (e.g., a web server). To this end, Lippert et al. [76] introduced a system

in which the server stores compressed wavelet splats that are transmitted to the client for render-

ing. As the splats are received by the client, the image is progressively refined. Another approach

by Engel et al. [42] described a progressive isosurface visualization algorithm for use on the web.

This is done by allowing the server to compute a hierarchy of isosurfaces that are transmitted

to the client progressively. For efficiency, only the difference between two successive levels of

the hierarchy is sent across the network. More recently, the client-server architecture provided

by Kaehler et al. [59] performed visualization of Adaptive Mesh Refinement (AMR) data that

are stored remotely on a server and adaptively rendered locally on a client by interpolating the

hierarchical structure of the grids. A method is presented in Chapter 5 of this dissertation that is

similar to this latter class of algorithms, but for the more difficult case of unstructured grids. A

limited server prepares the geometry and streams it to the client in a series of progressive steps

that avoid redundant transmission and unnecessary storage. This allows the client to receive the

nonoverlapping geometry and refine the image with assistance of the GPU.

2.5 Time-Varying Visualization
The visualization of time-varying data is of obvious importance, and has been the source of

substantial research. Of particular interest is the research literature related to compression and
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rendering techniques for this kind of data. For a more comprehensive review of the literature, the

interested reader is referred to the recent surveys by Ma [84] and Ma and Lum [86].

Very little has been done for compressing time-varying data on unstructured grids. Therefore

all the papers cited below focus on regular grids. Some researchers have explored the use of

spatial data structures for optimizing the rendering of time-varying datasets [40, 87, 122]. The

Time-Space Partitioning (TSP) Tree introduced by Shen et al. [122] used in those papers is based

on an octree which is extended to encode one extra dimension by storing a binary tree at each

node that represents the evolution of the subtree through time. The TSP tree can also store partial

subimages to accelerate rendering by ray-casting.

The compression of time-varying isosurfaces and associated volumetric data with a wavelet

transform was first proposed by Westermann [142]. With the advance of texture-based volume

rendering and programmable GPUs, several techniques explored shifting data storage and de-

compression into graphics hardware. Coupling wavelet compression of structured grids with

decompression using texturing hardware was discussed in work by Guthe et al. [52, 53]. They

describe how to encode large, static datasets or time-varying datasets to minimize their size,

thus reducing data transfer and allowing real-time volume visualization. Subsequent work by

Strengert et al. [126] extended the previous approaches by employing a distributed rendering

strategy on a GPU cluster. Lum et al. [80, 81] compressed time-varying volumes using the

Discrete Cosine Transform (DCT). Because the compressed datasets fit in main memory, they

are able to achieve much higher rendering rates than for the uncompressed data, which needs to

be incrementally loaded from disk. Because of their sheer size, I/O issues become very important

when dealing with time-varying data [152].

More related to this dissertation is the technique proposed by Schneider et al. [119]. Their

approach relies on vector quantization to select the best representatives among the difference

vectors obtained after applying a hierarchical decomposition of structured grids. Representa-

tives are stored in textures and decompressed using fragment programs on the GPU. Since the

multi-resolution representations are applied to a single structured grid, different quantization

and compression tables are required for each time instance. Issues regarding the quality of

rendering from compressed data were discussed by Fout et al. [47] using the approach described

by Schneider et al. as a test case.
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2.6 Transfer Function Design
Volume visualization through direct volume rendering has received much attention in the

research community, yet the specification of transfer functions is still a challenging task. There

have been many attempts to automate the process of specification. Levoy [75] described how

boundaries can be visualized using the computed gradient of the scalar field to generate a transfer

function. Along similar lines, Kindlmann and Durkin [61] proposed the use of histograms of

the first and second derivatives to automatically generate a transfer function which emphasizes

boundaries around homogeneous regions in the volume. An alternate approach was proposed

by Fujishiro et al. [48] which uses a hyper Reeb graph to distinguish features of the dataset

topologically.

Automatic techniques are good at extracting important boundary features from a volume.

However they may not always give the user the desired visualization. Therefore, many systems

have been developed that push more of the specification burden to the user. Marks et al. [90]

introduced Design Galleries which allow the user to explore the transfer function parameter

space by iteratively picking images from collections of visualizations. More recently, a parallel

coordinate interface for parameter exploration was described by Tory et al. [131]. Tzeng et

al. [132] introduced a system that learns regions of the volume by allowing the user to paint

on slices of the volume. Along similar lines, Roettger et al. [113] include spatial information

in standard 2D histograms to allow selection by region. Another high-level specification system

was proposed by Rezk-Salama [112] that provides semantics for different visualization tasks and

hides much of the underlying specification with the use of simple user interfaces for parameter

exploration.

The most common approach to user-assisted transfer function specification is to incorporate

histograms of the scalar field that classify the volume into different materials [36]. Bajaj et al. [4]

proposed a system that analyzes the volume to extract isocontour information that is plotted for

the user as a collection of 1D histograms for static datasets and 2D histograms for time-varying

datasets. Kniss et al. [62] introduced widgets to facilitate transfer function specification on the

multidimensional histograms introduced in Kindlmann and Durkin’s work. Lum and Ma [82]

modified the 2D joint histogram by showing the scalar pair along the gradient direction to intro-

duce the Lighting Transfer Function that selectively enhances the boundary surface of interest.

Another recent approach by Sereda et al. [120] uses Gaussian kernels to determine material

transitions in CT scans and displays their L and H parameters as a 2D histogram that facilitates

boundary extraction. The Scout system [93] takes a different approach to specification by directly
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applying mathematical expressions or queries to the data in the form of a programming language.

Focus and context approaches have received a lot of attention recently due to the recognition

that features deserve different levels of focus. Hadwiger et al. [54] introduced a volume rendering

system for segmented data that selects a different transfer function based on segmented voxel

IDs. Similarly, Viola et al. [134] use importance compositing to assign higher opacities to more

important features in segmented data. Svakhine et al. [128] extend this work to perform different

rendering techniques for the unique materials in the data. For multiple volumes, Bruckner and

Gröller [14] introduce a system that controls the compositing of inter-penetrating objects by using

an opacity weighted average of two dimensional intersection transfer functions. Ma [83] and later

König and Gröller [64] recognized that feature extraction would be simplified by defining transfer

functions separately then consolidating them into one image with additive blending. Wu et

al. [148] extended this idea with the use of a genetic algorithm for nonlinear combinations of

transfer functions. Chapter 7 describes an approach similar to these additive approaches, except

that it allows the user to blend transfer functions defined on different 1D and 2D histograms.

More specific techniques for transfer function specification have also been developed to han-

dle high dynamic range data. By using a Gaussian transfer function, Kniss et al. [63] avoid the

inaccuracies that are present with a low resolution lookup table. Another approach was introduced

by Potts et al. [108], which uses a logarithmic scaling on their transfer function. Kraus et al. [67]

use a similar logarithmic approach for lookup tables that was later used by Qiao et al. [110] to

render large simulation data. These latter approaches based on logarithmic scaling assume data

centered near zero. Recognizing that this is not always the case, a recent system by Yuan et

al. [153] provides a high precision lookup table and the ability to nonlinearly zoom into regions

of the transfer function for detailed specification. Since this is not always sufficient, Chourasia

and Shulze [26] perform an automatic opacity-weighted histogram equalization to distribute the

colors of a lookup table nonlinearly. The specification described in Chapter 7 allows more control

by remapping scalars through a user-controlled range mapping.

Techniques have also been developed to handle transfer function specification for time-varying

datasets. These techniques must consider the data for the entire time series when specifying

transfer functions. The work of Jankun-Kelly and Ma [58] analyzes the generation of a single

transfer function that works globally for a time-varying dataset. Doleisch et al. [35] presented

a framework using time histograms to analyze unsteady flow data from computational fluid

dynamics (CFD) simulations. Younesy et al. [151] proposed the Differential Time Histogram

Table, using temporal coherence to minimize the amount of data required from disk to accelerate
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the rendering process. Usually a transfer function is designed to capture features that have a

regular or periodic behavior. If a dataset presents different behavior, a complex transfer function

is required to capture all features at once [84]. One recent paper has attempted to address the

problem of aperiodic time sequences. Akiba et al. [1] extended the time varying transfer function

framework to handle statistically dynamic time-varying volume data by performing temporal

reduction and visualization feedback to find suitable time classified intervals. Wu et al. [147]

extend the idea of transfer function fusion to create animations of static data by keyframing focus

and context visualizations. Chapter 7 introduces a technique for specifying multiple transfer

functions over time to handle time-varying data. These transfer functions can be key-framed,

allowing custom transitions defined by the user.



CHAPTER 3

OBJECT-SPACE ACCELERATION FOR
VOLUME RENDERING

This chapter describes interactive visualization of large, unstructured tetrahedral meshes using

a point-based approach. The proposed technique renders each tetrahedron in the mesh as a single

point. Approximating the tetrahedra in the mesh in this way is fast, and when combined with

point reshaping methods, this technique produces high-quality renderings of large datasets at

interactive rates.

There are many advantages to point-based rendering techniques. Many datasets contain tetra-

hedra that, after projection, represent subpixel sized areas. Due to the inclusion of connectivity

information associated with rendering triangular or quadrilateral primitives, these tetrahedra are

not optimally rendered. By representing these tetrahedra with single points, subpixel sized prim-

itives can be rendered accurately using less data. Thus, rendering is often performed faster when

using point-based techniques. In addition, difficulties such as storage and indexing additional data

structures associated with dynamic level-of-detail for large datasets are substantially reduced.

The introduced technique is flexible as it is not limited to vertex-centered data—it can be easily

applied to large cell-centered volumes as well. In spite of its advantages, point-based rendering

presents several sources of error that are addressed in this chapter.

The results of this work add several unique insights to the point-based rendering community.

This chapter presents the following contributions:

• A novel point-based approach for rendering unstructured tetrahedral meshes with either

vertex- or cell-centered data.

• Through the use of a compact point representation, this method eliminates the need to pro-

cess and store connectivity information, while easing the implementation of level-of-detail

strategies.

• Point reshaping using a GPU raycasting technique to minimize tetrahedron approximation

error is introduced.
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• Through the direct compositing of the point fragments in hardware shaders, the need for

convolution operations used in existing splatting techniques [25] is avoided.

This chapter is organized as follows. Section 3.1 outlines the approach to point-based volume

rendering of tetrahedral meshes, including the required preprocessing. Section 3.2 discusses

the level-of-detail methodology, including performance and quality metrics. The results of the

method are shown in Section 3.3 while a discussion of the work and summary are described in

Sections 3.4 and 3.5.

3.1 Algorithm Overview
This volume rendering approach relies on the representation of complex tetrahedral meshes

by simple approximations of the elements comprising the mesh. As illustrated in Figure 3.1,

this algorithm can be broken down into three distinct components: preprocessing of the mesh,

per-frame processing on the CPU, and per-frame processing on the GPU. After forming the

approximation elements by finding a representative transform and scalar value for each point

in a preprocessing step, the mesh is rendered at each frame as a dynamically adjusted set of

screen-aligned points, as shown in Figure 3.2. The CPU first sorts the points front-to-back based

on the current viewpoint and then determines the level-of-detail to use in the current frame. The

GPU’s vertex program then uses information in the transform associated with the point being

rendered to re-size it, ensuring that the tetrahedron is adequately represented. Then, the fragment

program culls fragments based on the shape of the approximating element using a technique

reminiscent of Blinn et al. [78]. One fragment is kept in a texture and used to composite the

ray-gap between the two fragments using a preintegrated table [41]. The error associated with

Figure 3.1. Point-based volume rendering algorithm overview.
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(a) (b) (c)

Figure 3.2. An illustration of the point-based strategy in 2D. (a) The original mesh with viewing
ray r through the mesh and associated scalar function g(t). (b) The point-based representation
of the elements approximates the original function, ḡ1(t) ≈ g(t), along the viewing ray. (c) The
dynamic level-of-detail algorithm samples (here at 50%) and resizes (grey) the original (black)
representation of the elements, resulting in a faster but coarser approximation, ḡ2(t), along the
viewing ray.

over-representation of a tetrahedron is thus mitigated by compositing fragment distances instead

of applying preassigned values for alpha.

3.1.1 Preprocessing the Tetrahedral Mesh
To create a point-based representation of the tetrahedra, a small preprocessing step is required.

As will be shown, each tetrahedron can be approximated with exactly one affine transformation

from a unit tetrahedron defined on the standard 3D basis to any given tetrahedron. The reference

tetrahedron’s barycenter is also transformed by the same affine transformation to a vertex, v,

describing the location of the point object representing the associated tetrahedron.

Since an entire tetrahedron is represented by a single point, this point must be assigned a value

based on the scalar field being described by the underlying geometry. For vertex-centered data,

the mean of the scalar values at each vertex is assigned to v; otherwise, the cell value is assigned.

While this method does not account for the distance of the vertices from the point representing

them, in practice it adequately approximates a general, well-formed tetrahedron.

Because graphics point primitives (e.g., GL POINT) are rasterized as squares they must be

shaped to better approximate the tetrahedra they represent in order to improve image quality. The

shaping is accomplished by general representative transformations for each tetrahedron. This
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additional information allows the GPU to reshape the point primitive in the fragment shader.

To generate this transformation, a regular tetrahedron is defined centered at the origin such that

it is inscribed in the unit sphere (this regular tetrahedron is referred to as σ̂ ). A transformation

T is then found such that T (σ̂) = σ . This transformation takes the unit tetrahedron to a given

tetrahedron as shown in Figure 3.3.

3.1.2 Rendering the Points
As the method presented above produces an approximation of the true tetrahedral mesh, the

approximation error must be reduced to create an adequate rendering. Here, various methods for

footprint generation are discussed, and their results are shown Figure 3.4. Each footprint shows

a trade-off between final image quality and rendering speed. In all of the following footprint

generation techniques, point sizes are generated by taking the size of the tetrahedron and the

distance from the viewpoint into account.

3.1.2.1 Circular Footprints
Generating footprints without regard to the shape of the tetrahedron can produce a high degree

of error resulting from overdraw. Although the method by which point size is generated is

unchanged from that of the unshaped points, to reshape the point into a circle the fragment

program must be informed of the radius of the circle to be formed and its location in screen-space.

These data must be sent down the pipeline, as fragments being processed by the fragment shader

no longer contain information about the generating primitive. By passing the center of the point

and radius to the fragment program via texture coordinates, the program is made aware of all data

required to properly rasterize the tetrahedron approximation. Culling fragments that fall outside

the radius of the circle is straightforward.

(a) (b)

Figure 3.3. (a) The transformation taking a unit tetrahedron to a general tetrahedron also takes
a unit sphere to the min-volume ellipsoid. (b) Ray-casting on the GPU is efficient when taking
advantage of the representative transformation.
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Figure 3.4. Rendering of the Heart dataset with HAVS [22] (top left) and with this algorithm
using circular footprints (top right), ellipsoidal footprints (bottom left); and exact projections
(bottom right). Note: This dataset has malformed tetrahedra that cause HAVS to produce
erroneous renderings; the point-based method does not fail in these situations.

Figure 3.5 shows the image quality improvement by representing tetrahedra as circles com-

pared to simple squares, but even reshaping the points to form circles renders many fragments

unnecessarily.

3.1.2.2 Ellipsoidal Footprints
To reduce overdraw and increase image quality, ellipsoidal footprints are useful. Their smooth

appearance makes them good candidates for point-based level-of-detail (see Section 3.2). From

geometric probability, it is known that for a convex volume A contained in another convex volume

B, the conditional probability that a random ray that hits B will also hit A is the ratio of surface

areas, sA and sB: p(A|B) = sA/sB [106]. Since sA is the surface area of the tetrahedron, and hence

fixed, the surface area sB should be minimized to maximize the probability. This defines the best

approximating ellipsoid over all viewpoints.

Finding the ellipsoid with minimum surface area that encloses the tetrahedron involves a

constrained minimization over integrals with no closed form. Instead, the enclosing ellipsoid
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Figure 3.5. Hardware-accelerated point-based volume rendering is faster than the current state of
the art approaches while still generating high quality images. Left to right: a baseline image
is rendered at full quality and using points with unshaped footprints, circular footprints and
ellipsoidal footprints, respectively. The lower half of the point-based images shows the difference
to the baseline exact image. Notice the increasing level of fidelity.

with smallest volume can be found (called the min-volume ellipsoid). This is a simpler problem,

and in practice, usually generates an ellipsoid with small surface area.

To find the min-volume ellipsoid, it is first noted that the unit sphere is the min-volume

ellipsoid for the unit tetrahedron σ̂ . The transformation associated with the tetrahedron in ques-

tion moves the min-volume ellipsoid for the unit tetrahedron to an ellipsoid for the represented

tetrahedron. The volume of any shape is scaled by the determinant of T . Since this is a constant

for all possible shapes, it must be the case that T preserves extrema, and so the ellipsoid is

min-volume (see Figure 3.3).

The transform, along with the position of the point in R3 and its associated scalar value must

be transferred to the GPU to properly cull fragments from the rasterized point. A simple raycaster

provides a perspective-correct method for determining the projection of an ellipsoid. Since the

reference space used during ray-casting is isomorphic to worldspace via the transformation T ,

transforming the rays allows the fragments to be culled on the GPU, based on a simple ray-sphere

intersection. Figure 3.3 describes the results of this culling procedure from a rasterized square

into the projection of a min-volume ellipsoid.

3.1.2.3 Exact Projection Footprints
As with ellipsoidal projection, the transform taking a unit sphere to an enclosing ellipsoid

is equivalent to that describing the underlying tetrahedra. Similarly, an appropriate ray-casting

test can be used in the fragment program to cull fragments leaving only the exact tetrahedral
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projection to be rendered.

Several opportunities for optimization are inherent in the underlying algorithm used to de-

scribe the geometry being rendered. First, the method by which the transformation is formed

allows the tetrahedron being processed to be expressed as a right-angled tetrahedron. When ex-

pressed as a right-angled tetrahedron, the ray-caster needs only to test rays against three congruent

right triangles in order to properly shape the tetrahedral projection.

3.1.3 Compositing the Points
As this method for footprint generation does not require any kernel-based convolution, it can

be implemented independently of the compositing technique. This provides a true point-based

volume rendering approach that can be easily implemented for many different compositing algo-

rithms. In this case, a compositing scheme based on HAVS [22] is used, in which the incoming

fragment is directly composited with the previous fragment. This is possible as the previous

fragment is always stored in a texture so that the ray-gap can be determined. The scalar values

of the front and back fragments as well as the distance between them are used to look up into a

preintegrated table [41], then composited directly into an off-screen framebuffer. Since the initial

drawing primitives can be thought of as screen-aligned polygons, there is no need to perform

per-fragment depth sorting as with HAVS. A single fragment and its associated scalar and depth

from the compositing step previously performed is the only information required at each step.

However, as with any volume rendering algorithm depth ordering is important. Fortunately, as

point primitives are rasterized as screen-aligned squares, a sort by centroid method exactly sorts

all approximating elements alleviating the need for per-fragment sorting operations.

3.2 Level Of Detail
One of the advantages of using a point-based approach for rendering is that the lack of con-

nectivity between primitives facilitates dynamically changing data. In particular, level-of-detail

(LOD) approaches become much easier. Recently, Callahan et al. [21] introduced a simple,

dynamically-adjusting LOD algorithm based on a sample-based simplification of the renderable

primitives. Instead of simplifying the geometry, the algorithm performs importance sampling of

the primitives, which enables dynamic LOD by adjusting the number of primitives rendered at

each frame. To reduce holes in the resulting image, the boundary geometry of the mesh is always

rendered.

This strategy is adapted in this point-based volume renderer by using a purely Monte Carlo

approach to importance sampling. As before, the number of points rendered at each frame is
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adjusted based on the framerate of the previous frame. A key difference is that by using points as

described, holes may appear in the volume with a lower LOD because the points may no longer

overlap. To minimize these discontinuities in the resulting image, the ellipsoidal footprint is used.

Because this problem will occur even on the boundary, there is no distinction between boundary

and internal points. Instead, a technique is used for resizing the points based on the LOD to

reduce the number of gaps created. Cook et al. [29] demonstrated this technique using a scale

that is linear to the reduction for opaque geometry in a distant scene.

Since this volume renderer relies heavily on fragment processing, the LOD algorithm used

corresponds to the number of fragments, instead of primitives as in the previous work[21]. Thus,

a 50% LOD rasterizes 50% of the fragments. The problem is to find the correct number of points

to render that generates the correct number of fragments with the scaling factor. If the number

of fragments rasterized is represented as a function f of the LOD: f (λ ) = N(λ )S(λ )x2, where

λ is the LOD reduction, N is the a function of the number of points, S is a function of the point

scaling, and x is the point size. With no scaling, the number of fragments generated is directly

proportional to the number of points rendered, i.e., N(λ ) = n
λ x2, where n is the number of points.

Introducing a linear scaling factor, the number of points can be computed to obtain the same

fragment count: N(λ )λx2 = n
λ x2 or N(λ ) = n

λ 2 . Therefore, at each LOD step, the number of

points rendered is adjusted by the square of the LOD, where the LOD ∈ [0,1].

The resulting LOD scheme efficiently and dynamically adapts the number of fragments ren-

dered to achieve a target interactivity. In practice, image quality is not dominated by the ellip-

soidal representation of tetrahedra because the distance is composited directly instead of through

the use of convolution kernels. Figure 3.6 shows an example of the described dynamic LOD with

point resizing. It is important to note that although fewer points are selected for rendering, the

sizes of the points being rasterized increases, thus increasing the number of points approximating

the scalar field as illustrated by Figure 3.2. Although the point primitives are reshaped during

rendering, the fragments being culled must still be processed. Each fragment, regardless of

its final contribution to the framebuffer, is processed by the fragment program. Because of

the fragment processing, during application of the LOD scheme, the relative size of the points

selected for rendering directly impacts the performance of the selected LOD. This LOD strategy

exploits the fact that as the total fragment count decreases, the framerate increases.
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Figure 3.6. Dynamic level-of-detail of the SPX2 dataset (∼800K tetrahedra) with point resizing.
The LOD at each step represents a percentage of the fragment count used: 100% at 5.6 fps (top
left), 50% at 20 fps (top right), 25% at 50 fps (bottom left), and 15% at 100 fps (bottom right).

3.3 Results
Here the results are presented for the proposed algorithm in terms of visual quality and

interactivity as they relate to HAVS [56]. To adequately analyze the performance of the vol-

ume rendering approach HAVS is used with comparable optimizations. Each rendering method

employs Vertex Buffer Objects and parallel sorting and rendering. To generate images with the

highest possible quality in HAVS, the largest size for the k-buffer is used to remove as many

artifacts as possible. All results and images were generated on a desktop machine with Intel Core

2 Duo 2.2 GHz processors, 2.0 GB RAM, and an NVIDIA 7950 GX2 graphics card.

Table 3.1 describes the performance of the point-based method based on the shape of the

footprints being generated compared with the HAVS algorithm. As the table describes, this

method’s performance is better than the HAVS algorithm for all datasets while yielding acceptable

image quality. However, the presented algorithm approaches the performance of HAVS for

large meshes. This is due to the quantity of data being sent to the GPU for further processing.
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Table 3.1. Performance summary of point-based volume rendering for full-quality renderings in
frames-per-second.

Dataset Num Tets Unshaped Circles Ellipses HAVS
SPX2 827,904 13.8 14.7 17.2 5.26
Torso 1,082,723 6.7 7.1 6.8 3.70

Fighter 1,403,504 5.3 5.1 4.9 2.78
F-16 6,345,709 0.3 0.28 0.29 0.2

Although each of the increasingly accurate footprint generation methods reduces the amount of

fragment overdraw that occurs at each step, more data must be sent to the GPU, reducing the

overall rendering speed of particularly large datasets. As tetrahedra approach subpixel accuracy,

it becomes unnecessary to reshape the points representing them as unshaped points at that scale

represent tetrahedra just as well as shaped points, generating additional speedups. The degree to

which these small tetrahedra affect the final visualization depends on the structure found in the

original tetrahedral mesh. In Figure 3.7 the fighter dataset is rendered so that all tetrahedra with

subpixel sized footprints are colored green. The reshaping of these tetrahedra will do very little

to mitigate any rendering error in the final visualization, so they remain represented with squares.

Figure 3.7. For adaptive meshes, many elements are subpixel sized. The top image shows
HAVS [22], the middle image shows ellipsoidal projection of the tetrahedra, and the bottom
image uses green pixels to show subpixel element locations.
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3.3.1 Image Quality
To quantitatively evaluate the quality of a resulting image a quality metric must be described.

The root-mean squared error metric is used here to analyze each rendered image. The implemen-

tation of this metric represents the mean of all distances in colorspace between corresponding

pixels. This provides a global metric by which images generated by this point-based method can

be compared to an image generated by exact volume rendering. Table 3.2 presents the results of

the application of the above described quality metric. As the error metric implies, lower numbers

correspond to higher quality images.

3.4 Discussion
The method presented here is generally faster than current direct volume rendering approaches;

however, it is clear that some meshes are better represented by certain footprint shapes than others.

Due to the number of fragments generated by the GL POINT primitive, directly rendering the

tetrahedral mesh may be a better approach than approximating the projections of the tetrahedra.

This is true for datasets in which the tetrahedra sizes vary widely as the size of points representing

large tetrahedra increase more rapidly than the sizes for small tetrahedra thereby increasing the

overall number of fragments unnecessarily generated. Although many of these fragments may be

culled in the fragment program, the testing and branching in the fragment program is an expensive

operation. Additionally, only the exact projection approach does not render a large number of

fragments that lay outside of the true projection of the tetrahedron that must be composited to

Table 3.2. Results of point-based volume rendering. (a) Image quality in Root Mean Squared
(RMS) error for the Fighter dataset at different levels of detail. (b) Respective rendering
performance in frames-per-second.

(a) Image quality
Level of Detail Unshaped Circles Ellipses Exact

100 6.51 6.12 3.89 3.74
75 6.97 6.46 4.72 3.23
50 8.54 7.77 6.80 3.49
25 12.22 10.62 13.60 14.15

(b) Performance
Level of Detail Unshaped Circles Ellipses Exact

100 1.7 1.7 2.0 2.1
75 3.1 3.1 3.2 3.2
50 6.4 6.6 6.7 6.7
25 25.3 25.2 25.5 25.2



27

form the final rendering. These extra fragments are culled in the point reshaping process.

As Figures 3.4 and 3.8 suggest, the point based rendering method presented here may yield

a poorer quality rendering of a dataset when compared with a direct rendering approach. This

is particularly noticeable at the dataset boundaries, as highlighted by Figure 3.8. This is caused

by three error sources when all the points are rendered. First, depending on the point-based

representation of the cell (e.g., ellipsoids), there may be overdraw noticeable at the boundaries.

Second, the point primitives are screen-aligned and placed at the centroids of the cell, instead of at

the cell boundaries, and thus there is a small error associated with the positioning and orientation

(see Figure 3.2). Finally, for vertex-centered data, the scalar value is constant throughout the

point instead of interpolated from the vertices as it should be. These errors are more noticeable

where the depth complexity of the volume is low.

Although this approach to point-based rendering suffers from problems related to fragment

generation and approximation of the tetrahedral mesh, it poses several unique advantages over

previous methods. Since the footprint generation and reshaping are completely independent

of the compositing and rendering stage, it is trivial to implement various compositing mecha-

Figure 3.8. The errors associated with point-based rendering. Although interior areas of the
volume are rendered with a high degree of accuracy, volume borders are more obviously affected
by the point-based technique being used. An earthquake simulation (∼3.5M tetrahedra) displays
these errors clearly. Ellipsoidal footprints (top) display more error than exact footprints (middle)
when compared with the exact rendering (bottom).
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nisms. Also, as has been shown, a global level-of-detail strategy based on importance sampling,

generated as a preprocess, combined with point resizing, enables this method to excel during

interaction. Furthermore, if lighting and shading are desirable for the final rendering, passing

normal information gathered from gradient calculation in a preprocessing step can easily be used

to implement a variety of shading models.

3.5 Summary
This chapter described a new method for point-based volume rendering of unstructured tetra-

hedral meshes that has proven to be a fast an effective method for visualizing large datasets.

As with any visualization method, there is a trade-off between speed and accuracy. As the

complexity of the approximations increases, so does the accuracy of the final rendering. However,

this increased accuracy necessarily comes with a decrease in performance of the technique. The

proposed method achieves interactive framerates through a combination of point-based footprint

generation and a natural level-of-detail strategy that compromises accuracy for speed during

periods of interaction while rendering at full-quality after interaction stops.



CHAPTER 4

IMAGE-SPACE ACCELERATION FOR VOLUME
RENDERING

Acceleration techniques that approximate full quality images are common to provide inter-

activity with volumes too large or complex to handle otherwise. The general idea is to switch

to a reduced representation of the rendering during interaction, but still allow a full quality

representation to be rendered if desired. Approximation strategies for both structured and un-

structured volumes fall into two categories: those that operate in object-space and those that

operate in image-space. Whereas object-space methods involve simplifying or downsampling

the volume to reduce the amount of data rendered (as described in Chapter 3), image-space

methods usually involve reducing the number of pixels that are rendered. The result is a fast

approximation to the full-quality image that contains either low frequency error, such as blurring,

or high frequency error, such as “jaggies” caused by aliasing, from object-space and image-space

methods, respectively.

This chapter introduces an image-space approach that downsamples for efficient rendering

then upsamples for display using a joint bilateral filter to remove aliasing artifacts while still pre-

serving sharp features. The upsampling algorithm is a postprocess that can be used independently

or in combination with existing object-space and image-space acceleration approaches with very

little computation or implementation overhead.

The bilateral filter [129] was first introduced as a method for denoising images and works

by combining a linear kernel, such as a Gaussian, with a nonlinear, feature preserving term

that weights the pixels based on intensities. The introduction of a separate reference image

for performing the feature preservation is useful in some cases and is termed joint (or cross)

bilateral filtering [103, 39]. This has recently been shown to be useful for enhancing images with

solutions computed over downsampled images [65]. This work builds on this latter approach

to improve volume rendering performance by rendering normally into a downsampled image and

combining that with a low-cost reference image computed at full size. Instead of pixel intensities,

the reference image contains depth information that can be used to encode the shape of the volume
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in a full size image. The result is an image that preserves the color of the downsampled image

with the sharp features of the reference image. For opaque renderings, this has the appearance of

smoothing the geometry in object-space, though it happens entirely in image-space. Figure 4.1

shows an example of the effect of this algorithm applied to an opaque rendering of a triangle

mesh.

The main contributions of this chapter are as follows:

• A simple and fast image-space acceleration algorithm is introduced that is based on joint

bilateral upsampling and results in substantial improvements for virtually any fragment or

pixel bound volume renderer for unstructured grids;

• A method for quickly capturing reference images of the volume is proposed that is used to

improve the quality of the technique over traditional approaches;

• A description is given of how the algorithm can be performed as a postprocess on the latest

graphics hardware with very little overhead

• Quality and timing results are provided for the image-space acceleration algorithm on a

variety of datasets using several volume rendering algorithms.

The rest of the chapter is organized as follows. In Section 4.1 the acceleration based on joint

bilateral upsampling is described, along with how it can be applied to volume rendering and other

(a) Original (b) Bilateral (c) Linear

Figure 4.1. A comparison of joint bilateral upsampling with linear upsampling for an opaque
mesh. The dragon dataset rendered (a) normally at full opacity at 5122, (b) upsampled from
a 1282 rendering using joint bilateral filter that combines a low resolution color buffer with a
high resolution depth buffer, and (c) upsampled linearly from a 1282 rendering. Joint bilateral
upsampling is an acceleration method that can be applied to volumes to remove unwanted aliasing
while still preserving sharp features.
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implementation details. In Section 4.2, results of the algorithm are provided and in Section 4.3

the trade-offs of its use are discussed. Finally, the work is summarized in Section 4.4.

4.1 The Algorithm
The proposed acceleration algorithm is briefly summarized by the following steps:

1. Render the volume into a small offscreen image I using an existing volume rendering

algorithm.

2. Render the boundary geometry of the volume at full size and capture the depths of the

fragments in a reference image R.

3. Upsample the offscreen image I to full size using texturing hardware and combine it with

the reference image R using the joint bilateral filter.

Figure 4.2 shows the visual effect of this algorithm on a volume. The details of each step in

the method are described in the remainder of this section.

4.1.1 The Joint Bilateral Upsampling Filter
The original bilateral filter uses both a domain (spatial) and a range filter kernel on the input

image to produce a denoised output image. For some position p, the filtered result is:

Jp =
1
kp

∑
q∈Ω

Iq f (‖ p−q ‖)g(‖ Ip− Iq ‖), (4.1)

where f is the spatial filter, such as a low pass filter that operates on pixel colors centered over p,

and g is the range filter kernel, such as a low pass filter that operates on pixel intensities centered

over p. Ω is the spatial support of the kernels f and g, and kp is the normalization computed as

the sum of the f and g filter weights. Intuitively, f ·g is just a new filter kernel that changes per

pixel to respect intensity boundaries.

The joint bilateral upsampling filter uses separate images at different resolutions for the

domain and range to compute an upsampled solution S from a given high resolution image I

and a low resolution solution R that is used as a reference image:

Sp =
1
kp

∑
q↓∈Ω

Rq↓ f (‖ p↓ −q↓ ‖)g(‖ Ip− Iq ‖), (4.2)

where p and q denote coordinates in I, and p↓ and q↓ denote the corresponding coordinates in

the low resolution reference image R. This formulation is used to compute costly solutions for
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(a) Original (b) Bilateral (c) Linear (d) Nearest

Figure 4.2. A comparison of volume rendering accelerated with bilateral and other upsampling
methods. The SPX dataset rendered using a software raycaster (a) normally at a 10242 resolution
at one frame per second, and upsampled from a 1282 image at 10 frames per second using (b) the
proposed feature preserving joint bilateral upsampling, (c) linear interpolation, and (d) nearest
neighbor interpolation (similar to a method that casts one ray per 82 pixel grid). Only the original
and the bilateral method preserve the diagonal edge that appears in the center of the inset images.

high resolution images at lower resolutions. The algorithm proposed here is different, as an

inexpensive solution R at high resolution is used to upsample a low resolution image I. In the

same notation, this filter could be expressed as:

Sp =
1
kp

∑
q↓∈Ω

Iq↓ f (‖ p↓ −q↓ ‖)g(‖ Rp−Rq ‖), (4.3)

where p and q denote coordinates in the high resolution reference image R, and p↓ and q↓ denote
the corresponding coordinates in the low resolution image I.

4.1.2 Computing the Reference Image
To preserve features in the upsampled version, a full resolution reference image is needed for

the range component of the bilateral filter. This reference image needs to be fast to compute and

general enough to apply to a variety of volume renderers. For unstructured grids, it is common to

represent the domain (or boundaries) of the volume to facilitate the understanding of the features

that are contained therein. Fortunately, the boundaries are easy to capture—they are often already

used by volume rendering algorithms as starting points for ray traversal [15, 138] or as the base

case for object-space LOD [21]. Other sharp boundaries within the volume could also be used as

well, such as those provided by isosurfaces, if they are readily available.
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For bilateral upsampling to faithfully preserve the features of the volume’s domain, more than

just the front-most boundary needs to be captured. Multiple depth layers are already used by many

volume renderers to handle nonconvex meshes either in software [15] by creating a sorted depth

list for each pixel, or in hardware [9, 140] using depth peeling [44]. Depth peeling is a multipass

algorithm that captures one layer of depth on each pass, starting with the nearest fragment per

pixel, then the second nearest, third nearest, and so on. This can be performed efficiently in

hardware by rendering the first pass normally, resulting in a depth buffer of the nearest surface.

In subsequent passes, the depth buffer computed in the previous pass is used to peel away depths

less than or equal to those already captured in previous passes. These depth peeling passes can

even be reduced to a single pass using stencil routing [5].

To compute the reference image in an existing volume rendering algorithm, the framework

already in place is leveraged for capturing depths whenever possible. If depths are not already

captured, a depth peeling pass is simply added to the renderer. The number of depth passes that

are used is dependent on the volume being rendered and the opacity at which it is being rendered.

Generally, two or three layers are sufficient for most datasets to capture the visible boundary

features.

4.1.3 Implementation
The joint bilateral upsampling is implemented with minimal changes to an existing algorithm.

The low resolution image I and the reference image R are rendered offscreen. Then in a final

pass, a full resolution, screen-aligned quadrilateral is drawn that binds both images as textures

and uses a fragment shader to perform the joint bilateral filter. If the texturing hardware is set

to linearly interpolate I, the small resolution image will be upsampled to full resolution linearly

in the shader, improving the quality of the upsampling by adding an inexpensive low pass filter.

In the shader, the I and R textures are accessed using the same coordinates to retrieve color and

depth information used in the joint bilateral filter.

For each pixel p in the final image, the joint bilateral filter is a low pass filter that blurs a fixed

neighborhood around p to remove noise. Choosing the spatial support Ω for the filter should be

based on the amount of upsampling that is being performed on I, i.e., more blurring is required

for higher upsampling factors. The spatial support for the joint bilateral filter is matched with

the spatial support for the linear interpolation performed by texturing hardware: if upsampling to

10242, a 5122 image will use Ω = 4, a 2562 image will use a Ω = 8, etc.

For domain and range filters, f and g, Gaussian low pass filters are used:
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f (x,y) = g(x,y) = e−D(x,y)2/2σ2
. (4.4)

For the domain filter f operating on the low resolution image I, D(x,y) is the distance between

(x,y) and the origin of the filter p, and σ is the spread of the Gaussian, or Ω/2. For the range filter

g operating on the reference image R, D(x,y) is the difference between the depth value at (x,y)

and the depth value at p. For multiple depth layers, this simply becomes the distance between the

vectors defined at (x,y) and p. The range σ is the value that expresses the resolution of the depth

features that should be preserved. Thus, the range σ is dependent on the resolution of the depth

buffer and should be as low as possible to capture depth changes, without causing artifacts due to

depth precision. A σ = 0.01 for the range is generally adequate in practice.

4.2 Results
To demonstrate the flexibility of the joint bilateral upsampling algorithm for unstructured

grids, it was added to existing source code for three popular algorithms and the numbers are

reported for the speed and quality of the technique.

4.2.1 Timing Results
The fragment shader for bilateral sampling itself is relatively inexpensive, for a 10242 image,

kernel sizes of 4, 8, and 16 achieve framerates of 100 fps, 50 fps, and 15 fps, respectively, on a

Quadro FX 5600 graphics card. For timing experiments, the datasets shown in Table 4.1 are used

to gather statistics for upsampling from 1282, 2562, and 5122 to 10242 and compare them with

the original rendering times for a 10242 image. At each resolution, the dataset is rendered from

14 viewpoints, defined by the corners and faces of a cube around the dataset, and the times are

averaged. To make comparisons between upsampling factors easier, a uniform kernel size of 12

(at 25 fps) is used for all resolutions. All of the results were rendered on a machine with 2 Dual

Opteron 2.25 GHz processors, 4 GB RAM, and an NVIDIA Quadro FX 5600 graphics card with

1.5 GB RAM.

Table 4.1. Experimental datasets used for measuring rendering performance, with vertex and
tetrahedron coount.

Dataset Vertices Tetrahedra
SPX 3 K 13 K
Blunt Fin 41 K 187 K
F117 49 K 240 K
SPX2 166 K 828 K
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The first algorithm that was modified is a software raycaster from Bunyk et al. [15] that has

freely available source code and runs completely on the CPU. The algorithm first rasterizes

boundary triangles to capture starting and ending points for the rays at each pixel. It then

marches rays through the volume cell to cell by exploiting connectivity of cell faces. To make

the modification, the ray casting is performed as normal, except into a small image. Then, the

existing depth capturing code is used to find the boundary depths in a large image. These two

images are then bound as textures and rendered to the screen using a fragment shader written in

OpenGL. Figure 4.3 shows a series of plots for several datasets comparing times (logarithmically

scaled) for the varying resolutions. In the experiments, the acceleration for these datasets ranges

from about 16 times to 28 times for 1282 resolution images upsampled to 10242.

The second algorithm that was modified is a hardware-assisted raycasting algorithm from

Bernardon et al. [9] that is freely available and is written in DirectX9. As with the software

raycaster, the algorithm was adapted to render into a small offscreen buffer and use the existing

Figure 4.3. Timing statistics for a software raycaster and a hardware raycaster for various
resolutions upsampling to 10242 using joint bilateral upsampling. The 1024 resolution represents
the time for a full quality image without upsampling.
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depth peeling routines to capture the depth in a full size offscreen buffer. An HLSL program was

then used to perform the joint bilateral upsampling and display the final image. Figure 4.3 shows

a series of plots comparing times (also logarithmically scaled) for varying resolutions. With the

hardware raycaster, acceleration gains range from about 7 times for the smallest dataset to about

12 times for the largest for 1282 resolution images upsampled to 10242.

4.2.2 Quality Results
By using a full size reference image, the joint bilateral upsampling is able to achieve better

imagery than upsampling alone. This is shown both quantitatively and visually. Figure 4.4

shows rate distortion curves for the quality of upsampling using a joint bilateral filter and linear

interpolation (as provide by texturing hardware). The measurements were computed using root

mean squared error (RMSE) comparisons between full quality images at 10242 and images

upsampled at various resolutions. In all cases, the bilateral upsampling exhibits less error than

with linear interpolation alone. Figure 4.5 shows rendered solutions at various resolutions for a

Figure 4.4. Quality comparisons of joint bilateral versus linear upsampling. Rate distortion
curves for various resolutions compare RMS error of full quality images.
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Figure 4.5. Quality comparisons for various resolutions of upsampling. The Blunt Fin dataset
rendered into a 10242 image at (a) full quality and upsampled from (b) 5122, (c) 2562, and (d)
1282 using the proposed technique.

visual comparison of the quality change.

One interesting application of the filter is in improving the appearance of existing acceleration

techniques by denoising results while still preserving edges. The upsampling filter was added

to the HAVS volume rendering algorithm [22] to improve the appearance of a dynamic LOD

algorithm that operates by sampling the geometry of the volume [21]. HAVS sorts the triangles

that compose the mesh first in object-space using a simple sorting routine, then in image-space

by storing a fixed number of fragments. The LOD algorithm samples the triangles before the

sorting, based on precomputed importances, to make the rendering more efficient. Because the

LOD already uses boundary geometry as the base sampling case, an additional pass was easily

added to render these boundaries into a reference image before combining it with the original
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rendering pass using joint bilateral upsampling.

Due to the nature of the algorithm, HAVS is more vertex bound than pixel bound. Thus,

the acceleration when using the upsampling approach is negligible on the most recent graphics

cards. However, by sparsely sampling the geometry in the mesh but leaving boundary geometry,

the number of primitives rendered is reduced and the speed of the algorithm is improved. This

sample-based simplification has the side effect of producing high frequency error in the reduced

representation, unlike domain-based simplification techniques (i.e., simplification via edge col-

lapses [49]). Using the joint bilateral filter on the resulting imagery, the noise was reduced and

the overall appearance was improved for the LOD strategy with little effect on the performance.

Figure 4.6 shows an example of this LOD before and after a joint bilateral filter is applied.

Because the acceleration due to the LOD algorithm is dominant, the rendered image I does not

need to be computed at a reduced representation and upsampling is not necessary.

4.3 Discussion
Because the proposed method is simple, it can easily be utilized as a technique to accelerate

interaction, while still allowing full quality images to be rendered when the user stops interacting

with the viewing parameters. Tools such as ParaView [99] use a similar strategy during render-

ing, by either changing the number of slices for texture based methods, or number of rays for

raycasters. This algorithm could be used as a replacement or enhancement for these existing

techniques because it produces better approximations of the full quality image with less visual

artifacts. Because it is easy to change the speed/quality trade-off by adjusting the upsampling

factor, the algorithm could also be used for dynamic level-of-detail.

Many existing acceleration techniques that trade-off speed for image quality create high fre-

quency error in the resulting image in the form of stair-casing or aliasing artifacts. In contrast, the

proposed method produces low frequency error, which results in more visually pleasing images

that retain edges that are supposed to be in the image, while removing those that are not. Although

joint bilateral upsampling is used, other upsampling strategies have been introduced [145] and

could be used instead. However, without the additional shape information that is provided by the

reference image, other upsampling strategies are not likely to perform as well as they can result

in halos and other undesired artifacts, as shown by Kopf et al. [65].

The proposed solution for performing joint bilateral upsampling for volume rendering was

implemented in OpenGL and DirectX using fragment programs. It was also implemented with

NVIDIA’s CUDA library, which is efficient for offscreen processing, but not as fast as fragment
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Figure 4.6. Removing high frequency noise from object-space acceleration. The San Fernando
Earthquake dataset (1.4 million tetrahedra) is rendered using HAVS [22] with sample-based
simplification [21]. (a) The full quality image is rendered at 1.7 fps compared with (b) sampling
10% of the geometry (20 fps) and (c) sampling 10% of the geometry then using the joint bilateral
filter without upsampling to remove the high frequency error while still preserving boundary
features (15 fps).

programs for interactive graphics. Even for large images and large filter domains, the compu-

tational cost of the algorithm is not high relative to the volume rendering cost. As with most

acceleration techniques, the trade off for image quality is performance (i.e., more downsamping

results in higher speed).

The experiments included several datasets at various sizes to demonstrate the acceleration that

the proposed technique can provide. The size of datasets used in these experiments was limited

by the volume rendering methods employed, not by any limitations of the acceleration technique.

Volume rendering algorithms that handle larger datasets, such as raycasters that use bricking

strategies for memory management [96] or point-based techniques that are fragment-bound [3],
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would also benefit from this acceleration technique.

4.4 Summary
In this chapter, an acceleration technique for unstructured grid volume rendering that operates

in image-space was introduced. By rendering small images and upsampling them with a smart

filter, performance improvements of up to 30 times have been measured. The upsampling strategy

based on joint bilateral upsampling results in a high quality approximation that avoids the high

frequency noise common in existing acceleration techniques based on rendering reduced repre-

sentations of the data. The major advantages of this algorithm are that it is simple to implement,

it is flexible enough to be included as a postprocess to virtually any direct volume rendering

algorithm, and it can easily be used in combination with existing acceleration techniques.



CHAPTER 5

PROGRESSIVE VOLUME RENDERING

Specialized graphics clusters have been developed to visualize large datasets in parallel and

on large displays. However, the availability of these clusters is often limited. More recently,

many techniques have been developed to visualize volumetric data on commodity PCs using

graphics hardware [138, 22]. This provides a solution that allows researchers to perform their

visualizations locally when other resources are unavailable. However, due to the limitations of

storage and memory with most desktop machines or laptops, this solution does not scale well for

extremely large datasets.

As an example, consider a scientist working remotely who would like to visualize a large

dataset on his laptop computer. A reduced representation of the data (e.g., simplification [49])

may not be appropriate if a high quality visualization is required for analysis. Complicating

matters even further, the laptop may not have capacity on the hard disk or in memory to keep the

dataset. The problem is compounded if you consider that the scientist may only want to browse

through a series of datasets quickly, requiring the download of each dataset before visualization.

In this chapter, a client-server architecture is presented for hardware-assisted, progressive

volume rendering. The main idea is to create an effect similar to progressive image transmission

over the internet. A server acts as a data repository and a client (i.e., a laptop with programmable

graphics hardware) acts as a renderer that accumulates the incoming geometry and displays it in

a progressively improving manner (see Figure 5.1). This progressive strategy is unique because

it only requires the storage of a few images on the client for the incremental refinement. For

interactivity, a small portion of the mesh is stored on the client using a bounded amount of

memory. Furthermore, the progressive representation provides a natural means for level-of-detail

exploration of very large datasets without an explicit simplification step that may be difficult and

costly. Because the geometry is rendered in steps, the user can stop a progression and change the

view without penalty, thus facilitating exploration. The proposed algorithm is robust, memory

efficient, and provides the ability to create and manage approximate and full quality volume

renderings of unstructured grids too large to render interactively at full resolution.
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Figure 5.1. A sequence of progressive volume rendering steps for the SF1 dataset with about
14 million tetrahedra. Starting from an interactive mode that uses only the boundary (left), the
algorithm progressively refines the image using incoming geometry as well as the results of the
previous refinement until the full-quality rendering is achieved (right).

The contributions of this chapter include:

• A client-server architecture and interface for rendering large datasets and managing the

resulting visualizations is introduced;

• A server is described that acts as a data repository by streaming a tetrahedral mesh in partial

visibility order to one or more clients;

• A client is described that uses hardware-assisted, progressive volume rendering to provide

an interactive approximation, progressive refinement, and full-quality rendering of large

datasets;

• Experimental results are given for the algorithm and a discussion is included on the benefits

and limitations of the approach.

The rest of the chapter is outlined as follows. Section 5.1 describes an overview of the client-

server architecture. More detail is provided about the server in Section 5.2 and about the client in

Section 5.3. In Section 5.4, experimental results are outlined, in Section 5.5 a discussion of the

trade-offs of the algorithm is included, and in Section 5.6, a brief discussion of the algorithm and

a summary are provided.

5.1 System Overview
The client-server system architecture is depicted in Figure 5.2. The server acts as a data

repository and geometry processor. The data are stored on the server hierarchically for efficient

traversal and iterative object-space sorting. The client keeps the boundary triangles for an Inter-

active Mode and requests geometry from the server in a Progressive Mode. In the Progressive

Mode, the client uses hardware-assisted LOD volume rendering to refine the image using the
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Figure 5.2. The client-server architecture. Communication between the client and the server is
shown with annotated arrows.

results of the previous progressive step. Upon completion of the progressive volume rendering,

the client saves a copy of the image for later browsing in a Completed Mode. Viewing changes in

any of the client steps causes the progressive renderer to stop and return to the Interactive Mode.

5.2 The Server
5.2.1 Geometry Processing

The server acts as a data repository that sorts and streams triangles. However, sorting large

datasets in one pass may be cumbersome. For the client to remain interactive, it should begin

receiving nearly-sorted faces immediately from the server. Furthermore, the client should be able

to interrupt the streaming of the faces at any time to keep the exploration interactive.

To keep the processing of the datasets to a minimum, a one-time preprocessing of the datasets

is performed to extract the unique triangle faces and vertices and store them in a binary format

that are read when starting the server. Then, the server is used to process the faces of the mesh into

an octree structure that can be traversed by depth ranges, from front to back. For every packet of

faces requested from the client, the server first culls faces outside the current depth range, sorts the

remaining faces, and sends them to the client. Subsequent packets use incremented depth ranges.
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This has the effect of distributing the sorting burden between each step of the progression. It also

prevents unused geometry from being sorted.

For a given depth range, the associated geometry is culled using a depth-range octree. The

octree is a geometric partition of the faces, according to their centroids. The depth-range octree

is similar to the octree from Wilhelms et al. [143] for isosurface extraction. However, instead

of using scalar values, the octree uses dynamically changing depth ranges to cull the geometry

outside the current depth range. Each octree node contains an array of face indices. The depth

range of a node is the minimum and maximum distance from the eye to the bounding box

corners of the node. To find the faces matching a given depth range, the octree nodes are culled

hierarchically by traversing nodes that may contain triangles in the given depth range. Next, the

collection of triangles in the matching octree nodes are culled according to their distance from

the viewpoint. The remaining triangles are then inserted into an array for sorting. A radix sort is

utilized on the face centroids, as described by Callahan et al. [22]. The triangles are then sent as

a vertex array for direct rendering on the client.

To increment the depth range on each pass, the range of the minimum and maximum distance

from the eye to the bounding box of the mesh is uniformly divided. This has the unfortunate side

effect that the number of triangles per slice can vary in size. This issue is addressed by collecting

packets on the server and only transmitting them to the client when a user-specified target triangle

count is reached. This results in good performance since the sorting and network transfers are

more efficient for larger packets.

When interactively exploring regions of the mesh in detail, often many of the faces are outside

of the view-frustum. These faces should not be transmitted to the client. Therefore, in addition

to the depth range test, view-frustum culling is performed for each node of the octree. The left,

right, bottom and top planes of the frustum are computed from the modelview-projection matrix

sent by the client. This results in significant performance improvements for zoomed-in views of

the dataset.

Network transfers become a bottleneck for client-server systems with high bandwidth. To

reduce the bandwidth, the transmitted vertex arrays are compressed using the open-source zlib

library [154] based on Huffman codes, which is fast and robust. The maximum level of compres-

sion for the client-server data transfers is used.

5.2.2 Network Protocol
The following description assumes a single client per server, and can be extended for multiple

clients by storing the context of the stream on each client.
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The server understands three types of commands: NEW CAMERA, NEXT BOUNDARY,

and NEXT INTERNAL. Each new client initializes the stream by sending a NEW CAMERA

command, containing a frame ID and the camera information. The frame ID is an integer initial-

ized to 0 and incremented by the client for every NEW CAMERA command. Upon connection,

the client requests boundary faces from the server using the NEXT BOUNDARY command. The

server incrementally sends the boundary faces in a BOUNDARY DATA packet consisting of an

unsorted triangle soup (i.e., a sequence of vertex coordinates) for the client to use during interac-

tive rendering. By sending the boundary in chunks, the client can request only the portion that it

can retain in memory. If the client is limited and can only use a portion of the boundary during

interaction, the NEXT BOUNDARY command can be used at the beginning of the progressive

rendering to fill in the missing boundaries before the internal faces are transmitted. To avoid

unnecessary sorting when the camera is moving, the server does not sort the faces until it receives

a NEXT INTERNAL command from the client. The server culls the geometry by depth and

frustum, sorts by centroid, and sends back a chunk of the interior faces in an INTERNAL DATA

packet.

A TCP/IP socket is used to transmit the data. Unlike UDP, TCP guarantees that the data

packets sent from the server arrive in the same order they were sent and without error. Since

the client can change the camera at any time, the state of the client and the server need to be

synchronized. This is necessary to avoid issues when the camera moves and the client is receiving

data asynchronously, or the server is processing data. All the packets from the client or from the

server contain a frame ID. Before processing a packet, the client and the server check that the

frame ID from the packet is the same as the current frame ID. Packets with obsolete frame IDs

are ignored by the server and the client. In addition, when the client receives an obsolete packet,

it resets the stream.

5.3 The Client
The main function of the client is as a progressive volume renderer. Because the client may

be limited in disk space as well as memory (e.g., a laptop), the goal is to minimize the data stored

on the machine at each progressive step. Therefore, the client acts as a stream renderer— it

receives geometry transmitted from the server and renders it directly with the GPU. This requires

a volume renderer capable of handling dynamic data in an efficient manner. In addition, the

algorithm requires an approximation technique for partial geometry as well as a means of keeping

previously computed information for subsequent refinement steps.
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To leverage GPU efficiency, the Hardware-Assisted Visibility Sorting (HAVS) algorithm of

Callahan et al. [22, 56] is extended to perform progressive volume rendering. The HAVS al-

gorithm operates in both object-space and image-space to sort and composite the triangles that

compose a tetrahedral mesh. In object-space, the triangles are sorted by their centroids using a

linear-time radix sort for floating-point numbers. This provides a partial order for the triangles.

Upon rasterization, the fragments are sorted again in image space using a fixed size A-buffer [24]

implemented with programmable shaders called the k-buffer. For each pixel of the resulting

image, k entries (scalar value v and depth d) are stored in textures on the GPU. An incoming

fragment is compared to entries in the k-buffer to find the two closest to the current viewpoint

(for front-to-back compositing). These entries are then used to look up the color and opacity

for the volume gap in a preintegrated table by using the front scalar, back scalar, and distance

between the entries. This color and opacity are then composited to the framebuffer, the front

entry is discarded, and the remaining entries are written back into the k-buffer. The progressive

renderer uses the HAVS algorithm as a basis for sorting and compositing. The server handles the

object-space sorting, while the client handles the fixed-size image-space sorting and compositing.

The k-buffer is implemented in hardware using multiple render targets (MRTs), which allows

the reading and writing of multiple off-screen textures in each pass. Currently, hardware limits the

number of MRTs to 8, which limits the size of k to 14 (one texture for an off-screen framebuffer

and seven textures for k-buffer entries). In OpenGL, the simplest access to multiple render targets

is in the form of Framebuffer Objects (FBOs). An FBO is a collection of logical buffers such

as color, depth, or stencil. Multiple color buffers (up to eight) can be attached to an FBO for

off-screen rendering. FBOs make it possible (and efficient) to swap attached buffers between

rendering passes. Currently, this is faster than switching between multiple FBOs. The ability to

render into a subset of buffers in multiple passes is at the heart of the progressive algorithm.

The progressive volume rendering works by using five different render targets for each pass,

represented as four channel, 32-bit floating-point textures. The textures are used as follows:

Tpro: An off-screen framebuffer for the progressive image (Rp,Gp,Bp,Ap).

Tk12: k-buffer entries 1 and 2 (v1,d1,v2,d2).

Tk34: k-buffer entries 3 and 4 (v3,d3,v4,d4).

Tk56: k-buffer entries 5 and 6 (v5,d5,v6,d6).
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Tapprox: A temporary framebuffer for the approximation of the portion of the mesh not yet re-

ceived (Ra,Ga,Ba,Aa).

A combination of these textures is used for each step of the progressive volume rendering.

The contents of all the textures except Tapprox are reused in subsequent progressive passes.

The progressive volume rendering is separated into three modes of operation. Interactive

Mode is used during camera events such as rotation, pan, or zoom. Progressive Mode is used

when interaction stops to stream triangles from the server to the client in chunks. The Progressive

Mode can be interrupted at any time if the user begins interaction again or the stream finishes.

When a complete image is generated with the Progressive Mode, Completed Mode automatically

stores the image for future browsing.

5.3.1 Interactive Mode
A reduced representation of the original mesh is often necessary when considering large

datasets. The interactive mode has two requirements. First, it is fast enough to render at interac-

tive rates (e.g., 10 fps). Second, the results of the interactive mode can be used as a first step in the

progressive volume rendering. Because of the second requirement, level-of-detail techniques that

require simplification hierarchies [27] are not feasible. Instead, a similar approach to Callahan et

al. [21] is used, where a subset of the original geometry is used to create a reduced representation.

In particular, Callahan et al. noticed that an efficient approximation of the dataset can be created

by computing the volume rendering integral between only the boundary fragments of the mesh.

A more robust version of this approximation is provided that can be used in future progressive

steps.

Upon connection with the server, the client receives some initial data to begin the progressive

rendering process. First, mesh parameters such as maximum edge length and scalar range are

transferred for creating a preintegrated lookup table. Immediately following these parameters, the

boundary triangles of the mesh are transferred to the client. These boundary triangles are placed

in arrays on GPU memory and remain there for the duration of the client-server connection. If the

entire boundary cannot be maintained in memory, a subset of the boundary can be used instead.

During user interaction (i.e., rotation, panning, or zooming), the following steps take place to

create an approximate image.

1. Buffer Tk12 is attached to the FBO as well as a depth buffer. The depth buffer is cleared

and set to GL LESS for a first pass on the boundary geometry. The depth buffer is then

cleared again and set to GL GREATER for a second pass at the boundary geometry. This
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has the same effect as depth-peeling [44] the front and back fragments and placing them in

the k-buffer.

2. Buffers Tapprox and Tk12 are attached to the FBO and a screen-aligned plane is rendered.

Color and opacity for the ray-gaps between the front and back fragments from the boundary

are looked up from Tk12 and composited into Tapprox.

3. Buffer Tapprox is displayed to the screen.

These steps are repeated for every view change. Figure 5.3 shows the results of rendering

the boundaries interactively. When the user stops interacting, the entries in Tk12 are used for the

progressive steps. The importance of using this depth-peeling approach instead of the k-buffer

directly is discussed in more detail in Section 5.3.4.

5.3.2 Progressive Mode
After the boundary has been drawn in Interactive Mode, the internal triangles of the mesh are

streamed in an approximate front-to-back order based on their centroids. For each portion of the

geometry that arrives from the server, the progressive volume renderer takes the following steps:

1. Buffer Tapprox is cleared.

2. Buffers Tpro, Tk12, Tk34, and Tk56 are attached to the FBO and the incoming internal geometry

Figure 5.3. A zoomed-in view of the STP dataset (about 25M tetrahedra) captured during
interaction. Significant performance improvements are made by frustum-culling the geometry
on the server. Here, 50% of the geometry is culled during the progression.
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is rendered. The k-buffer is used to sort the fragments and composite the results into Tpro.

This step is similar to HAVS, but with only a portion of the geometry.

3. Buffer Tapprox is attached to the FBO, Tk12, Tk34 and Tk56 are bound as a read-only textures,

and a screen-aligned plane is drawn. The fragment shader finds the k-buffer entry f closest

to the current view and the entry b farthest from the current view, looks up the color and

opacity for the ray gap between f and b, and composites the result into Tapprox.

4. Buffers Tpro and Tapprox are attached to the FBO and a screen-aligned plane is drawn. The

fragment shader composites Tpro into Tapprox.

5. Buffer Tapprox is displayed to the screen.

The k-buffer entries and progressive buffer Tpro are then ready to be used in the next rendering

pass. Figure 5.4 illustrates the textures used during a progressive step. This process is repeated

until all the geometry has been streamed from the server. When rendering the last portion of

geometry from the server, an additional step is taken to flush the k-buffer entries into the Tpro by

rendering k−1 screen-aligned planes after the second step, after which, the Tpro buffer contains

the full quality volume rendering.

5.3.3 Completed Mode
Once the stream of geometry has terminated and the progressive volume rendering is com-

pleted, the Tpro buffer is captured and saved for subsequent browsing as shown if Figure 5.5. The

Figure 5.4. The progressive volume renderer on the client. A progressive buffer is maintained
between steps and an approximate buffer is created to fill the unknown region of the mesh.
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Figure 5.5. A snapshot of the interaction with the Completed Mode for the SF1 dataset. Upon
completion of a full quality rendering, the image is automatically stored for future browsing by
selecting the icons at the bottom of the window. The user may also save intermediate steps with
a keystroke.

progressive volume renderer allows the user to browse any previously completed visualizations by

selecting the corresponding thumbnail. Capturing these data for the user has important benefits.

First, it prevents the user from losing important visualizations through interactions that could reset

the results of the previous stream. Second, it allows a user to specify a set of camera positions

to the progressive volume renderer so the user can easily capture an animation of the exploration

process. This tool is useful for exploring previously generated results while the current view is

being progressively rendered off-screen.

5.3.4 Considerations
The k-buffer algorithm efficiently handles streaming geometry because it simultaneously reads

and writes from textures at each pass. Due to the highly parallel nature of GPU architectures, this

may result in a race condition for overlapping triangles. Because the HAVS algorithm sends

geometry sorted by centroid, it effectively layers the geometry in the depth direction and thus

avoids these errors. However, since the depth compexity of the boundary is generally small and

it is important to keep the interaction as fast as possible, the boundary faces are not sorted in
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object-space before rendering. This may result in some noticeable artifacts in the first pass that

would remain in subsequent progressive steps. Therefore, the depth-peeling of the front and back

fragments is performed before inserting them into the k-buffer. This resolves the race condition,

improves the quality of the rendering, and maintains interactive rates (see Section 5.4).

The depth-peeling as described has the unfortunate side-effect that it removes any nonconvex-

ities in the boundary. This can propagate through the progressive steps and cause the empty space

to be composited into the final image. Since storing the back fragments in the k-buffer effectively

reduces k by one during the progressive steps, storing all boundary information for nonconvex

objects can severely impact sorting capabilities. A solution to this problem is to transmit boundary

and internal faces during progressive steps. This would introduce redundant fragments only in

the front and back and allow other boundary fragments to be used in the progression steps to

avoid compositing empty space, as in HAVS. To completely remove the storage overhead of the

back boundary in the k-buffer, an extra texture can be used to store the back fragments during

Interactive Mode and can be bound as a read-only texture during Progressive Mode.

5.4 Results
The experimental results were measured on a thin client (IBM T41 laptop) running Windows

with a 1.7 GHz Pentium M processor, 1.5 GB RAM, and an ATI Mobility Fire GL T2 graphics

card with 128 MB RAM. The server machine was running Linux with two Dual core Opteron 2.25

GHz processors, 8 GB RAM, and an NVidia GeForce 7800 GTX graphics card. Performance

timings are measured with a 512× 512 viewport on a 100 Megabit/sec ethernet network with

regular network load. The experiments include timing results for the progressive rendering

with local and remote configurations, as well as error measurements for the progressive images.

Table 5.1 shows the tetrahedra count of the test datasets, the one-time penalty to reformat them

into the binary format used by the server, and the resulting size of the binary files.

The timing measurements are shown in Table 5.2 for four large meshes. The Fighter and

F16 datasets are simulations of jets, the SF1 dataset is an earthquake simulation, and the STP

Table 5.1. Experimental datasets for progressive rendering with initial tetrahedra count, time to
preprocess tetrahedral mesh to binary triangle format, and resulting size of the dataset.

Dataset Tetrahedra Preprocess Size
Fighter 1.4 M 15 s 117 MB
F16 6.3 M 81 s 531 MB
SF1 13.9 M 110 s 1165 MB
STP 25.0 M 458 s 2087 MB



52

Table 5.2. Performance analysis of the preprocessing and one step of the progressive volume
rendering. Measurements are given in seconds and were obtained for a client running on the
server (Local) and on a laptop over the network (Ethernet).

Dataset Server Preprocess Server Transfer Client TotalLoad Octree Trav. Sort Inter. Prog.
Local
Fighter 0.25 0.92 0.79 0.78 1.32 0.01 0.21 1.53
F16 1.10 6.12 1.17 4.18 4.17 0.01 0.39 4.56
SF1 2.53 7.87 9.04 7.90 16.16 0.01 0.43 16.59
SF1 (25%) 2.53 7.87 2.32 1.49 3.10 0.01 0.71 3.81
STP 36.55 18.46 8.62 18.89 21.80 0.38 9.82 31.62
STP (25%) 36.55 18.46 2.13 2.96 3.65 0.38 0.36 4.01
Ethernet
Fighter 0.25 0.92 0.79 0.78 13.12 0.10 10.77 23.89
F16 1.10 6.12 3.95 4.68 102.51 0.10 128.06 230.57
SF1 2.53 7.87 10.05 9.17 237.62 0.24 501.15 738.77
SF1 (25%) 2.53 7.87 2.41 1.70 87.73 0.24 32.37 120.10
STP 36.55 18.46 51.74 17.26 727.86 0.45 551.98 1279.84
STP (25%) 36.55 18.46 11.19 2.73 208.05 0.45 121.65 329.70

dataset is a simulation of a sphere going through a plate. The measurements can be broken into

four important sections: server preprocessing, server, data transfer from the client to the server,

and client. The preprocessing step occurs on the server and includes loading the file from disk,

and building an octree, and transferring the mesh information to the client. By extending the

binary file format to include the octree structure, the server preprocessing time could be decreased

even further. The timing results for the server, client, data transfer, and total time represent one

progressive rendering of the dataset from views that include the whole mesh. In addition, for the

larger datasets, view showing only 25% of the mesh is used, which takes advantage of frustum

culling. Because the client uses a thread for rendering and another for fetching data from the

server, much of the data transfer and rendering work is done in parallel. Therefore, the data

transfer is measured as the total client time for a progressive step minus the rendering time. In

the experiments, the interactive manipulation of the progressive renderer was able to achieve

interactive rates for all but the largest dataset on the thin client.

Since data transfer over the network is one of the main bottlenecks of the progressive renderer,

experiments were generated to tune the stream parameters. One important consideration is the

latency of the network. Several settings on the server effect the round-trip latency of the system

— the time for the client to send a packet and receive a response. An obvious consideration

is the compression of the geometry during transmission. For the network rendering, full com-
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pression of the stream was used, resulting in about a 60% compression rate, which dramatically

improved performance. Other important considerations include the octree resolution and stream

size (number of triangles sent on each progressive step). Finer octree resolution and higher stream

size improves performance, but decreases the number of progressive steps and increases memory

usage on the client. Table 5.3 shows the effects of these parameters on the latency for the Fighter

dataset. For the experiments with the thin client (see Table 5.2), a stream size of 100K triangles

and an octree resolution of 1K triangles per octree node was the limit.

The final experiment was to analyze the quality of the progressive steps. To measure this

metric, root mean squared (RMS) error was used to compare incremental steps with the final

rendering for all of the experimental datasets. Figure 5.6 shows a plot of these errors as the

Table 5.3. Latency analysis of different server settings on the Fighter dataset with an octree depth
of seven, a 802.11 wireless network at 54 Mbps, and an ethernet network at 100 Mbps.

Stream Size Local Ethernet Wireless
1K Triangles 0.082 s 0.050 s 0.051 s
10K Triangles 0.085 s 0.090 s 0.130 s
100K Triangles 0.574 s 1.042 s 1.893 s

Figure 5.6. Quality comparisons of progressive steps. Root Mean Squared Error (RMS) is shown
for the progressive images going from only the boundaries (0%) to the full quality (100%).
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progression refines and Figures 5.7 and 5.8 show visual results of the progression. Since the

quality of the approximation is directly related to the transfer function, the transfer functions

shown in the figures that highlight the more relevant portions of the data was used. These results

show that the image quality steadily converges to the full quality image, which is important for

allowing the user to explore the dataset efficiently.

5.5 Discussion
The progressive volume rendering system is unique because it efficiently handles data of

arbitrary size on a thin client. This is done using a novel technique that keeps only image data

and boundary geometry in GPU memory on the client for each step. The amount of memory used

on the client can be bounded by adjusting the stream size and the size of the boundary. In the

experiments, the boundary was not large enough to adversely affect performance or expend mem-

ory constraints. In fact, even with a 25 million tetrahedron dataset, the boundary can be volume

rendered with the algorithm on a thin client in Interactive Mode at about two frames-per-second.

This interactivity depends heavily on the boundary complexity of the dataset. If a dataset has a

(a) (b)

(c) (d)

Figure 5.7. A zoomed-in portion of the F16 dataset (about six million tetrahedra) shown
progressively at (a) 0%, (b) 12%, (c) 61%, and (d) 100%.



55

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.8. A zoomed-in portion of the Fighter dataset (about 1.4 million tetrahedra) shown
progressively at (a) 0%, (b) 14%, (c) 29%, (d) 43%, (e) 57%, (f) 71%, (g) 86%, and (h) 100%.
View-frustum culling on the server removed 75% of the original geometry for this view.

boundary too large to fit in GPU memory or render at acceptable rates, the algorithm would work

efficiently by using only a random subset of the boundaries for an approximate rendering during

interaction. This would have the effect of lightening the general appearance of the approximation.

The remaining boundary triangles could then be streamed before the rest of the internal faces.

An important consideration for a progressive renderer is the depth complexity and structure

of the dataset. The client rendering is fill-bound and thus depends more on the view selected

or screen size than on the depth complexity. However, the depth complexity of the dataset may

adversely affect performance of the geometry processing on the server because more culling

and sorting passes are required. The approach for culling by depth on the server assumes an

even distribution of triangles. For most of the experimental datasets, this results in few triangles

selected in some ranges and many in others. This is balanced by accumulating triangles on the

server until a target packet size is reached. A better approach may be to avoid using fixed depth

ranges by traversing the octree incrementally from the front to the back, rather than doing a

hierarchical culling. In the experiments, the aspect ratio or depth complexity of the dataset seems

to impact overall performance only slightly if the server parameters are properly selected (number

of depth ranges and minimum packet size).
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A client-server progressive volume renderer is advantageous because it allows the data to be

stored in a central repository, while the rendering can be performed with the help of graphics

hardware on a client. This efficiently splits the load of the client and server for datasets that may

be too large to render locally. Since processing power continues to increase rapidly for both CPUs

and GPUs, it is becoming increasingly important to develop algorithms that efficiently harness

the computational power without being limited by memory constraints. The proposed algorithm

uses this approach by acting as a stream renderer and allowing the interactive exploration of a

dataset with only a portion of the geometry.

The main disadvantage of using this paradigm is that data transfer over the network incurs

a substantial penalty. This penalty is partially reduced with the use of lossless compression

of the stream. If some loss in quality is acceptable, quantization techniques could also be

applied to reduce the bandwidth of the geometry. Because data transfer is a limiting factor

in quickly visualizing a full quality rendering, the quality of the approximation is important.

Unlike naı̈ve approaches that render only an opaque boundary mesh or outline, the proposed

initial approximation gives excellent results with little overhead. With only a few iterations, the

progressive volume renderer converges to the final image which facilitates dynamic exploration.

This aspect is found to be useful because often in the exploration process, the user will not wait for

the entire progressive volume rendering before moving on to another viewpoint. Because only the

geometry within the current view frustum is transferred, efficiently exploring details of the dataset

becomes easy. This feature also makes rapid transfer function exploration possible. With each

update of the transfer function, the stream can be reset and the progression started. For datasets

with more important features in the center, the boundary may not give a good approximation.

A more advanced technique that uses multiple k-buffers could be employed to render several

advancing progressions at once which results in an increased rendering overhead. A simpler

approach would be the addition of user-controlled cutting planes that could cull geometry on the

server, thus reducing the amount of data sent to the client and allowing the rapid visualization of

internal structures. Along with the image capturing system, which keeps previously computed

results, these features would provide a powerful data exploration tool for large datasets.

5.6 Summary
The algorithm presented in this chapter provides a progressive volume rendering system for

interactively exploring large unstructured datasets. A novel approach is used for balancing the

load of the client and server while minimizing the memory constraints of the client. In fact,
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the algorithm can bound the memory usage of the client machine to allow a wide variety of

client devices. A novel progressive algorithm was introduced that efficiently uses the GPU

to incrementally refine the visualization by retaining only image data. An interactive mode

can be efficiently computed with the addition of boundary triangles that can be kept in GPU

memory. To further improve interaction, the system keeps previously computed visualizations

that can be interactively browsed while progressively rendering the visualization. Finally, detailed

experiments were provided and the trade-offs of a client-server approach for volume rendering

unstructured grids was discussed.



CHAPTER 6

VOLUME RENDERING TIME-VARYING
SCALAR FIELDS

Large amounts of time-varying volumetric data are being generated by simulations. Tech-

niques to handle this dynamic data for unstructured grids are virtually nonexistent. In a recent

survey article on the topic, Ma [84] says:

Research so far in time-varying volume data visualization has primarily addressed
the problems of encoding and rendering a single scalar variable on a regular grid...
Time-varying unstructured grid data sets have been either rendered in a brute force
fashion or just resampled and downsampled onto a regular grid for further visualiza-
tion calculations...

One of the key problems in handling time-varying data is the raw size of the data that must

be processed. For rendering, these datasets need to be stored (and/or staged) in either main

memory or GPU memory. Data transfer rates create a bottleneck for the effective visualization

of these datasets. A number of successful techniques for time-varying regular grids have used

compression to mitigate this problem, and allow for better use of resources. Most solutions

described in the literature consider only structured grids, where exploiting coherence (either

spatial or temporal) is easier due to the regular structure of the datasets. For unstructured grids,

however, the compression is more challenging and several issues need to be addressed.

There are four fundamental pieces to adaptively volume render dynamic data. First, compres-

sion of the dynamic data for efficient storage is necessary to avoid exhausting available resources.

Second, handling the data transfer of the compressed data is important to maintain interactivity.

Third, efficient volume visualization solutions are necessary to provide high-quality images that

lead to scientific insight. Furthermore, the framework has to be flexible enough to support

multiple visualization techniques as well as data that change at each frame. Fourth, maintaining

a desired level of interactivity or allowing the user to change the speed of the animation is

important for the user experience. Therefore, level-of-detail approaches that generally work on

static datasets must be adapted to efficiently handle the dynamic case.
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Since multiple CPUs and programmable GPUs are becoming common for desktop machines,

this chapter concentrates on efficiently using all the available resources. The system performs

decompression, object-space sorting, and level-of-detail operations with multiple threads on the

CPUs for the next time-step while simultaneously rendering the current time-step using the GPU.

This parallel computation results in only a small overhead for rendering time-varying data over

previous static approaches.

To demonstrate the flexibility of this framework, two of the most common visualization tech-

niques for unstructured grids are integrated. Both direct volume rendering as well as isosurface

computation are incorporated into this adaptive, time-varying framework.

Though the goal is to eventually handle data that change in geometry and even topology

over time, this chapter concentrates on the more specific case of time-varying scalar fields on

static geometry and topology. Figure 6.1 illustrates this system in action on an unstructured grid

representation of the Turbulent Jet dataset. The main contributions of this chapter are:

Figure 6.1. Different time instances of the Turbulent Jet dataset consisting of one million tetra-
hedra and rendered at approximately six frames per second using direct volume rendering (top)
and isosurfacing (bottom). The user interface consists of an adjustable orange slider representing
the level-of-detail and an adjustable gray slider representing the current time instance.



60

• The data transfer bottleneck is mitigated with compression of time-varying scalar fields for

unstructured grids;

• A hardware-assisted volume rendering system is enhanced to efficiently prefetch dynamic

data by balancing the CPU and GPU loads;

• Direct volume rendering and isosurfacing are incorporated into the adaptive framework;

• New importance sampling approaches for dynamic level-of-detail are introduced that oper-

ate on time-varying scalar fields.

The rest of this chapter is organized as follows. Section 6.1 outlines the proposed system for

adaptively volume rendering unstructured grids with time-varying scalar fields. The results of the

algorithm are shown in Section 6.2, a brief discussion follows in Section 6.3, and a summary is

described in Section 6.4.

6.1 Adaptive Time-Varying Volume Rendering
The proposed system for adaptive time-varying volume rendering of unstructured grids con-

sists of four major components: compression, data transfer, hardware-assisted volume visual-

ization, and dynamic level-of-detail for interactivity. Figure 6.2 shows the interplay of these

components.

Desktop machines with multiple processors and multiple cores are becoming increasingly

typical. Thus, interactive systems should explore these features to leverage computational power.

For graphics-heavy applications, the CPU cores can be used as an additional cache for the GPU,

which may have limited memory capabilities. With this in mind, the operations on the CPU and

GPU are parallelized with multithreading to achieve interactive visualization.

There are currently three threads in the system to parallelize the CPU portion of the code.

These threads run while the geometry from the previous time-step is being rendered on the GPU.

Therefore, the threads can be considered a prefetching of data in preparation for rasterization. The

first thread handles decompression of the compressed scalar field (see Section 6.1.1). The second

thread handles object-space sorting of the geometry (see Section 6.1.3). Finally, the third thread

is responsible for rendering. All calls to the graphics API are done entirely in the rendering thread

since only one thread at a time may access the API. This thread waits for the first two threads

to finish, then copies the decompressed scalar values and sorted indices before rendering. This

frees the other threads to compute the scalars and indices for the next time-step. These three

threads work entirely in parallel and result in a time-varying visualization that requires very little

overhead over static approaches.
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Figure 6.2. An overview of the proposed system for dynamic volume rendering. (a) Data
compression and importance sampling for level-of-detail are performed in preprocessing steps
on the CPU. (b) Then during each pass, level-of-detail selection, optional object-space sorting,
and data decompression for the next step occur in parallel on multiple CPUs. (c) Simultaneously,
the image-space sorting and volume visualization are processed on the GPU.

6.1.1 Compression
Compression is important to reduce the memory footprint of time-varying data, and the con-

sideration of spatial and temporal coherence of the data is necessary when choosing a strategy.

For example, it is common to exploit spatial coherence in time-varying scalar fields defined on

structured grids, such as in the approach described by Schneider et al. [119], where a multireso-

lution representation of the spatial domain using vector quantization is used. This solution works

well when combined with texture-based volume rendering, which requires the decompression

to be performed at any given point inside the volume by incorporating the differences at each

resolution level.

In unstructured grids, the irregularity of topological and geometric information makes it hard

to apply a multiresolution representation over the spatial domain. In this system compression is

applied on the temporal domain by considering scalar values individually for each mesh vertex.

By grouping a fixed number of scalar values defined over a sequence of time instances a suitable

representation is obtained for applying a multiresolution framework.

The system collects blocks of 64 consecutive scalars associated with each mesh vertex, applies

a multiresolution representation that computes the mean of each block along with two difference

vectors of size 64 and 8, and uses vector quantization to obtain two sets of representatives (code-
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books) for each class of difference vectors. For convenience a fixed number of time instances is

used, but this is compensated by increasing the number of entries in the codebooks if temporal

coherence is reduced and leads to compression errors.

This solution works well for projective volume rendering that sends mesh faces in visibility

ordering to be rendered. At each rendering step, the scalar value for each mesh vertex in a given

time instance is decompressed by adding the mean of a given block interval to two difference

values, which are recovered from the codebooks using two codebook indices i8 and i64 (see

Figure 6.3).

6.1.2 Data Transfer
There are several alternatives to consider when decompressing and transferring time-varying

data to the volume renderer. This is a critical point in the system and has a great impact on its

overall performance. In this section, the alternatives are discussed and the current solution is

explained. It is important to point out that with future CPU and GPU configurations this solution

might need to be revisited.

Since the decompression is done on a per-vertex basis, the first approach was to use the vertex

shader on the GPU. This requires the storage of codebooks as vertex textures, and the transfer

for each vertex of three values as texture coordinates (mean and codebook indices i8 and i64). In

practice, this solution does not work well because the current generation of graphics hardware

does not handle vertex textures efficiently and incurs several penalties due to cache misses, and

the arithmetic calculations in the decompression are too simple to hide this latency.

The second approach was to use the GPU fragment shader. Since computation is done at a

fragment level, the decompression and the interpolation of the scalar value for the fragment is

necessary. This requires three decompression steps instead of a single step as with the vertex

shader approach (which benefits from the interpolation hardware). Also, this computation re-

quires accessing the mean and codebook indices. Sending this information as a single vertex

attribute is not possible due to interpolation, and multiple-vertex attributes increase the amount

of data transfer per vertex. As the volume renderer runs in the fragment shader, this solution also

increases the shader complexity and thus reduces performance of the system.

The final (and current) solution is to perform the decompression on the CPU. Since codebooks

usually fit in CPU memory—a simple paging mechanism can be used for really large data—the

main cost of this approach is to perform the decompression step and send scalar values through

the pipeline. This data transfer is also necessary with the other two approaches. The number
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Figure 6.3. An illustration of decompression of vector quantized scalars. Decompression of
a given time instance for each mesh vertex requires adding the scalar mean of a block to the
quantized differences recovered from the respective entries (i8 and i64) in the codebooks.

of decompression steps is reduced to the number of vertices, unlike the vertex shader approach

which requires three times the number of faces.

6.1.3 Volume Rendering
The system is based on the Hardware-Assisted Visibility Sorting (HAVS) algorithm of Calla-

han et al. [22, 56]. Figure 6.2 shows how the volume rendering system handles time-varying data.

The framework supports both direct volume rendering as well as isosurfacing.

The HAVS algorithm is a general visibility ordering algorithm for renderable primitives that

works in both object-space and image-space. In object space the unique triangles that compose

the tetrahedral mesh are sorted approximately by their centroids. This step occurs entirely on the

CPU. In image-space, the triangles are sorted and composited in correct visibility order using a

fixed size A-buffer called the k-buffer. The k-buffer is implemented entirely on the GPU using

fragment shaders. Because the HAVS algorithm operates on triangles with no need for neighbor

information, it provides a flexible framework for handling dynamic data. In this case, the triangles

can be stored on the GPU for efficiency, and the scalar values as well as the object-space ordering

of the triangles can be streamed to the GPU at each time instance.

The proposed algorithm extends the HAVS algorithm with time-varying data with virtually no

overhead by taking advantage of the HAVS architecture. Since work performed on the CPU can

be performed simultaneously to work on the GPU, this parallelization is leveraged to prefetch

the time-varying data. During the GPU rendering stage of the current time instance, the CPU is
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used to decompress the time-varying field of the next time-step and prepare it for rendering. User

provided viewing transformations that affect visibility order are also distinguished from those that

do not and perform visibility ordering only when necessary. Therefore, the object-space centroid

sort only occurs on the CPU during frames that have a change in the rotation transformation. This

avoids unnecessary computation when viewing time-varying data.

To manage the time-stepping of the time-varying data, the algorithm automatically increments

the time instance at each frame. To allow more control from the user, a slider is also provided for

interactive exploration of the time instances.

6.1.3.1 Direct Volume Rendering
The HAVS algorithm performs direct volume rendering with the use of pre-integration [41].

In a preprocess, a three-dimensional lookup table is computed that contains the color and opacity

for every set of scalars and distances between them (s f , sb, d). Then, as fragments are rasterized,

the k-buffer is used to retrieve the closest two fragments and the front scalar s f , back scalar sb, and

distance d between them is calculated. The color and opacity for the gap between the fragments

is determined with a texture lookup, then composited into the framebuffer.

6.1.3.2 Isosurfaces
The HAVS algorithm is extended to perform isosurfacing in the time-varying framework. The

fragments are sorted using the k-buffer as described above. However, instead of compositing the

integral contribution for the gap between the first and second fragments, a simple test is performed

to determine if the isosurface value lies between them. If so, the isosurface depth is determined

by interpolating between the depths of the two fragments. The result is a texture that contains the

depth for the isosurface at each pixel (i.e., a depth buffer), which can be displayed directly as a

color buffer or postprocessed to include shading.

There are several differences between this isosurfacing using HAVS and previous hardware-

assisted approaches. First, with the advent of predicates in the fragment shader, a direct isosurface

comparison can be performed efficiently, without the need of texture lookups as in previous work

by Röttger et al. [115]. Second, the k-buffer naturally provides the means to handle multiple

transparent isosurfaces by compositing the isosurface fragments in the order that they are ex-

tracted. Third, to handle lighting of the isosurfaces, keeping normals is avoided in the k-buffer by

using an extra shading pass. One option is a simple depth-based shading [133], which may not

give sufficient detail of the true nature of the surface. Another option is to use a gradient-free

shading approach similar to work by Desgranges et al. [33], which uses a preliminary pass
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over the geometry to compute a shadow buffer. Instead, this extra geometry pass is avoided

by using screen-space shading of the computed isosurface through central differencing on the

depth buffer [77]. This results in fast and high quality shading. The isosurface figures shown

in this chapter were generated with the latter shading model. Finally, since the isosurfacing

algorithm is based on the direct volume rendering algorithm, the same level-of-detail strategies

can be used to increase performance. However, level-of-detail rendering may introduce disconti-

nuities in the depths that define the isosurface, adversely affecting the quality of the image-space

shading. Thus, an additional smoothing pass is performed on the depths using a convolution filter,

which removes sharp discontinuities, before the final shading. This extra pass is inexpensive and

typically only necessary at low levels-of-detail.

6.1.4 Time-Varying Level-of-Detail
Recent work by Callahan et al. [21] introduces a new dynamic level-of-detail (LOD) approach

that works by using a sample-based simplification of the geometry. This algorithm operates by

assigning an importance to each triangle in the mesh in a preprocessing step based on properties

of the original geometry. Then, for each pass of the volume renderer, a subset of the original

geometry is selected for rendering based on the frame rate of the previous pass. This recent LOD

strategy was incorporated into the original HAVS algorithm to provide a more interactive user

experience.

An important consideration for visualizing time-varying data is the rate at which the data are

progressing through the time instances. To address this problem, the proposed algorithm uses

this LOD approach to allow the user to control the speed and quality of the animation. Since

this work assumes time-varying scalar fields, heuristics that attempt to optimize the quality of the

mesh based on the scalar field are ideal. However, approaches that are based on a static mesh can

be poor approximations when considering a dynamically changing scalar field.

Callahan et al. introduce a heuristic based on the scalar field of a static mesh for assigning an

importance to the triangles. The idea is to create a scalar histogram and use stratified sampling

to stochastically select the triangles that cover the entire range of scalars. This approach works

well for static geometry, but may miss important regions if applied to a time-step that does not

represent the whole time-series well. Recent work by Akiba et al. [1] classifies time-varying

datasets as either statistically dynamic or statistically static depending on the behavior of the

time histogram of the scalars. A statistically dynamic dataset may have scalars that change

dramatically in some regions of time, but remain constant during others. In contrast, the scalars
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in statistically static datasets change consistently throughout the time-series. Because datasets

vary differently, two sampling strategies were developed for dynamic LOD: a local approach for

statistically dynamic datasets and a global approach for statistically static datasets.

To incorporate these LOD strategies into the time-varying system, two types of interactions

are allowed based on user preference. The first is to keep the animation at a desired frame-rate

independent of the data size or viewing interaction. This dynamic approach adjusts the LOD on

the fly to maintain interactivity. The second type of interaction allows the user to use a slider

to control the LOD. This slider dynamically changes the speed of the animation by setting the

LOD manually. Since visibility ordering-dependent viewing transformations occur on the CPU in

parallel to the GPU rendering, they do not change the LOD or speed of the animation. Figure 6.2

shows the interaction of the LOD algorithm with the time-varying data.

6.1.4.1 Local Sampling
Datasets with scalars that vary substantially in some time regions, but very little in others,

benefit from a local sampling approach. The general idea is to apply methods for static datasets

to multiple time-steps of a time-varying dataset and change the sampling strategy to correspond

to the current region. Local sampling is performed by selecting time-steps at regular intervals

in the time-series and importance sampling the triangles in those time-steps using the previously

described stochastic sampling of scalars. Since the LOD selects a subset of triangles ordered

by importance, a separate list of triangles is created for each partition of the time sequence.

Then, during each rendering step, the region is determined and the corresponding list is used for

rendering. Since changing the list also requires the triangles to be resorted for rendering, this

operation occurs in the sorting thread to minimize delays between frames.

Statistically dynamic datasets benefit from this approach because the triangles are locally

optimized for rendering. The disadvantage of this approach is that because the active set of

renderable triangles may change between time intervals, flickering may occur. However, this is a

minor issue when using dynamic LOD because the number of triangles drawn at each frame may

be changing anyway, to maintain interactivity.

Certain datasets may contain regions in time where none of the scalars are changing and

other regions where many scalars are changing. These datasets would benefit from a nonlinear

partitioning of the time sequence (i.e., logarithmic). A more automatic approach to partitioning

the time-steps is to greedily select areas with the highest scalar variance to ensure that important

changes are not missed. In the experiments described in this chapter, a regular interval is used

because the experimental datasets do not fall into this category.
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6.1.4.2 Global Sampling
A global strategy is desirable in datasets that are statistically static due to its simplicity and

efficiency. For global sampling, one ordering is determined that attempts to optimize all time-

steps. This has the advantage that it does not require changing the triangle ordering between

frames and thus gives a smoother appearance during an animation. Figure 6.4 shows an example

of a dataset rendered using global sampling.

A sampling can be obtained globally using a statistical measure of the scalars. For n time-

steps, consider the n scalar values s for one vertex as an independent random variable X , then the

expectation at that position can be expressed as

E[X ] =
n

∑
1

s(Pr{X = s}),

where Pr{X = s} = 1/n. The dispersion of the probability distribution of the scalars at a vertex

can then be expressed as the variance of the expectation:

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.4. The time-varying level-of-detail (LOD) strategy using the coefficient of variance for
the Torso dataset (50K tetrahedra and 360 time steps). For a close-up view using direct volume
rendering: (a) 100% LOD at 18 fps, (b) 50% LOD at 40 fps, (c) 25% LOD at 63 fps, and (d) 10%
LOD at 125 fps. For the same view using isosurfacing: (e) 100% LOD at 33 fps, (f) 50% LOD
at 63 fps, (g) 25% LOD at 125 fps, and (h) 10% LOD at 250 fps. Front isosurface fragments are
shown in light blue and back fragments are shown in dark blue.
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Var[X ] = E[X2]−E2[X ]

=
n

∑
1

(s2

n
)
−

( n

∑
1

s
n
)2

In essence, this gives a spread of the scalars from their expectation. To measure dispersion

of probability distributions with widely differing means, it is common to use the coefficient of

variation Cv, which is the ratio of the standard deviation to the expectation. This metric has been

used in related research for transfer function specification on time-varying data [58, 1] and as a

measurement for spatial and temporal error in a time-varying structured grids [122]. Thus, for

each triangle t, the importance can be assigned by calculating the sum of the Cv for each vertex

as follows:

Cv(t) =
3

∑
i=1

√
Var[Xt(i)]

E[Xt(i)]

This results in a dimensionless quantity that can be used for assigning importance to each face by

directly comparing the amount of change that occurs at each triangle over time.

The algorithm provides good quality visualizations even at lower levels-of-detail because the

regions of interest (those that are changing) are given a higher importance (see Figure 6.4). The

described heuristic works especially well in statistically static datasets if the mesh has regions

that change very little over time since they are usually assigned a lower opacity and their removal

introduces very little visual difference.

6.2 Results
In this section, the results that are reported were obtained using a PC with Pentium D 3.2 GHz

Processors, 2 GB of RAM, and an NVidia 7800 GTX GPU with 256 MB RAM. All images were

generated at 512×512 resolution.

6.2.1 Datasets
The datasets used in the tests are diverse in size and number of time instances. The time-

varying scalars on the SPX1, SPX2 and Blunt Fin datasets were procedurally generated by

linear interpolating the original scalars to zero over time. The Torso dataset shows the result

of a simulation of a rotating dipole in the mesh. The SPX-Force (SPXF) dataset represents the

magnitude of reaction forces obtained when a vertical force is applied to a mass-spring model

that has as particles the mesh vertices and as springs the edges between mesh vertices. Finally,

the Turbulent Jet (TJet) dataset represents a regular time-varying dataset that was tetrahedralized
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and simplified to a reduced representation of the original. The meshes used in the tests, with their

respective sizes, are listed in Table 6.1.

6.2.2 Compression
The compression of Time-Varying Scalar Field (TVSF) data use an adaption of the vector

quantization code written by Schneider et al. [119], as described in Section 6.1.1. The original

code works with structured grids with building blocks of 4× 4× 4 (for a total of 64 values per

block). To adapt its use for unstructured grids it is necessary to group TVSF data into basic

blocks with the same amount of values. For each vertex in the unstructured grid, the scalar values

corresponding to 64 contiguous instances of time are grouped into a basic block and sent to the

VQ code.

The VQ code produced two codebooks containing difference vectors for the first and second

level in the multiresolution representation, each with 256 entries (64× 256 and 8× 256 code-

books). For the synthetic datasets this configuration led to acceptable compression results as seen

in Table 6.1. However, for the TJet and SPXF datasets the number of entries in the codebook was

increased due to the compression error obtained. Both datasets were compressed using codebooks

with 1024 entries.

The size of TVSF data without compression is given by sizeu = v× t × 4B, where v is the

number of mesh vertices, t is the number of time instances in each dataset, and each scalar uses

four bytes (float). The compressed size using VQ is equal to sizevq = v× c× 3× 4B + c×

size codebook, where c is the number of codebooks used (c = t/64), s is the number of entries

in the codebook (256 or 1024), each vertex requires 3 values per codebook (mean plus codebook

indices i8 and i64), and each codebook size corresponds to s×64×4B + s×8×4B.

In Table 6.1 the compression results obtained are summarized. In addition to the signal-to-

noise ration (SNR) given by the VQ code, the minimum and maximum discrepancy between the

Table 6.1. Results of compression sizes, ratios, and error for time-varying volumes.
Mesh Num Num Time Size Size Comp. SNR SNR Max

Verts Tets Instances TVSF VQ Ratio Min Max Error
SPX1 36K 101K 64 9.0M 504K 18.3 39.5 42.0 0.005
SPX2 162K 808K 64 40.5M 2.0M 20.6 39.2 42.0 0.009
SPXF 19K 12K 192 14.7M 2.0M 7.1 20.8 30.2 0.014
Blunt 40K 183K 64 10.0M 552K 18.6 41.7 44.4 0.005
Torso 8K 50K 360 11.2M 1.0M 11.4 20.5 28.1 0.002
TJet 160K 1M 150 93.8 M 2.7M 34.7 5.3 17.9 0.204
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original and quantized values are measured. Results show that procedurally generated datasets

have a higher SNR and smaller discrepancy, since they have a smoother variation in their scalars

over time. The TJet dataset has smaller SNR values because it represents a real fluid simulation,

but it also led to higher compression ratios due to its fixed codebook sizes. In general, the quality

of the compression corresponds with the variance in the scalars between steps. Thus, datasets

with smoother transitions result in less compression error. A limitation of the current approach

is that because it exploits temporal coherence, it may not be suitable for datasets with abrupt

changes between time instances. In this case, compression methods that focus more on spatial

coherence may be necessary.

In addition to the numerical compression results described above, the image quality for all

datasets was evaluated by comparing them against the rendering from uncompressed data. For

most datasets the difference in image quality was minimal. However, for the TJet dataset (the one

with the smaller SNR values), there are some small differences that can be observed in close-up

views of the simulation (see Figure 6.5).

(a) (b) (c)

(d) (e) (f)

Figure 6.5. Comparison of direct volume rendering using (a) uncompressed and (d) compressed
scalars on the TJet dataset(1M tetrahedra, 150 time steps). Level-of-Detail is compared at 5%
for the TJet and 3% for the Torso dataset(50K tetrahedra, 360 time steps) using (b)(c) a local
approach and (e)(f) a global approach.
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6.2.3 Rendering
The rendering system allows the user to interactively inspect the time-varying data, con-

tinuously play all time instances, and pause or even manually select a given time instance by

dragging a slider. Level-of-detail changes dynamically to achieve interactive frame rates, or

can be manually set using a slider. Changing from direct volume rendering to isosurfacing is

accomplished by pressing a key. Similarly, the isovalue can be interactively changed with the

press of a key and incurs no performance overhead.

Rendering time statistics were produced using a fixed number of viewpoints. In Table 6.2 tim-

ing results for the experimental datasets are shown and in Figure 6.6 quality results for different

time steps of two datasets are shown. To compare the overhead of the system with the original

HAVS system that handles only static data, the rendering rates are also measured for static scalar

fields without multithreading. The dynamic overhead is minimal even for the larger datasets.

In fact, for some datasets, the multithreading approach is faster with dynamic data than single

threading with static data. Note that for the smaller datasets, frame-rates greater than 60 frames

per second are not reported since it is difficult to accurately measure higher rates.

6.2.4 Level-of-Detail
The sample-based level-of-detail for time-varying scalar fields computes the importance of

the faces in a preprocessing step that takes less than two seconds for the global strategy or for

Table 6.2. Performance measures for static and time-varying (TV) scalar fields for direct volume
rendering (DVR) and isosurfacing (Iso). Static measurements were taken without multithreading.
Performance is reported for each dataset with object-space sorting (during rotations) and without
object-space sorting (otherwise).

Mesh Sort DVR Static DVR TV DVR TV Iso Static Iso TV Iso TV
FPS FPS Tets/s FPS FPS Tets/s

SPX1 Y 24.2 32 3.3M 26.4 28.2 2.9M
SPX1 N 42.6 41.7 4.3M 51.1 43.5 4.5M
SPX2 Y 2.8 2.9 2.4M 2.9 2.9 2.4M
SPX2 N 7.6 7.5 6.2M 8.2 8.2 6.8
SPXF Y >60 >60 0.7M >60 >60 0.7M
SPXF N >60 >60 0.7M >60 >60 0.7M
Blunt Y 16.1 20.4 3.8M 15.9 19.5 3.6M
Blunt N 25.6 27.5 5.2M 31.2 31.1 5.8M
Torso Y 40.6 31.2 1.6M 44.8 31.2 1.6M
Torso N >60 >60 3.1M >60 >60 3.1M
TJet Y 2.3 2.1 2.1M 2.2 2.4 2.4M
TJet N 6.1 5.8 5.8M 5.7 6 6.0M
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Figure 6.6. Different time instances of the SPXF (above, 12K tetrahedra and 192 time steps) and
Torso (below, 50K tetrahedra and 360 time steps) datasets volume rendered at full quality.

the local strategy using six intervals, even for the largest dataset in the experiments. In addition,

there is no noticeable overhead in adjusting the level-of-detail at a per frame basis because only

the number of triangles in the current frame is computed [21]. Figure 6.4 shows the results of the

global level-of-detail strategy on the Torso dataset at decreasing levels-of-detail. Figure 6.5 shows

a comparison of the global and local sampling strategies. To capture an accurate comparison, the

local sampling results are shown in the middle of an interval, thus showing an average quality.

In the experiments, the frame-rates increase at the same rate as the level-of-detail decreases (see

Figure 6.4) for both strategies.

6.3 Discussion
An important consideration for the framework presented is the scalability of the solution on

current and future hardware configurations. Development of faster processors is reaching physical

limits that are expensive and difficult to overcome. This is leading the industry to shift from the

production of faster single-core processors to multicore machines. On the other hand, graphics

hardware has not yet reached these same physical limitations. Even so, hardware vendors are

already providing multiple GPUs along with multiple CPUs. The use of parallel technology
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ensures that the processing power of commodity computers keeps growing independently of

some physical limitations, but new applications must be developed considering this new reality

to take full advantage of the new features. In particular, for data-intensive graphics applications,

an efficient load balance needs to be maintained between resources to provide interactivity. In

this chapter, the focus was this multicore configuration that is becoming increasingly popular on

commodity machines instead of focusing on traditional CPU clusters.

To take advantage of multicore machines with programmable graphics hardware, the compu-

tation was separated into three components controlled by different threads. For the largest dataset

in the experiments, the computation time for the three components is distributed as follows: 2%

decompression, 55% sorting, and 45% rendering. For the smaller datasets, the processing time

shifts slightly more towards rendering. With more available resources, the rendering and the

sorting phases could benefit from additional parallelization.

To further parallelize the sorting thread, the computation could be split amongst multiple

cores on the CPU. This could be done in two ways. The first is to use a sort-first approach that

performs parallel sorting on the geometry in screen space (see Gasarch et al. [2]), then pushes

the entire geometry to the graphics hardware. The second is a sort-last approach that breaks the

geometry into chunks that are sorted separately, and sent to the graphics hardware for rendering

and compositing (see Vo et al. [137]).

Because of the parallel nature of modern GPUs, the vertex and fragment processing au-

tomatically occurs in parallel. Even so, multiple-GPU machines are becoming increasingly

common. The effective use of this technology, however, is a complex task, especially for scientific

computing. Some tentative tests of the framework have been performed on a computer with an

NVidia SLI configuration. SLI, or Scalable Link Interface, is an NVidia technology developed

to synchronize multiple GPUs (currently two or four) inside one computer. This technology was

developed to automatically enhance the performance of graphics applications, and offer two new

operation modes: Split Frame Rendering (SFR) and Alternate Frame Rendering (AFR). SFR

splits the screen into multiple regions and assigns each region to a GPU. AFR renders every

frame on a different GPU, cycling between all available resources. The experiments with both

SFR and AFR on a dual SLI machine did not improve performance with this volume rendering

algorithm. The SFR method must perform k-buffer synchronization on the cards so frequently

that no performance benefit is achieved. With AFR, the GPU selection is controlled by the driver

and changes at the end of each rendering pass. With a multipass rendering algorithm, this forces

synchronization between GPUs and results in the same problem as SFR. In the future, as more
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control of these features becomes available, multiple-GPU machines should be easier to take

advantage of to improve performance.

6.4 Summary
Rendering dynamic data is a challenging problem in volume visualization. In this chapter, a

description was provided of how time-varying scalar fields on unstructured grids can be efficiently

rendered using multiple visualization techniques with virtually no penalty in performance. In fact,

for the larger datasets in the experiments, time-varying rendering only incurred a performance

penalty of 6% or less. Vector quantization can be employed with minimal error to mitigate the

data transfer bottleneck while leveraging a GPU-assisted volume rendering system to achieve

interactive rendering rates. The algorithm exploits both the CPU and GPU concurrently to balance

the computation load and avoid idle resources. In addition, new time-varying approaches were

introduced for dynamic level-of-detail that improve upon existing techniques for static data and

allows the user to control the interactivity of the animation. The proposed algorithm is simple,

easily implemented, and most importantly, it closes the gap between rendering time-varying data

on structured and unstructured grids. This is the first system for handling time-varying data on

unstructured grids in an interactive manner.



CHAPTER 7

APPLICATION: A FRAMEWORK FOR
TRANSFER FUNCTION DESIGN

Creating insightful visualizations from both simulated and measured data is an important

problem for the visualization community. For scalar volumes, direct volume rendering has

proved to be a useful tool for data exploration. With the use of a transfer function, scalar

values can be mapped to colors and opacities to identify and enhance important features. Though

some automatic techniques have been developed for transfer function specification [61, 48], the

exploration process still involves tuning the parameters manually until the desired visualization

is produced. A great deal of research has recently been performed to assist the user in this

specification task with interactive widgets [62, 64]. These tools generally assist the user by

allowing them to create and manipulate widgets over one or more dimensions of histogram

information of the data.

Even with current tools, the specification of transfer functions is not a trivial task [104]. The

primary obstacle is the diversity of datasets to be rendered. A tool that excels at extracting features

from a structured grid of scanned medical data may have difficulty finding relevant features in an

unstructured grid of simulation data. The use of multidimensional transfer functions may be

helpful for some datasets, but may just complicate the specification in others. This problem is

further compounded when different features in a dataset are enhanced by different histograms.

Another difficulty is that the datasets may contain a high dynamic range of floating point scalar

values that vary over time. General tools to efficiently handle the diversity of data that can be

encountered in both medical and scientific domains are not currently available.

As an example, consider the ubiquitous Utah Torso dataset—an unstructured grid containing

simulated electric potential in the human torso. In this example, a version of the dataset is

used consisting of about 50,000 tetrahedra and 360 floating point time steps of a rotating dipole

that emphasizes the simulation results. Figure 7.1 illustrates several visualizations of these data

through direct volume rendering. There are several issues that are encountered when attempting

to explore this data using transfer functions. First, for each time step of the data, the scalars in
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(a) (b) (c) (d)

Figure 7.1. An example demonstrating some of the capabilities of the proposed system for trans-
fer function design using the Utah Torso dataset. (a) Traditional transfer function specification
using a simple polyline widget over the scalar histogram shows positive and negative potentials
in the simulation. (b) Other features such as the variation of the scalars over time can only be
expressed using more advanced histograms such as this 2D histogram of the magnitude of the
variation. (c) Transfer function ensembles provide user-specified blending operators between
histograms defined on in both 1D and 2D, in this case a 1D scalar histogram and a 2D time
histogram. (d) By remapping the scalar range from the previous ensemble, high dynamic range
details can easily be explored, resulting in a more insightful visualization.

the volume are concentrated in one peak in the histogram (i.e., 83% of the scalars fall into 1%

of the scalar range). Thus, with traditional specification tools such as a polyline defined over

the histogram, feature finding may be difficult because much of the data maps to few entries in

the corresponding color and opacity lookup table (see Figure 7.1(a)). A zooming interface on

the color map (e.g., Yuan et al. [153]) will facilitate the placement of the specification widget,

but will not show additional features due to the static resolution of the lookup table. The second

issue that occurs in the specification is that some features of the data can only be found using

one type of histogram. On the Utah Torso, positive and negative potentials can be determined

with a polyline or rectangle widgets on the scalar histogram (see Figure 7.1(a)), but the amount

of change in the scalars over time requires a time-sensitive 2D histogram (see Figure 7.1(b)).

Available techniques that merge transfer functions (e.g., Wu et al. [148]) are not designed to

provide user control of the blending of 1D and 2D transfer functions. The final issue that is

encountered during transfer function specification is that limited control is currently available for

specifying transfer functions for time-varying data. The ability to transition between user-defined

transfer functions temporally is essential for tracking features through time or to provide temporal

focus and context animations.
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The goal of this research is to create a tool that facilitates feature extraction through transfer

function specification for disparate data types by addressing each of these issues. The proposed

system builds on more than a decade of previous work by unifying existing methods as well as

introducing new techniques for specifications that can be used independently or in unison for

volume visualization of complex data. In this chapter, the focus is on transfer function generation

for unstructured volumes due to their complexity and disparity, but the algorithms described are

general enough to be applied to structured data as well. In particular, the contributions include:

• An interactive system is described that facilitates data exploration of diverse data types by

combining existing techniques with new ones;

• An algorithm is introduced for simplifying feature extraction in high dynamic range datasets

by allowing the interactive, nonlinear remapping of the scalar range in the histogram;

• The notion of transfer function ensembles is introduced to allow a user-controlled blending

of multiple transfer functions defined on different histograms—each representing different

features;

• Transfer function specification is discussed across multiple steps of time-varying data and

a tool is introduced for blending ensembles of transfer functions over time through user-

controlled keyframing;

• The results of a user study of the system are provided in the form of an expert review.

Figure 7.1(c) and (d) demonstrate these contributions on the example dataset. Figure 7.1(c)

provides the results of blending transfer functions defined on different histograms. In this case,

it uses an additive blending function to combine a 1D scalar histogram defined using rectangle

widgets (Figure 7.1(c) bottom) with a 2D time histogram that uses the variation of scalars over

time to emphasize the changing regions in the volume. Thus multiple, distinct features are visible

in a single visualization. Figure 7.1(d) shows the results of distributing the scalars more evenly

through the color and opacity lookup table by dynamically remapping them. Previously unseen

features (such as the abrupt changes potentials) become visible by taking advantage of a nonlinear

mapping of the scalars. Finally, using a keyframing interface, ensembles of transfer functions

(such as the one shown in Figure 7.1(d)) can be assigned to specific time steps and smoothly

transitioned during animations using user-defined step functions. The overall result is a tool that

allows insight into the data that is not otherwise available with established tools and techniques.

The rest of the chapter is outlined as follows. Section 7.1 provides an outline of the system and

tools for transfer function specification. In Section 7.2 range mapping for high dynamic range
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volumes is introduced. In Section 7.3 the merging of multiple transfer functions is discussed.

Section 7.4 outlines an algorithm for blending transfer function ensembles over time. An evalua-

tion of the methods is described in Section 7.5 followed by a discussion in Section 7.6. Finally, a

summary of this work is provided in Section 7.7.

7.1 System Overview
In this section a summary of the proposed system for transfer function specification is given.

It comprises several tools that aim to provide useful insights about the underlying data and help

the user during the creation of transfer functions. An overview of the visualization process, as

provided by the proposed system, is shown in Figure 7.2. First, the volumetric data are loaded

and the appropriate visualization algorithm is selected depending on the data type. Currently,

unstructured time-varying grids are supported. Next, the task of data exploration is performed

by finding features in the data with the assistance of histograms and specifying color and opacity

using interactive widgets. A variety of specialized 1D and 2D histograms and corresponding

color and opacity widgets are available to highlight regions of interest in the volume. In addition,

fine details in high-dynamic range volumes can be further explored by directly manipulating the

spacing of the scalars in the histograms through range-mapping. This process of data exploration

through transfer function specification continues until a desired set of features is distinguished in

the volume through one or more transfer functions (potentially defined on different histograms).

The next step of the visualization process allows the user to combine these transfer functions into

Figure 7.2. The visualization process provided by the proposed system.
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ensembles using user-defined blending operators. Finally, these ensembles can then be keyframed

with user-specified transitions for time-varying data.

The user interface for the system is shown in Figure 7.3. The upper left window of the

interface displays the volume rendering described by the current transfer function specification.

Though the transfer function tools described are general enough for any data type, these tools

were developed primarily for unstructured grids. The volume rendering is performed using the

Hardware-Assisted Visibility Sorting (HAVS) algorithm for unstructured grids [22] with dynamic

level-of-detail [21] and support for time-varying data [6, 7], as described in Chapter 6. Partial

preintegration is used to reduce the overhead of dynamic updates to the transfer function [94].

Statistical analysis is important to capture hidden aspects of the data. Thus the system offers

several histogram options. In addition to a basic 1D scalar histogram, also provided are a 2D

histogram that includes the gradient magnitude. For time-varying data, 1D and 2D histograms

Figure 7.3. The user interface for interactive transfer function specification is shown for the
time-varying Turbulent Jet dataset using a 2D time histogram.
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are also provided that are based on the coefficient of variation calculated from the scalar time

steps [58]. Additional histograms can also be incorporated into the framework. The active

histogram is displayed in the lower left window of the interface as shown in Figure 7.3.

Similar to Kniss et al. [62], interaction with the scalar histograms is performed by defining

widgets that represent color and opacity on the histogram. Four types of widgets are exposed to

the user, some of which are shown in Figures 7.1 and 7.3. The first widget is a rectangle defining

a single color and opacity ramp and is used in both 1D and 2D histograms. In 1D, the vertical

position does not change the transfer function but is useful for manipulating overlapping widgets.

The second widget is a triangle defining a single color used for 2D histograms. The third widget

is a triangle widget with a fall-off, similar to the one described by Kniss et al. [62], to emphasize

boundaries. This widget is primarily used in 2D gradient magnitude histograms. Finally, the last

widget is a polyline, where the control points denote colors and the vertical placement of the

points controls opacity. This final widget is used only in 1D histograms.

7.2 Scalar Range Mapping
Volume data produced from scientific simulation typically contain a high dynamic range

(HDR) of floating point scalar values. In addition, a high percentage of the scalar values are

often contained in a small range of the histogram (see Figure 7.4(a)). Consequently, to expose

details that may be contained in these small regions, a large number of control points and a high

resolution lookup table are required. There are two main issues with traditional transfer function

design when dealing with HDR data. First, the narrow range of values makes specification

difficult due to the low resolution of the features on the histogram interface. Second, the limited

resolution of the color and opacity lookup table in graphics hardware is not sufficient to fully

represent all the unique scalar values in the data.

To overcome the resolution limitations of the histogram interface, tools like ParaView [99]

incorporate user-controlled zooming widgets to assist with transfer function specification over

small regions of the data. Yuan et al. [153] recently introduced a 1D fish-eye visualization of the

histogram based on a focus and context concept, that allows simultaneous representation of global

(context) and detail (focus) information on the same histogram display. These approaches, based

on magnifying the range of interest in the user interface, greatly assist the user with HDR transfer

function design. However, the second issue has received very little attention even though it is of

equal, if not greater, importance for feature extraction in HDR volumes. Ideally, the number of

entries in the color and opacity lookup table should correspond to the number of unique scalar
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values in the volume. Yuan et al. [153] leverage tone mapping and specialized high-precision

graphics hardware to handle the high precision of texture based volume rendering. With limits in

texture size, this is not always sufficient and may result in many scalar values being assigned to

one entry in the table (see Figure 7.4(b)). Instead, a range mapping is proposed that redistributes

the scalar range nonlinearly to spread the regions of interest more evenly across the lookup table

(see Figure 7.4(c)). Range mapping is related to histogram equalization, a common approach in

image processing for handling low contrast images. This feature facilitates the design process

by allowing focus and context zooming effects, while avoiding resolution issues of a fixed-size

lookup table. The result is a tool naturally capable of extracting detailed features in the data, as

shown in Figure 7.5.

Based on the observation that the transfer function design difficulties of HDR data are mainly

due to the nonuniform distribution of scalar data, the solution is to redistribute the scalar range.

This can be done automatically by performing histogram equalization, as was proposed by Choura-

sia and Shulze [26], which spreads out the clustered regions. Mathematically, histogram equal-

ization is performed by introducing a cumulative density function (CDF) as a sum of probability

Figure 7.4. A description of how high-dynamic range data affect a lookup table. (a) A
high-dynamic range histogram (above) and corresponding lookup table (below) are shown. (b)
Zooming into the dense region of the histogram does not change the resulting image due to the
static resolution of the lookup table. (c) By range mapping the scalar values, the high-dynamic
range elements of the mesh can be spread more evenly across the static lookup table, enhancing
hidden features in the data.
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Figure 7.5. Volume exploration of the San Fernando earthquake simulation through range
mapping. A predefined transfer function (left) is used to explore the data by remapping the scalars
(right). Only a nonlinear remapping can enhance features that are hidden in multiple spikes of
the data.

density functions (PDFs) over normalized scalar inputs:

CDF(xi) = ∑
x j<xi

PDF(x j). (7.1)

Then, a simple mapping is performed on the normalized scalar input value x that yields a new

uniformly distributed normalized output y:

y = CDF(x). (7.2)

Due to its speed and simplicity, it is common to use a discrete histogram equalization and perform

this mapping with a lookup table. This approach is automatic, but gives the user very little

control over the redistribution process and tends to break the continuities of the scalar range.

Range mapping, a generalization of histogram equalization, is based on piecewise linear mapping

functions and provides more control while maintaining the continuity of the scalar range. The

range mapping functions that map the input scalars [x0 . . .xn] to a new scalar range [y0 . . .yn]

are a class of piecewise continuous functions f over the input range that satisfy the following

conditions: f is a monotonically increasing function, f (x0) = y0, and f (xn) = yn. Similar to

histogram equalization, the new scalar value y is computed as:

y = f (x). (7.3)
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Given this definition, the function can arbitrarily redistribute the scalar range while maintaining

the order and continuity.

In practice, the linear range mapping functions that combine many line segments are used,

each of which performs mapping from a specific range [xi . . .xi+1] to [yi . . .yi+1] by applying the

linear mapping equation:

y =
x− xi

xi+1− xi
(yi+1− yi)+ yi. (7.4)

These linear functions are sufficient to represent all range mappings since any function can be

approximated using many piecewise linear functions.

Because the cost of the linear interpolation is relatively low, range mapping can be performed

interactively while the user is manipulating control points for the range. The remapping process

is performed in hardware by storing a 1D texture that contains one entry for every control point

of the remapping. When the mapping changes, to minimize CPU to GPU transfer, only the new

mapping texture is sent to the GPU. During rendering, the normalized scalar values can then

be remapped to normalized scalar values using a single texture lookup with linear interpolation

enabled. Thus, this extra remapping step minimally impacts the rendering performance and is

flexible enough to be used in a variety of volume rendering algorithms.

As illustrated in Figure 7.4, range mapping yields a magnification that is different from a

normal zooming effect, since the actual shape of the histogram changes nonlinearly. This helps

the user exploit the real data distribution in narrow clusters of the scalar range. Even without

transfer function widgets, range mapping can be a powerful exploration tool. Figure 7.5 shows

how range mapping can be used to explore the data using a simple, predefined transfer function.

Creating a user interface that can fully exploit the power of range mapping is a challenge.

The solution is a simple, intuitive interface that allows the user to choose the range by adding

control points and extend the range by dragging two control points away from each other. This

allows the user to continue adding control points between the previous points to further probe

important regions. The histogram and volume rendering change interactively during this control

point manipulation to provide visual feedback of the remapping. In addition, the range and scalar

value under the cursor are displayed to the user to facilitate specification when there is a priori

knowledge of the data. Figures 7.3 and 7.5 show snapshots of this interface.

7.3 Transfer Function Ensembles
Designing transfer functions that effectively enhance volume characteristics is a difficult task

because the exploration of the transfer function space can be unintuitive[62]. Volume statistics
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may provide meaningful insights about data and aid users during the specification process, but

a single statistical measure may not reveal all the important features in the data. The use of

multiple histograms for transfer function specification that highlight different features in the data

is advocated. These transfer functions are then merged using weighted blending operations to

produce a single, complex transfer function that are called an ensemble. Ensembles provide the

ability to derive completely new transfer functions from a collection of existing ones.

The idea of combining transfer functions is not new [83, 64, 148, 146]. Previous work in

the area has concentrated on merging transfer functions defined on the same histogram space

using both linear and nonlinear combinations of transfer functions. The proposed approach with

ensembles is to allow more flexibility in the combination process by providing boolean-like

blending operations on transfer functions defined on multiple spaces of a single volume. The

only limitation to these transfer functions is that they share one common space (i.e., scalar value).

Thus, an ensemble represents a new transfer function that is created by aggregating a collection

of transfer functions using different blending operations.

For 1D histograms that define a transfer function on the scalar value blending is straight-

forward. The transfer function widgets directly map to an RGBA lookup table that is used for

rendering. Blending multiple transfer functions is then just a texture compositing of RGBA val-

ues. Extending this to other spaces (i.e., gradient magnitude or coefficient of variation) requires

an additional dimension for each space. Unfortunately, it is not feasible to extend beyond three

dimensions due to constraints on textures in hardware. Thus, these combinations are limited to

histograms that have three unique dimensions that do not share a common space. This has been

found to be adequate for the volumes used in the experiments described in this chapter.

Another approach for combining multiple transfer functions defined in multiple spaces is to

map them to a single common space. The extra dimension in the 2D case is then used to modulate

the intensity of the color. This is done by determining the number of scalar values within a 2D

widget and the number outside and using this fraction to reduce the intensity accordingly. Though

not nearly as powerful as true multidimensional transfer functions, this heuristic tends to produce

acceptable results in practice and allows all the histograms to be reduced to a common space. For

instance, the combination of transfer functions in 1D and 2D shown in Figure 7.1 were performed

using this heuristic.

Through the use of ensembles, users can intuitively explore features enhanced by different

transfer functions. Complex mappings can be generated by aggregating several simpler transfer

functions. Another application is the contextualization of the entire volume through one common
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transfer function, while different specific transfer functions focus only on important features.

Different strategies can be interactively swapped, providing a fast tool for exploring volume

datasets. The system also allows users to load custom transfer functions and combine them with

new transfer functions designed with the tool. In this framework, the ability is provided to specify

multiple ensembles of transfer functions and manage different visualizations for a volume.

7.3.1 Blending Strategies
Several weighted blending strategies are provided for combining transfer functions. These

blending functions are illustrated in Figure 7.6. Three types of operations are available, though

others are easily incorporated. Each transfer function is assigned a weight that corresponds to its

intensity contribution in the resulting ensemble. This weight is user-controlled and can be used to

provide emphasis in the most important regions. Each transfer function is multiplied by its weight

prior to blending with other transfer functions. The examples given below describe the blending

process for two weighted transfer functions. If more than two transfer functions are provided

then the compositions are performed sequentially. The following principle blending operations

are utilized:

1. ADD: This is the most common blending operation in which transfer functions are summed

together. The result r for color C and opacity α of a lookup table entry i when combining

transfer function 1 and 2 can be expressed as the following:

Cr(i) = C1(i)+C2(i)

αr(i) = α1(i)+α2(i)

Optionally, the color contributions can be weighted by the opacity before the addition. This

mode is useful for combining features that are unique to two transfer functions, producing a

single transfer function that emphasizes all features of both transfer functions. Figure 7.6(c)

shows the result of adding two transfer functions to combine their enhanced characteristics

into a single image.

2. AND: This blending operation enhances features that are shared by two transfer functions.

The result of this combination of transfer functions can be expressed using the same notation

as above:

Cr(i) = Max(C1(i),C2(i))

αr(i) = Min(α1(i),α2(i))
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Figure 7.6. An ensemble is used to combine multiple transfer functions with different blending
strategies for an unstructured dataset of the heart (top: volume rendering result; bottom: illustra-
tion of the operation in transfer function space, where the scalar value is mapped to the horizontal
axis, color is defined inside the function, and opacity is defined by the height of the function).
(a) A single transfer function shows all features of the volume. (b) A more specific transfer
function focuses on one detail. (c) Adding both transfer functions combines the results. (d) The
AND operation emphasizes common features of both transfer functions. (e) The XOR operation
removes common features from the two transfer functions.

The maximum of the RGB channels (independently) is used to maintain the color intensity

and the minimum alpha to remove regions that are not common. As before, the color

contribution can optionally be weighted by the opacity. Figure 7.6(d) shows the result of

an AND operation in the heart dataset. This feature is useful for determining common

properties between regions of interest, in this case it emphasizes the region that contains a

sensor.

3. XOR: This blending operation removes common areas from two transfer functions. The

result of the XOR operation on two transfer functions can be expressed using the same

notation provided above:

Cr(i) = (C1(i)∧C2(i))∨ (C1(i)∧C2(i))

αr(i) = (α1(i)∧α2(i))∨ (α1(i)∧α2(i))

In other words, a color and opacity contribution defined by a transfer function is preserved

only if no other transfer function assigns a color and opacity value to it. This is a good strat-

egy to remove features from existing transfer functions. Figure 7.6(e) shows an example of

removing the region of the heart that contains a sensor.

Combining different transfer functions is a straightforward procedure for creating complex

visualizations. For instance, in medical imaging data, one can create individual transfer functions

that enhance different organs (heart, lung, liver, etc.) and combine them all in different ways
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using ADD to provide a series of visualizations. The subtraction capabilities of AND and XOR

also allow the user to create unique transfer functions from existing ones.

7.4 Time Varying Datasets
Transfer function design and generation for time-varying datasets has received little attention

in the research community. Some of the available literature focuses on defining transfer functions

that are applied globally to all time steps [84, 1]. However, these global approaches may not be

sufficient for all types of volumes. Datasets like the Utah Torso, shown in Figure 7.1, contain

regular time-varying patterns that can be readily inspected with the use of a single ensemble

of transfer functions. This regularity is demonstrated by the relatively static appearance of the

histogram as the time steps progress. Unfortunately, all volumes do not demonstrate this same

temporal regularity or periodicity. For example, the Five Jets dataset, shown in Figure 7.7, has

a large variance in the histogram as the time steps progress. This results in moving features that

cannot be enhanced with a single transfer function. To address this problem, several methods

have been introduced to change the transfer function over time to track these moving features.

One approach is to keyframe derived transfer functions and linearly interpolate between them

[58]. More recent work suggests that using machine learning to build adaptive transfer functions

between keyframes is superior than a simple linear interpolation [132].

The proposed work concentrates on easing the burden of specifying transfer functions that

change across time by building on previous keyframing concepts. The system allows manipu-

lation of raw or compressed datasets and provides controls to play, pause, and stop animations

(see Figure 7.8). As with previous techniques temporal histograms are provided for capturing

Figure 7.7. Multiple 1D scalar transfer functions are used during different time steps of a
time-varying simulation of five jets. Keyframing can be used for temporal focus and context
visualization as well as a means of highlighting features that may move through the scalar space
over time (as shown above).
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Figure 7.8. The time-varying interface: playback control (upper left), keyframes control (lower
left) and interpolation control (right).

global information about the changing data. In addition, the histograms in other spaces change

interactively to reflect the current time step. This feedback gives the user greater understanding of

the underlying structure of the temporal data. It also allows the user to specify transfer function

ensembles that are unique to specific time steps.

To handle temporally irregular volumes, a user-controlled keyframing approach is used for

transitioning between ensembles of transfer functions. The interface provides the user with

the ability to identify frames in the animation that require changes, specify a new ensemble of

transfer functions, and assign the ensemble to the frame. To avoid the visual discontinuities that

occur when changing from one keyframe to the next, an editable transition curve is provided

that specifies the blending between adjacent keyframes. An ensemble is represented in hardware

as a color and opacity lookup table that was composed using one or more transfer functions

(see Section 7.3). Blending between multiple ensembles for time-varying data is performed in a

similar manner. For every color C and opacity α entry i in the new lookup table, the resulting

interpolation r between two ensembles (1 and 2) can be determined from the transition curve f (t)

as follows:

Cr(i) = C1(i)(1− f (t))+C2(i) f (t)

αr(i) = α1(i)(1− f (t))+α2(i) f (t)

The horizontal axis of the transition curve represents the time interval between the two keyframes.

The weight of the interpolation between ensembles is described by the vertical axis. For improved
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feature tracking, adaptive transfer functions [132] could used with the transition curves by replac-

ing interpolation.

Combining keyframed ensembles with transition curves provides an effective solution for cap-

turing moving features in dynamic datasets while maintaining smooth animations. Keyframing

can also be used as a temporal focus and context method for exploring different aspects of the

data during different time intervals, similar to an existing approach for static volumes [147].

The detailed control of the temporal aspect of transfer function specification can greatly benefit

researchers who have been performing time-varying visualization by providing more control over

the animation than is available with current tools.

7.5 Evaluation
An important consideration for a transfer function specification tool is that it does not in-

troduce additional computational overhead and thus adversely impact interactivity. There is no

measurable performance penalty when using the transfer function specification tools. Thus, the

interactivity of the rendering remains the same as the original volume renderer.

To evaluate the usefulness of the proposed techniques, an informal expert evaluation of the

system was performed. Expert reviews have been shown to be a useful means of evaluation,

and require fewer reviewers than standard user studies [130]. Obviously, completely automatic

techniques for creating images from volumes would be ideal. Unfortunately, the algorithms to

completely automate this task are not available. Because of this, the focus of this work has been to

give more control to the user in the specification process to enable better visualizations of irregular

data types. Thus, for the evaluation, four experts were selected that were familiar with existing

transfer function specification tools in their respective research, development, or end user settings.

The first expert develops open source visualization software. The second performs research in the

area of volume visualization. The third expert has used existing volume visualization software

in a medical setting. Finally, the fourth expert is a specialist in bioengineering and concentrates

mostly on biomedical computing. These experts were given a demonstration of the system along

with ParaView [99], a freely available system that has some basic transfer function specification

abilities such as a zooming interface. The experts were then given the opportunity to perform

their own explorations using both systems and asked a series of questions about their experience

with the system compared to ParaView and other systems that they have used in the past.

Overall, the feedback was very positive and the reviewers feel that the system is useful for

fast data exploration and that existing visualization systems would benefit from some of the
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components that were introduce in the system. The reviewers also provided many suggestions

that will be incorporated into the system. The following is a summary of some of the main

advantages and disadvantages that the reviewers pointed out.

Advantages:

• The system provides fine-grain control of the data due to the resolution control that range

mapping provides.

• Interactive histogram information significantly improves the ability to place widgets and to

explore the volume.

• The histograms that update over time provide more information about the volume than other

systems provide.

• The ability to interpolate between transfer functions over time is very useful for contextu-

alizing the data.

Disadvantages:

• The interface could use some work to consolidate the concept of ensembles and make it

more intuitive.

• Though some of the features are more powerful, they may require longer to learn to use if

the user is unfamiliar with transfer function specification.

• Currently there is no undo for operations.

Beyond these general comments, some interesting comments were received about the useful-

ness of the system from the reviewers’ unique perspectives. The first reviewer mentioned that

when the application he develops moved from 8-bit data to higher precision, he noticed problems

associated with limits in the lookup table precision, though he had not found a reasonable solution

for the problem. After the evaluation, he planned to add range mapping to his system. He

was also impressed with the idea of creating transfer functions using combinations of other

transfer functions and is evaluating this addition to his system as well. The third reviewer worked

extensively with time-varying data that changes substantially over time. He commented that the

ability to define different transfer functions for time steps and interpolate between them through

keyframing would have saved him enormous amounts of time. He also mentioned that the ability

to keyframe the range mapping would be a useful feature for these datasets. This feature will

be added to the system in the future. The fourth reviewer stated that he would like to see the

features presented in the system incorporated into the biomedical simulation software that he and

his collaborators use because it would facilitate the process of analysis for time-varying volumes.
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7.6 Discussion
Many automatic methods for transfer function specification proposed in the literature focus

on identifying and enhancing single features, such as boundary transitions with a 2D gradient

magnitude histogram. The transfer function ensembles proposed in this work provide a way for

combining different features of several transfer functions. For high dynamic range data, the range

mapping proves very efficient for finding features that otherwise are impossible to distinguish. A

current limitation of the proposed method is that the range mapping effects all transfer functions

in an ensemble. In addition, as pointed out in the evaluation, range mappings effect all time

steps. These issues could be resolved with multiple or multidimensional range mapping tables,

respectively. An interface similar to the transition curves for time-varying transfer functions could

then be used to give the user temporal control over the range mappings.

The transfer function ensembles are blended in texture space due to the simplicity of the

approach as well as the performance implications. The disadvantage of performing the blending

there is that the number of dimensions that can be combined is limited to three. Another approach

to overcome this limitation is to perform the blending at the fragment level as in multivolume

approaches (e.g., [88]). This type of blending is more robust for combining transfer functions

in different spaces, but is more complex and will effect the rendering performance because it

requires multiple lookup tables.

Although this tool was designed with the goal of specifying transfer functions for unstructured

data, there are no limitations that prevent it from being applied to structured grids. For example,

the datasets shown in Figures 7.3 and 7.7 originate from simulations over structured grids. In

addition, the framework can easily be extended with new histograms, widgets, and blending

methods. The new features described in this chapter can be easily integrated into existing visual-

ization systems because of their independence from the rendering algorithm.

7.7 Summary
In this chapter, a new framework was proposed for transfer function specification based on

several new features. First, statistical information is extracted using multiple histogram types,

including time-varying data, and used to facilitate the specification of color and opacity with

widgets placed on these histograms. For histograms with high dynamic range, a range mapping

equalization was proposed that focuses the analysis into smaller regions of the histogram, pro-

viding a more powerful tool than existing zooming techniques. The concept of ensembles was

introduced for combining multiple transfer functions with user-controlled blending functions.
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Finally, a technique was introduced for transfer function specification on time-varying data that

uses keyframing and transition curves to change ensembles over time. The resulting system has

been demonstrated to introduce new insights in data by facilitating transfer function specification

for disparate data types.



CHAPTER 8

CONCLUSIONS AND FUTURE WORK

This dissertation has introduced several new techniques for interactive visualization of un-

structured grids through volume rendering. In particular, the methods introduced allow the

visualization of disparate data types that could not be handled with existing methods. A frame-

work for exploring data that combines many of these techniques was described and evaluated to

demonstrate a practical application of the tools developed in this dissertation.

Chapter 3 introduced a new method for accelerating volume rendering of unstructured vol-

umes that works in object-space. By representing the tetrahedral cells as carefully re-shaped

points, the amount of data sorted and rasterized is greatly reduced. The result is an algorithm

that is many times faster than existing approaches, yet still retains high quality visualizations.

For future work, it would be interesting to experiment with programmable geometry shaders to

obtain better approximations of tetrahedra, while minimizing the amount of excess fragments

that are generated. Furthermore, adding lighting and shadows would be useful to improve the

visualizations. A final avenue of future research for this point-based technique would be to adapt

it to handle extremely large datasets through parallelization using multiple CPUs and GPUs [137].

An alternative approach for accelerating volume rendering was introduced in Chapter 4. The

algorithm operates as a post-process by upsampling an image computed at a low resolution using

a joint bilateral filter. The result is a high-quality approximation of the visualization that has

been measured to be up to 30 times faster than rendering the full size image. The benefit of

the approach is that it is very simple and can be applied to existing algorithms with very little

overhead. In the future, it would be useful to explore using additional information to improve the

image quality in the upsampling. This could include isosurfaces within the volume or regions of

high gradient magnitude (internal boundaries). Exploring the use of the algorithm on structured

data would also be beneficial.

While the first part of this dissertation dealt with accelerating volume rendering, Chapter 5

introduced a method for handling static data too large to handle previously. An approach was

introduced for performing progressive volume rendering that allows for remote visualization from
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a data server to a thin client (such as a laptop). Using a bounded amount of memory, the client is

capable of accumulating a full quality image by rendering portions of the data incrementally. The

advantage of this approach is that it gives high-quality approximations and continuous feedback

while remaining interactive, but still allows the user to achieve full resolution visualizations by

waiting for the progression to finish. In the future, better techniques for compressing the stream of

data and alleviating bandwidth constraints would be beneficial to explore [11]. A more advanced

depth culling algorithm and user-controlled cutting planes would also be useful to improve the

server performance. In addition, extending the system to handle isosurfacing and time-varying

data would also be important.

Another type of data that have been too large to render until now are volumes with a dy-

namically changing scalar field. Chapter 6 described an algorithm that efficiently handles the

problems associated with time-varying scalar fields. Data compression is introduced for handling

the storage and data transfer issues, while parallelization amortizes the cost of decompression,

sorting, level-of-detail management, and rendering. The resulting framework is capable of han-

dling dynamic data with only a measured performance penalty of 6% over a static approach. For

future work, it would be useful to revisit the decompression stage of the algorithm and explore

the use of new programmable features in GPUs to perform it more efficiently. It would also

be useful to adapt the compression method to automatically select parameters based on dataset

characteristics. A major challenge will be to explore solutions for the more complex cases of

time-varying geometry and topology.

Finally, in Chapter 7 an application is presented for interactively exploring large unstructured

time-varying volumes using direct volume rendering. The application introduces three new

components to assist in the specification process for this type of data. The first is a range mapping

that facilitates the placement of specification widgets on high dynamic range histograms. The

second is an approach for combining multiple transfer functions in ensembles. The third is

a method for keyframing tranfer functions to handle time-varying data. The resulting system

combines many of the features described in the dissertation into a single framework that facilitates

data exploration of unstructured volumes. This was confirmed with an expert user evaluation of

the tool. In the future, it would be beneficial to incorporate additional features for structured

volumes and prepare this final application for release as an open-source tool for researchers.
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[151] YOUNESY, H., MÖLLER, T., AND CARR, H. Visualization of time-varying volumetric
data using differential time-histogram table. In IEEE VGTC/Eurographics Workshop on
Volume Graphics (2005), 21–30.

[152] YU, H., MA, K.-L., AND WELLING, J. I/O strategies for parallel rendering of large time-
varying volume data. In Eurographics Symposium on Parallel Graphics and Visualization
(2004), 31–40.

[153] YUAN, X., NGUYEN, M. X., CHEN, B., AND PORTER, D. H. HDR VolVis: High
dynamic range volume visualization. IEEE Transactions on Visualization and Computer
Graphics 12, 4 (July/August 2006), 433–455.

[154] zlib. http://www.zlib.net.

[155] ZWICKER, M., PFISTER, H., VAN BAAR, J., AND GROSS, M. EWA volume splatting.
IEEE Visualization (2001), 29–36.


