
1

Image-Space Acceleration for Direct Volume

Rendering of Unstructured Grids using Joint Bilateral

Upsampling

Steven P. Callahan and Cláudio T. Silva

UUSCI-2008-002

Scientific Computing and Imaging Institute
University of Utah

Salt Lake City, UT 84112 USA

June 10, 2008

Abstract:

We describe a new image-space acceleration technique that allows real-time direct volume rendering
of large unstructured volumes. Our algorithm operates as a simple post-process and can be used
to improve the performance of any existing volume renderer that is sensitive to image size. A joint
bilateral upsampling filter allows images to be rendered efficiently at a fraction of their original
size, then upsampled at a high quality using properties that can be quickly computed from the
volume. We show how our acceleration technique can be efficiently implemented with current GPUs
and used as a post-process for a wide range of volume rendering algorithms and volumetric datasets.



Image-Space Acceleration for Direct Volume Rendering of
Unstructured Grids using Joint Bilateral Upsampling

Steven P. Callahan and Cláudio T. Silva

Abstract—We describe a new image-space acceleration technique that allows real-time direct volume rendering of large unstructured
volumes. Our algorithm operates as a simple post-process and can be used to improve the performance of any existing volume
renderer that is sensitive to image size. A joint bilateral upsampling filter allows images to be rendered efficiently at a fraction of their
original size, then upsampled at a high quality using properties that can be quickly computed from the volume. We show how our
acceleration technique can be efficiently implemented with current GPUs and used as a post-process for a wide range of volume
rendering algorithms and volumetric datasets.

Index Terms—Acceleration Techniques, Image Processing, Direct Volume Rendering, Interactive Techniques

F

1 INTRODUCTION

The amount of data available from simulation and measurement is
growing at an incredible rate. A major challenge for the visualiza-
tion community is to develop methods that allow users to explore this
data interactively [23]. For 3D scalar fields, direct volume rendering
has become an important technique in research and commercial set-
tings. Interactive volume rendering requires the efficient use of avail-
able computational resources to keep pace with the disparity, resolu-
tion, and complexity of the volumes that are commonly produced from
simulations (e.g., computational fluid dynamics or structural mechan-
ics) and measurements (e.g., environmental observation and forecast-
ing systems).

Acceleration techniques that approximate full quality images are
common to provide interactivity with volumes too large or complex to
handle otherwise. The general idea is to switch to a reduced represen-
tation of the rendering during interaction, but still allow a full qual-
ity representation to be rendered if desired. Approximation strategies
for both structured and unstructured volumes fall into two categories:
those that operate in object-space and those that operate in image-
space. Whereas object-space methods involve simplifying or down-
sampling the volume to reduce the amount of data rendered, image-
space methods usually involve reducing the number of pixels that are
rendered. The result is a fast approximation to the full-quality image
that contains either low frequency error, such as blurring, or high fre-
quency error, such as “jaggies” caused by aliasing, from object-space
and image-space methods, respectively.

We propose an image-space approach that downsamples for effi-
cient rendering then upsamples for display using a joint bilateral filter
to remove aliasing artifacts while still preserving sharp features. Our
upsampling algorithm is a post-process that can be used independently
or in combination with existing object-space and image-space acceler-
ation approaches with very little computation or implementation over-
head.

The bilateral filter [31] was first introduced as a method for denois-
ing images and works by combining a linear kernel, such as a Gaus-
sian, with a non-linear, feature preserving term that weights the pixels
based on intensities. The introduction of a separate reference image
for performing the feature preservation is useful in some cases and is
termed joint (or cross) bilateral filtering [12, 27]. This has recently
been shown to be useful for enhancing images with solutions com-
puted over downsampled images [17]. We build on this latter approach
to improve volume rendering performance by rendering normally into
a downsampled image and combining that with a low-cost reference
image computed at full size. Instead of pixel intensities, our reference

• Steven P. Callahan and Cláudio T. Silva are with the Scientific Computing
and Imaging Institute at the University of Utah,
E-mail: {stevec,csilva}@sci.utah.edu.

image contains depth information that can be used to encode the shape
of the volume in a full size image. The result is an image that pre-
serves the color of the downsampled image with the sharp features of
the reference image. For opaque renderings, this has the appearance of
smoothing the geometry in object-space, though it happens entirely in
image-space. Figure 1 shows an example of the effect of our algorithm
applied to an opaque rendering of a triangle mesh.

Our main contributions are as follows:

• We introduce a simple and fast image-space acceleration algo-
rithm based on joint bilateral upsampling that results in substan-
tial improvements for virtually any fragment or pixel bound vol-
ume renderer for unstructured grids;

• We provide a method for quickly capturing reference images of
the volume that are used to improve the quality of our technique
over traditional approaches;

• We describe how our algorithm can performed as a post-process
on the latest graphics hardware with very little overhead;

• We provide quality and timing results for our image-space ac-
celeration algorithm on a variety of datasets and using several
volume rendering algorithms.

The rest of the paper is organized as follows. We summarize related
work in Section 2. In Section 3 we describe our acceleration based on
joint bilateral upsampling, how it can be applied to volume rendering,
and the implementation details. In Section 4, we provide results of our
algorithm and in Section 5 we discuss the trade-offs of its use. Finally,
in Section 6 we conclude and provide avenues for future work.

2 RELATED WORK

2.1 Acceleration for Direct Volume Rendering
Acceleration techniques for direct volume rendering have been the
subject of much research in the visualization community. For a more
complete summary of volume rendering algorithms for structured and
unstructured grids, we refer the reader to recent surveys [16, 28, 30].

For structured grids, some of the original acceleration techniques
are performed in image-space, and are still in use today to make ray
casting more efficient. Levoy introduced the idea of casting one ray
for multiple pixels [22], casting more rays in areas that vary across
neighboring rays [21], or by not casting any rays in regions that do
not contribute to the final image [20]. Extending these ideas, Dan-
skin and Hanrahan [9] introduced adaptive ray sampling to sparsely
sample along viewing rays in homogeneous regions. A similar object-
space approach was introduced by Parker et al. [26], where the volume
is partitioned into bricks that can be skipped during ray traversal. One
class of acceleration techniques are multi-resolution or level-of-detail

1



(a) Original (b) Bilateral (c) Linear

Fig. 1. The dragon dataset rendered (a) normally at full opacity at 5122, (b) upsampled from a 1282 rendering using our joint bilateral filter that
combines a low resolution color buffer with a high resolution depth buffer, and (c) upsampled linearly from a 1282 rendering. Our bilateral upsampling
is an acceleration method that can be applied to volumes to remove unwanted aliasing while still preserving sharp features.

(LOD) methods, that trade off quality of results for speed in rendering.
With the advent of hardware-accelerated texture-based volume render-
ing [5], LaMar et al. [18] introduced a multi-resolution approach for
slicing regions of the volume at different resolutions that are stored in
an octree. This allowed regions of less interest, such as those farthest
from the view point, to be drawn at a coarser resolution. Weiler et
al. [34] improved upon this idea by making it more efficient and guar-
anteeing consistent interpolation between different resolution levels.

For unstructured grids, the image-space approaches for ray casting
introduced by Levoy for structured grids are still applicable. However,
object-space approaches are not so easily adapted. To mitigate this
problem, Leven et al. [19] sample the unstructured grid regularly into
an octree hierarchy that can be rendered using LOD techniques for
structured grids. Volume simplification techniques, such as edge col-
lapsing via the quadric error metric [15], provide the means for reduc-
ing the geometry representation to improve rendering performance.
Adapting the simplification paradigm for LOD, Cignoni et al. [8] pro-
posed a technique for creating a progressive hierarchy of tetrahedra
that are stored in a multi-triangulation data structure that is updated
dynamically for interactivity. More recently, Callahan et al. [6] intro-
duced a simpler approach that samples the geometry during rendering
based on a pre-computed importance. This approach avoids hierar-
chies and maintains interactivity by dynamically adjusting the amount
of geometry rendered at each frame.

Our approach is similar in spirit to the original image-space ap-
proaches that reduce the number of pixels that are processed by ren-
dering a downsampled image for speed. Thus performance gains using
our method can be substantial for algorithms that are pixel bound, such
as a ray caster or a raster algorithm with costly per fragment process-
ing.

2.2 The Bilateral Filter for Upsampling
Since first introduced for image denoising [31], the bilateral filter has
been used for many image processing applications, such as tone map-
ping for high dynamic range imaging [10]. The filter has also been
used for problems other than image processing, such as mesh denois-
ing [14]. For upsampling, the use of the bilateral filter is relatively
new and has seen less use. Durand et al. [11] applied it to compute
advanced shading effects with fewer samples. Sawhney et al. [29]
adapted the filter for stereoscopic images at different resolutions. More
recently, Kopf et al. [17] showed how joint bilateral upsampling could
be used for computing downsampled solutions over an image and
combining them with the original image. They demonstrated tone-
mapping, colorization, stereo depth, and graph cuts as applications for

the approach. Our method is similar to this latter technique, but in-
stead of enhancing an image with a downsampled solution, we render
our image, upsample it, then enhance it with a computed solution.

3 THE ALGORITHM

Our acceleration algorithm is briefly summarized by the following
steps:

1. Render the volume into a small offscreen image I using an exist-
ing volume rendering algorithm.

2. Render the boundary geometry of the volume at full size and
capture the depths of the fragments in a reference image R.

3. Upsample the offscreen image I to full size using texturing hard-
ware and combine it with the reference image R using the joint
bilateral filter.

Figure 2 shows the visual effect of our algorithm on a volume. The
details of each step in our method are described in the remainder of
this section.

3.1 The Joint Bilateral Upsampling Filter
The original bilateral filter uses both a domain (spatial) and a range
filter kernel on the input image to produce a denoised output image.
For some position p, the filtered result is:

Jp =
1
kp

∑
q∈Ω

Iq f (‖ p−q ‖)g(‖ Ip − Iq ‖), (1)

where f is the spatial filter, such as a low pass filter that operates on
pixel colors centered over p, and g is the range filter kernel, such as a
low pass filter that operates on pixel intensities centered over p. Ω is
the spatial support of the kernels f and g, and kp is the normalization
computed as the sum of the f and g filter weights. Intuitively, f · g
is just a new filter kernel that changes per pixel to respect intensity
boundaries.

The joint bilateral upsampling filter uses separate images at differ-
ent resolutions for the domain and range to compute an upsampled
solution S from a given high resolution image I and a low resolution
solution R that is used as a reference image:

2



(a) Original (b) Bilateral (c) Linear (d) Nearest

Fig. 2. The SPX dataset rendered using a software raycaster (a) normally at a 10242 resolution at one frame per second, and upsampled from a
1282 image at ten frames per second using (b) our feature preserving joint bilateral upsampling, (c) linear interpolation, and (d) nearest neighbor
interpolation (similar to a method that casts one ray per 82 pixel grid). Only the original and our bilateral method preserve the diagonal edge that
appears in the center of the inset images.

Sp =
1
kp

∑
q↓∈Ω

Rq↓ f (‖ p↓−q↓ ‖)g(‖ Ip − Iq ‖), (2)

where p and q denote coordinates in I, and p↓ and q↓ denote the cor-
responding coordinates in the low resolution reference image R. This
formulation is used to compute costly solutions for high resolution im-
ages at lower resolutions. Our algorithm is different, as an inexpensive
solution R at high resolution is used to upsample a low resolution im-
age I. In the same notation, our filter could be expressed as:

Sp =
1
kp

∑
q↓∈Ω

Iq↓ f (‖ p↓−q↓ ‖)g(‖ Rp −Rq ‖), (3)

where p and q denote coordinates in the high resolution reference im-
age R, and p↓ and q↓ denote the corresponding coordinates in the low
resolution image I.

3.2 Computing the Reference Image
To preserve features in our upsampled version, a full resolution refer-
ence image is needed for the range component of the bilateral filter.
This reference image needs to be fast to compute and general enough
to apply to a variety of volume renderers. For unstructured grids, it
is common to represent the domain (or boundaries) of the volume to
facilitate the understanding of the features that are contained therein.
Fortunately, the boundaries are easy to capture—they are often already
used by volume rendering algorithms as starting points for ray traver-
sal [4, 32] or as the base case for object-space LOD [6]. Other sharp
boundaries within the volume could also be used as well, such as those
provided by isosurfaces, if they are readily available.

For our bilateral upsampling to faithfully preserve the features of
the volume’s domain, more than just the front-most boundary needs
to be captured. Multiple depth layers are already used by many vol-
ume renderers to handle non-convex meshes either in software [4] by
creating a sorted depth list for each pixel, or in hardware [3, 33] using
depth peeling [13]. Depth peeling is a multi-pass algorithm that cap-
tures one layer of depth on each pass, starting with the nearest frag-
ment per pixel, then the second nearest, third nearest, and so on. This
can be performed efficiently in hardware by rendering the first pass
normally, resulting in a depth buffer of the nearest surface. In subse-
quent passes, the depth buffer computed in the previous pass is used to
peel away depths less than or equal to those already captured in previ-
ous passes. These depth peeling passes can even be reduced to a single
pass using stencil routing [2].

To compute the reference image in an existing volume rendering
algorithm, we leverage the framework already in place for capturing
depths whenever possible. If depths are not already captured, we sim-
ply add a depth peeling pass to the renderer. The number of depth
passes that are used is dependent on the volume being rendered and the
opacity at which it is being rendered. In our experience, two or three
layers are sufficient for most datasets to capture the visible boundary
features.

3.3 Implementation
Our joint bilateral upsampling is implemented with minimal changes
to an existing algorithm. The low resolution image I and the reference
image R are rendered offscreen. Then in a final pass, a full resolution,
screen-aligned quadrilateral is drawn that binds both images as tex-
tures and uses a fragment shader to perform the joint bilateral filter. If
the texturing hardware is set to linearly interpolate I, the small resolu-
tion image will be upsampled to full resolution linearly in the shader,
improving the quality of the upsampling by adding an inexpensive low
pass filter. In the shader, the I and R textures are accessed using the
same coordinates to retrieve color and depth information used in the
joint bilateral filter.

For each pixel p in the final image, the joint bilateral filter is a low
pass filter that blurs a fixed neighborhood around p to remove noise.
Choosing the spatial support Ω for the filter should be based on the
amount of upsampling that is being performed on I, i.e., more blur-
ring is required for higher upsampling factors. We match the spatial
support for the joint bilateral filter with the spatial support for the lin-
ear interpolation performed by texturing hardware: if upsampling to
10242, a 5122 image will use Ω = 4, a 2562 image will use a Ω = 8,
etc.

For domain and range filters, f and g, we use Gaussian low pass
filters:

f (x,y) = g(x,y) = e−D(x,y)2/2σ 2
. (4)

For the domain filter f operating on the low resolution image I, D(x,y)
is the distance between (x,y) and the origin of the filter p, and σ is the
spread of the Gaussian, or Ω/2. For the range filter g operating on the
reference image R, D(x,y) is the difference between the depth value at
(x,y) and the depth value at p. For multiple depth layers, this simply
becomes the distance between the vectors defined at (x,y) and p. The
range σ is the value that expresses the resolution of the depth features
that should be preserved. Thus, the range σ is dependent on the reso-
lution of the depth buffer and should be as low as possible to capture
depth changes, without causing artifacts due to depth precision. We
have found a σ = 0.01 for the range to be adequate.

3



Fig. 3. Timing statistics for a software raycaster for various resolutions
upsampling to 10242 using our technique. The 1024 resolution repre-
sents the time for a full quality image without upsampling.

4 RESULTS

To demonstrate the flexibility of our joint bilateral upsampling algo-
rithm for unstructured grids, we added it to existing source code for
three popular algorithms and report numbers for the speed and quality
of our technique.

4.1 Timing Results
The fragment shader for bilateral sampling itself is relatively inexpen-
sive, for a 10242 image, kernel sizes of 4, 8, and 16 achieve fram-
erates of 100 fps, 50 fps, and 15 fps, respectively, on a Quadro FX
5600 graphics card. For our timing experiments, we used the datasets
shown in Table 1 to gather statistics for upsampling from 1282, 2562,
and 5122 to 10242 and compare them with the original rendering times
for a 10242 image. At each resolution, we rendered the dataset from
14 viewpoints, defined by the corners and faces of a cube around the
dataset, and averaged the times. To make comparisons between up-
sampling factors easier, we used a uniform kernel size of 12 (at 25
fps) for all resolutions. All of our results were rendered on a machine
with 2 Dual Opteron 2.25 GHz processors, 4 GB RAM, and an NVidia
Quadro FX 5600 graphics card with 1.5 GB RAM.

Dataset Vertices Tetrahedra
SPX 3 K 13 K
Blunt Fin 41 K 187 K
F117 49 K 240 K
SPX2 166 K 828 K

Table 1. Experimental datasets, with vertex and tetrahedron count, used
for measuring rendering performance.

The first algorithm that we modified is a software raycaster from
Bunyk et al. [4] that has freely available source code and runs com-
pletely on the CPU. The algorithm first rasterizes boundary triangles
to capture starting and ending points for the rays at each pixel. It then
marches rays through the volume cell to cell by exploiting connectiv-
ity of cell faces. To make the modification, we perform the ray casting
as normal, except into a small image. We then use the existing depth
capturing code to find the boundary depths in a large image. These

Fig. 4. Timing statistics for a hardware raycaster for various resolutions
upsampling to 10242 using our technique. The 1024 resolution repre-
sents the time for a full quality image without upsampling.

two images are then bound as textures and rendered to the screen us-
ing our fragment shader written in OpenGL. Figure 3 shows a series of
plots for several datasets comparing times (logarithmically scaled) for
the varying resolutions. In our experiments, the acceleration for these
datasets ranges from about 16 times to 28 times for 1282 resolution
images upsampled to 10242.

The second algorithm that we modified is a hardware-assisted ray-
casting algorithm from Bernardon et al. [3] that is freely available and
is written in DirectX9. As with the software raycaster, we were able to
adapt the algorithm to render into a small offscreen buffer and use the
existing depth peeling routines to capture the depth in a full size off-
screen buffer. An HLSL program was then used to perform the joint
bilateral upsampling and display the final image. Figure 4 shows a
series of plots for comparing times (also logarithmically scaled) for
varying resolutions. With the hardware raycaster, acceleration gains
range from about seven times for the smallest dataset to about twelve
times for the largest for 1282 resolution images upsampled to 10242.

4.2 Quality Results
By using a full size reference image, our joint bilateral upsampling is
able to achieve better imagery than upsampling alone. We show this
both quantitatively and visually. Figure 5 shows rate distortion curves
for the quality of upsampling using our joint bilateral filter and linear
interpolation (as provide by texturing hardware). The measurements
were computed using root mean squared error (RMSE) comparisons
between full quality images at 10242 and images upsampled at vari-
ous resolutions. In all cases, our upsampling exhibits less error than
with linear interpolation alone. Figure 6 shows rendered solutions at
various resolutions for a visual comparison of the quality change.

One interesting application of our filter is in improving the appear-
ance of existing acceleration techniques by denoising results while still
preserving edges. We added our upsampling filter to the HAVS volume
rendering algorithm [7] to improve the appearance of a dynamic LOD
algorithm that operates by sampling the geometry of the volume [6].
HAVS sorts the triangles that compose the mesh first in object-space
using a simple sorting routine, then in image-space by storing a fixed
number of fragments. The LOD algorithm samples the triangles before
the sorting, based on pre-computed importances, to make the render-
ing more efficient. Because the LOD already uses boundary geometry

4



Fig. 5. Rate distortion curves for various resolutions comparing RMS
error of full quality images versus our method and linear upsampling.

as the base sampling case, we were able to add an additional pass to
render these boundaries into our reference image before combining it
with the original rendering pass using joint bilateral upsampling.

Due to the nature of the algorithm, HAVS is more vertex bound
than pixel bound. Thus, the acceleration when using our upsampling
approach is negligible on the most recent graphics cards. However,
by sparsely sampling the geometry in the mesh but leaving boundary
geometry, the number of primitives rendered is reduced and the speed
of the algorithm is improved. This sample-based simplification has
the side effect of producing high frequency error in the reduced rep-
resentation, unlike domain-based simplification techniques (i.e., sim-
plification via edge collapses [15]). Using our joint bilateral filter on
the resulting imagery, we are able to reduce the noise and improve the
overall appearance of the LOD strategy with little affect on the per-
formance. Figure 7 shows an example of this LOD before and after
our joint bilateral filter is applied. Because the acceleration due to the
LOD algorithm is dominant, the rendered image I does not need to be
computed at a reduced representation and upsampling is not necessary.

5 DISCUSSION

Because our method is simple, it can easily be utilized as a technique
to accelerate interaction, while still allowing full quality images to be
rendered when the user stops interacting with the viewing parameters.
Tools such as ParaView [25] use a similar strategy during rendering,
by either changing the number of slices for texture based methods, or
number of rays for raycasters. We envision our algorithm as a replace-
ment or enhancement for these existing techniques because it produces
better approximations of the full quality image with less visual arti-
facts. Because it is easy to change the speed/quality trade-off by ad-
justing the upsampling factor, our algorithm could also be used for
dynamic level-of-detail.

Many existing acceleration techniques that trade-off speed for im-
age quality create high frequency error in the resulting image in the
form of stair-casing or aliasing artifacts. In contrast, our method pro-
duces low frequency error, which results in more visually pleasing
images that retain edges that are supposed to be in the image, while
removing those that are not. Although we use the joint bilateral up-
sampling, other upsampling strategies have been introduced [35] and
could be used instead. However, without the additional shape informa-
tion that is provided by the reference image, other upsampling strate-
gies are not likely to perform as well as they can result in halos and
other undesired artifacts, as shown by Kopf et al. [17].

Our solution for performing joint bilateral upsampling for volume

Fig. 6. The Blunt Fin dataset rendered into a 10242 image at (a) full
quality and upsampled from (b) 5122, (c) 2562, and (d) 1282 using our
technique.

rendering was implemented in OpenGL and DirectX using fragment
programs. We also implemented our algorithm with NVidia’s CUDA
library, which is efficient for offscreen processing, but not as fast as
fragment programs for interactive graphics. Even for large images and
large filter domains, the computational cost of our algorithm is not
high relative to the volume rendering cost. As with most acceleration
techniques, the trade off for image quality is performance (i.e., more
downsamping results in higher speed).

Our experiments included several datasets at various sizes to
demonstrate the acceleration that our technique can provide. The size
of datasets used in these experiments was limited by the volume ren-
dering methods we used, not by any limitations of our acceleration
technique. Volume rendering algorithms that handle larger datasets,
such as raycasters that use bricking strategies for memory manage-
ment [24] or point-based techniques that are fragment-bound [1],
would also benefit from our acceleration technique.

6 CONCLUSIONS

In this paper, we have presented an acceleration technique for unstruc-
tured grid volume rendering that operates in image-space. By render-
ing small images and upsampling them with a smart filter, we have
measured performance improvements of up to 30 times. Our upsam-
pling strategy based on joint bilateral upsampling results in a high
quality approximation that avoids the high frequency noise common
in existing acceleration techniques based on rendering reduced repre-
sentations of the data. The major advantages of our algorithm are that
it is simple to implement, it is flexible enough to be included as a post-
process to virtually any direct volume rendering algorithm, and it can
easily be used in combination with existing acceleration techniques.

In the future, we would like to explore using additional information
in the reference image to preserve internal features. If transfer func-
tions remain static, internal boundaries may be captured by rendering
the geometry of an isosurface selected based on the transfer function.
This would allow the method to be applied to volume renderers for
structured grids as well.

Acknowledgments. The authors thank Jens Krüger and Pe-
ter Shirley for useful discussion, the Stanford University Com-
puter Graphics Laboratory for the Dragon dataset, O’Hallaron and

5



Fig. 7. The San Fernando Earthquake dataset (1.4 million tetrahedra)
rendered using HAVS [7] with sample-based simplification [6]. (a) The
full quality image is rendered at 1.7 fps compared with (b) sampling
10% of the geometry (20 fps) and (c) sampling 10% of the geometry
then using the joint bilateral filter without upsampling to remove the high
frequency error while still preserving boundary features (15 fps).

Shewchuk (CMU) for the earthquake dataset, Notrosso (electricite de
France) for the SPX dataset, Haimes (MIT) for the F117 dataaset, and
Hung and Buning (NASA) for the Blunt Fin dataset. This work is
funded by the Department of Energy under the ASCI VIEWS pro-
gram and the MICS office, the National Science Foundation (grants
CCF-0401498, EIA-0323604, OISE-0405402, IIS-0513692, CCF-
0528201), Sandia National Laboratories, Lawrence Livermore Na-
tional Laboratory, an IBM Faculty Award, a University of Utah Seed
Grant, and a University of Utah Graduate Research Fellowship.

REFERENCES

[1] E. W. Anderson, S. P. Callahan, C. E. Scheidegger, J. Schreiner, and
C. T. Silva. Hardware-assisted point-based volume rendering of tetrahe-
dral meshes. In Brazilian Symposium on Computer Graphics and Image
Processing (SIBGRAPI), pages 163–170, 2007.

[2] L. Bavoil and K. Myers. Deferred rendering using a stencil routed k-
buffer. In ShaderX 6 - Advanced Rendering Techniques. to appear.

[3] F. F. Bernardon, C. A. Pagot, J. L. D. Comba, and C. T. Silva. GPU-
based tiled ray casting using depth peeling. Journal of Graphics Tools,
11(3):23–29, 2006.

[4] P. Bunyk, A. Kaufman, and C. T. Silva. Simple, fast, and robust ray
casting of irregular grids. In Proc. of Dagstuhl, Scientific Visualization,
pages 30–36, 1997.

[5] B. Cabral, N. Cam, and J. Foran. Accelerated volume rendering and to-
mographic reconstruction using texture mapping hardware. In IEEE/ACM
Symposium on Volume Visualization, pages 91–98, 1994.

[6] S. P. Callahan, J. L. D. Comba, P. Shirley, and C. T. Silva. Interactive
rendering of large unstructured grids using dynamic level-of-detail. In
IEEE Visualization, pages 199–206, 2005.

[7] S. P. Callahan, M. Ikits, J. L. Comba, and C. T. Silva. Hardware-assisted
visibility sorting for unstructured volume rendering. IEEE Transactions
on Visualization and Computer Graphics, 11(3):285–295, 2005.

[8] P. Cignoni, L. D. Floriani, P. Magillo, E. Puppo, and R. Scopigno. Selec-
tive refinement queries for volume visualization of unstructured tetrahe-

dral meshes. IEEE Transactions on Visualization and Computer Graph-
ics, 10(1):29–45, 2004.

[9] J. Danskin and P. Hanrahan. Fast algorithms for volume ray tracing. In
Workshop on Volume Visualization, pages 91–98, 1992.

[10] F. Durand and J. Dorsey. Fast bilateral filtering for the display of high-
dynamic-range images. ACM Transactions on Graphics (Proc. of SIG-
GRAPH), 21(3):257–266, 2002.

[11] F. Durand, N. Holzschuch, C. Soler, E. Chan, and F. X. Sillion. A fre-
quency analysis of light transport. ACM Transactions on Graphics (Proc.
of SIGGRAPH), 24(3):1115–1126, 2005.

[12] E. Eisemann and F. Durand. Flash photography enhancement via intrin-
sic relighting. ACM Transactions on Graphics (Proc. of SIGGRAPH),
23(3):673–678, 2004.

[13] C. Everitt. Interactive order-independent transparency. White paper,
NVidia Corporation, 1999.

[14] S. Fleishman, I. Drori, and D. Cohen-Or. Bilateral mesh denoising. ACM
Transactions on Graphics (Proc. of SIGGRAPH), 22(3):950–953, 2003.

[15] M. Garland and Y. Zhou. Quadric-based simplification in any dimension.
ACM Transactions on Graphics, 24(2), Apr. 2005.

[16] C. Hansen and C. Johnson. The Visualization Handbook. Academic
Press, 2004.

[17] J. Kopf, M. Cohen, D. Lischinski, and M. Uyttendaele. Joint bilateral up-
sampling. ACM Transactions on Graphics (Proc. of SIGGRAPH), 26(3),
2007.

[18] E. LaMar, B. Hamann, and K. Joy. Multiresolution techniques for inter-
ative texture-based volume visualization. In IEEE Visualization, pages
355–361, 1999.

[19] J. Leven, J. Corso, J. D. Cohen, and S. Kumar. Interactive visualization
of unstructured grids using hierarchical 3D textures. In IEEE Symposium
on Volume Visualization and Graphics, pages 37–44, 2002.

[20] M. Levoy. Efficient ray tracing of volume data. ACM Transactions on
Graphics, 9(3):245–261, 1990.

[21] M. Levoy. A hybrid ray tracer for rendering polygon and volume data.
IEEE Computer Graphics and Applications, 2(4):33–40, 1990.

[22] M. Levoy. Volume rendering by adaptive refinement. The Visual Com-
puter, 6(1):2–7, 1990.

[23] K.-L. Ma, J. Blondin, J. H. Chen, M. Rast, and R. Samtaney. Meet the
scientists. In IEEE Visualization Panels, 2007.

[24] P. Muigg, M. Hadwiger, H. Doleisch, and H. Hauser. Scalable hybrid
unstructured and structured grid raycasting. IEEE Transactions on Visu-
alization and Computer Graphics (Proc. of Visualization), 13(6):1592–
1599, 2007.

[25] ParaView. http://www.paraview.org.
[26] S. Parker, M. Parker, Y. Livnat, P.-P. Sloan, C. Hansen, and P. Shirley.

Interactive ray tracing for volume visualization. IEEE Transactions on
Visualization and Computer Graphics, 5(3):238–250, 1999.

[27] G. Petschnigg, R. Szeliski, M. Agrawala, M. Cohen, H. Hoppe, and
K. Toyama. Digital photography with flash and no-flash image pairs.
ACM Transactions on Graphics (Proc. of SIGGRAPH), 23(3):664–672,
2004.

[28] B. Preim and D. Bartz. Visualization in Medicine. Morgan Kaufmann,
2007.

[29] H. S. Sawhney, Y. Guo, K. Hanna, R. Kumar, S. Adkins, and S. Zhou.
Hybrid stereo camera: an IBR approach for synthesis of very high resolu-
tion stereoscopic image sequences. In ACM SIGGRAPH, pages 451–460,
2001.

[30] C. T. Silva, J. L. D. Comba, S. P. Callahan, and F. F. Bernardon. GPU-
based volume rendering of unstructured grids. Brazilian Journal of The-
oretic and Applied Computing (RITA), 12(2):9–29, 2005.

[31] C. Tomasi and R. Manduchi. Bilateral filtering for gray and color images.
In ICCV, pages 839–846, 1998.

[32] M. Weiler, M. Kraus, M. Merz, and T. Ertl. Hardware-based ray casting
for tetrahedral meshes. In IEEE Visualization, pages 333–340, 2003.

[33] M. Weiler, P. N. Mallón, M. Kraus, and T. Ertl. Texture-Encoded Tetra-
hedral Strips. In Symposium on Volume Visualization, pages 71–78, 2004.

[34] M. Weiler, R. Westermann, C. Hansen, K. Zimmerman, and T. Ertl.
Level-of-detail volume rendering view 3D textures. In IEEE Symposium
on Volume Visualization, pages 7–13, 2000.

[35] G. Wolberg. Digital Image Warping. IEEE Computer Society Press, Los
Alamitos, CA, 1990.

6


