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Abstract:

We introduce a novel approach for the automatic classification of FDG-PET scans of subjects
with Alzheimers Disease (AD) and Frontotemporal dementia (FTD). Unlike previous work in the
literature which focuses on principal component analysis and predefined regions of interest, we
propose the use of decision tree learning combined with empirically determined regions of interest
as attributes. The advantages of this approach are two-fold. First, empirically determining regions
of interest for distinguishing between these two diseases is relevant for clinical medical practice.
Second, we illustrate that the proposed method provides better classification accuracy compared
to other methods on a group of 48 autopsy confirmed AD and FTD patients.
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Abstract. We introduce a novel approach for the automatic classification of FDG-PET scans of 
subjects with Alzheimer’s Disease (AD) and Frontotemporal dementia (FTD). Unlike previous work in 
the literature which focuses on principal component analysis and predefined regions of interest, we 
propose the use of decision tree learning combined with empirically determined regions of interest as 
attributes. The advantages of this approach are two-fold. First, empirically determining regions of 
interest for distinguishing between these two diseases is relevant for clinical medical practice. Second, 
we illustrate that the proposed method provides better classification accuracy compared to other 
methods on a group of 48 autopsy confirmed AD and FTD patients. 

1 Introduction 

Even with advances in clinical diagnosis, it is still hard to distinguish among different neurodegenerative 
diseases with confidence.  Correct diagnosis is challenging for clinicians because many of these disease 
share the same behavioral symptoms. Positron emission tomography (PET) image analysis has great 
potential to aid clinical diagnosis. In PET imaging, a radioactive tracer isotope incorporated into a 
metabolically active molecule such as FDG, a type of sugar molecule, is injected into the subject allowing 
the imaging of metabolic activity for glucose during life. Since brain energy normally is completely 
dependent upon glucose, FDG-PET accurately reflects brain function. FDG-PET imaging by providing 
quantitative localization of metabolic activity promises a better accuracy rate compared to qualitative 
judgments required to clinically distinguish different types of dementia. Determining whether a patient has  
Alzheimer’s disease (AD) vs. frontotemporal dementia (FTD) is a prominent example where PET imaging 
can help distinguish between two diseases that have very similar clinical symptoms. However, analysis of 
these FDG-PET with anything more than visual interpretation is time intensive and not routinely used in 
clinical settings. Therefore, computational methods that can expedite analysis using more precise 
quantitative methods are of great interest.  

One of the important challenges in using PET images for automatic diagnosis in neurology is that brain 
images contain a very large number of 3D pixels (tens of thousands or more) compared to a much smaller 
number of subjects  (typically a few dozen or less) from which a classifier must be learned.  This 
discrepancy in the dimensionality of the data as compared to the sample size makes robustly learning 
classifiers a challenging problem. Researchers have taken various approaches to overcome this problem.  
One of these approaches is region of interest (ROI) analysis.  This method considers regions definition 
based on prior knowledge and analyzes them for abnormalities [1, 2].  By using summary measures 
computed over regions instead of pixels as individual attributes, the dimensionality of the data is vastly 
reduced. The problem with this method is that strong prior knowledge is needed, and sometimes the 
abnormalities are not unique to a specific area, they may overlap or cross multiple predefined ROIs.  
Furthermore, this limits new discoveries in new regions.  As a result of these limitations with using ROI, 
pixel-by-pixel analysis has become a focus for research [3, 4].  However, this analysis approach has its own 
shortcoming; this method is less immune to noise in the image, and is subject to registration errors, and 
variability between individuals. In an effort to limit the number of variables while still incorporating all 



image data without biasing preconceptions.  Linear methods, such as principal component analysis (PCA) 
have been used to project the image down to a few attributes. However, PCA is not good at capturing 
complex, non-linear relationships in high-dimensional space. Furthermore, PCA is prone to errors if 
portions of the image data are missing. For instance, parts of the cerebellum can be missing from PET 
images due to non-optimal patient placement in the scanner. In such cases, these pixels must be manually 
excluded before PCA can be applied.  

In this paper we introduce an alternative, method for evaluating PET images using a decision tree 
learning algorithm [5]. The inputs to the decision tree are binary attributes based on the thresholding of z-
scores of groups of adjacent pixels.  Z-scores for these groups of pixels are computed using a database of 
normal controls. This method is appealing for a number of reasons. First, it takes into account all the pixels 
in the cortex, and computes z-scores for spatial neighborhoods instead of single pixel, then the decision tree 
evaluates which areas have the most discriminative power and recombines regions as necessary to create 
largest possible regions with maximum information gain. One advantage of decision tree learning over 
PCA is the ability to choose a binary mask defining a region of interest rather than using a weighted sum of 
all pixels in the image. In other words, decision trees allow us to pick certain regions rather than using all 
the pixels. This is important from the point of view of clinical practice where defining regions that are 
affected in certain disease is a question of interest. Furthermore, decision tree learning picks regions 
dynamically rather than based on predefined regions that are used in ROI analysis. Finally, because of the 
grouping of adjacent pixels, this method is less sensitive to noise or registration error. The combination of 
attribute selection that is proposed in this paper and the use of decision tree learning makes a good choice 
for analyzing brain images. In this paper, we introduce this approach as a robust method for locating the 
areas of brain that can be used to distinguish between AD and FTD subjects. The proposed method is 
completely automated and evaluating test subjects after the decision tree has been learned is of negligible 
computational cost. This classification task is more subtle and more difficult than distinguishing between 
one of these diseases and normal subjects. The rest of this paper will discuss specifics of the proposed 
method and discuss validation results using FDG-PET images of a group of 48 autopsy-confirmed AD and 
FTD patients. 

2 Method 

Our approach to automatic AD vs. FTD classification is to learn a decision tree classifier using the ID3 
algorithm. The ID3 algorithm chooses what attributes to use at different nodes of the tree based on the 
information gain criterion. Starting from the root node which contains all training examples, an attribute is 
chosen for that node which splits the node into to child nodes. Each child node which has examples of both 
classes (AD and FTD) are then split by picking an attribute using the same principles and more child nodes 
are created. The process stops when all nodes have only one class (AD or FTD) associated with them. 
However, the novelty of our approach is not in the specific classification algorithm, but in the definition of 
the attributes that the classifier is based on. The proposed attributes are empirically determined regions of 
interest on the cortical surface that have maximum spatial extent and maximum information gain as 
described next. We describe them in detail next. 

2.1 Pre-Processing 

Warping an image into a template space, which is necessary for performing comparisons across subjects, is 
typically the first step in group analysis. The MNI coordinates used by the popular Statistical Parametric 
Mapping (SPM) package is an example of this image warping.  For this study, we choose to use the 
stereotactic surface projection (SSP) package [6] instead of SPM. AD and FTD predominantly affect the 
gray matter in the cerebral cortex; therefore, we are concerned with metabolic activity of this region rather 
than the entire brain.  After warping 3D images into the Talairach coordinate system [7], SSP uses a three-
dimensional stereotactic technique to extract the peak metabolic activity in the cerebral cortex and project it 
to the brain surface[6].  Using this technique, 3D FDG-PET images are converted into a list of 16000 
surface pixels and their associated metabolic values. Since each patient has a different overall metabolic 
rate, and global scaling of the image values depends on the specific scanner used, we need a way to 



normalize the data in order to minimize the global differences among patients.  Normalization using global 
average metabolism in the brain is problematic because it is affected by disease severity. The Pons located 
on the brain stem is known to be relatively spared by AD and FTD [8] which makes it a good candidate for 
normalization.  In this paper, the data was normalized to the pontine metabolic value which was also 
extracted from the FDG-PET images by SSP. 

2.2 Attribute Selection 

In this section, we describe a method for locating different areas of the cerebral cortex projected to the 
surface of the brain that have the most discriminative power to distinguish between FTD and AD.  We 
would like these areas to be as large as possible, without losing their discriminative power.  Due to the 
averaging effect, measures computed from larger regions are less susceptible to problems cause by 
additive, independent noise. Also, comparing areas rather than comparing individual pixels reduces the 
effects of any registration error in warping the brain to the SSP coordinates.  
In the context of classification, information gain measures how well a given attribute separates the training 
examples into their target classifications. A binary attribute separates a set of training examples 
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where H denotes the entropy of a set. Let 
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If a set has examples that all belong to the same class then it has entropy 0; on the other hand, equal 
fractions of two classes result in a maximum entropy of 1.  
Let C denote the set of locations that are extracted by SSP as cortical locations. Ideally, we want to choose 
a subset of C that is as large as possible while having maximum information gain in its metabolic values. 
However, this problem is intractable for large C due to the large number of combinatorial possibilities that 
arise in defining regions. However, we can easily find approximations to maximally large regions with high 
information gain using the following procedure. Given a location x in C, define a set of neighboring 
locations as other points on the cortical surface that are within distance R of the point of interest x 
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We will refer to these sets of locations as building-block neighborhoods. Next, we calculate the total 
metabolic activity for the building-block neighborhood at each x using  
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where Mk(x) is the metabolic activity normalized to pons at pixel x, for the k’th subject. While metabolic 
activity can be used directly as an attribute in building a classifier, approaches in the Neurology literature 
typically first convert metabolic scores to z-scores using a database of normals [8]. We follow the same 
approach here.  Using the same definitions given in Equations (3) and (4), we can also calculate the total 
metabolic activity for normal controls. Then, given a point of interest x, we compute the mean metabolic 
activity and standard deviation at that location for normal controls; denote these values by m(x) and 
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"(x) , 
respectively. Then the z-score for the k’th subject’s total metabolic activity for the neighborhood at x is 
computed as 
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The next step is to create a binary attribute Y. 
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where T is a threshold which could be either fixed or calculated automatically by the decision tree learning 
using information gain as a measure of optimality. We will analyze the choice of T in more detail in 
Section 3. 
The next step is to calculate the information gain for all the attributes, Y(x) and find the one with maximum 
information gain. Then using a threshold such as 90% of this maximum value or larger, we can define a 
larger set of attributes which have near maximum information gain. Denote the set of cortical locations of 
near maximum information gain attributes with 
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X optimal . Then we define a new attribute from the union of 
this set of cortical locations  as 
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This union of attributes also provides a way to define arbitrarily shaped neighborhoods on the cortical 
surface rather than the building-block neighborhoods that we started with. The new attribute value for the 
new region is then computed by replacing the original neighborhood with the new arbitrarily shaped 
neighborhood: 
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Finally, using Equations (5) and (6) we can compute the z-score for this attribute and use it for 
classification in the decision tree. 

3 Results 

Our approach was validated with a set of 48 autopsy confirmed cases of AD and FTD. Of these cases, 34 of 
the subjects had AD and 14 had FTD. A set of 33 normal subjects was used for computing z-scores.  In this 
section, we will discuss the behavior of the proposed classification method and present results of validation 
results on the set of 48.  
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Fig. 1. [Color Image] Eight surface projections of cortical locations extracted from 3D FDG-PET images 
by SSP. The colormap indicates z-scores, a measure of difference from a database of normal controls. Red 
indicates significantly lower metabolism than normal controls while blue indicates no significant 
difference. a) Single pixel z-scores of a patient with FTD. b) Neighborhood z-scores of the same FTD 
patient. c) Single pixel z-scores of a patient with AD. d) Neighborhood z-scores of the same AD patient 

 
 
Since we are working with cortical locations and their associated values extracted from the 3D FDG-

PET image rather than with the 3D image directly, it is useful to observe the data in the form of surface 
projections. The figures in this paper present the reader with eight surface projections: right/left lateral, 
superior, inferior, anterior, posterior, and right/left medial,. Furthermore, we present z-scores, differences 
from a database of 33 normal controls computed as described in Equation (5), instead of direct metabolic 
values from the PET images. Figure 1a depicts single pixel z-scores of a patient with Frontotemporal 
dementia where frontal association cortex and anterior temporal association cortex of the brain show 
hypometabolism.   Note that red colors indicate significant hypometabolism (lower metabolism compared 
to normal controls) while blue colors indicate no significant difference.  Figure 1b depicts building-block 
neighborhood (R=8) z-scores computed with Equations (7) and (8) for the same FTD patient. These 
pictures demonstrate the averaging effect that is introduced by neighborhood z-scores which make the 
approach less susceptible to noise. To discuss this point further, consider defining arbitrarily shaped regions 
as unions of single pixel regions rather than the disk shaped building 
blocks defined in Equation (3). Due to the higher amount of noise in 
single pixel z-scores, their information gain measures will also be more 
prone to noise that would result in a non-robust neighborhood selection 
process. In fact, the radius of the building block disk play an important 
role in the success of the algorithm as will be discussed later in this 
section.   

Figure1c and d depict single pixel and building-block neighborhood 
(R=8) z-scores for a patient with Alzheimer disease where temporo-
parietal regions show significant reduction in glucose metabolism 
relative to normal control. Often the distinction between AD and FTD 
is not as apparent as the cases illustrated in Figure 1, some patients who 
are affected with Alzheimer disease also show reduction of metabolism 
in Frontotemoral regions of the brain, making diagnosis more difficult. 

Figure 2 displays the decision tree learned using all 48 cases in the 
training set.  This tree has three decision nodes, each associated with an 



arbitrarily shaped region that was found using the methods discussed in Seciton 2. These regions are shown 
in Figure 3.  The inputs into our decision tree are binary attributes based on the thresholding of z-scores of 
groups of adjacent pixels. This tree was generated based on a building-block neighborhood radius of R=8 
and a z-score threshold value of T=3.  The significance of the selection for the R and T parameters will be 
discussed later in this section. In this example, at each decision node in the tree, the algorithm considers the 
question “Is the z-score of the given region greater than or equal to 3?” Depending on the answer the 
algorithm either selects a classification, or the next decision node in the tree. 

         

 
 
Fig. 2. Regions 1-3 of decision tree of Figure 2 shown as surface projections. a) Region 1 in Figure 2. This 
area corresponds to posterior temporo-parietal cortex which is greatly affected in AD. b) Region 2 in Figure 
2.  This corresponds to anterior temporal cortex, typically affected in FTD and not in AD. c) Region 3 in 
Figure 2.  This area is the right anterior temporal cortex, typically affected in FTD and not in AD. 
 

 
Figure 3 shows the regions that correspond to the different nodes of the decision tree using the same 

surface projection technique used in Figure 1. Figure 3aa corresponds to Region 1 of the decision tree.  If 
the z-score of the this region is greater than 3, the algorithm classifies the subject as having AD, if the value 
is less than 3; it goes to the next node. This area corresponds to posterior temporo-parietal cortex which is 
greatly affected in AD. Hence, its selection by the proposed method and decision tree learning algorithm 
conforms to our expectations from a neurological point of view. Figure 3b displays Region 2 of the 
decision tree.  If the z-score is greater than 3, the algorithm classifies the subject as having FTD, but if it’s 
not, it goes to the next node. This selection is also in accordance with neurological views of FTD and AD; 
this region corresponds to anterior temporal, typically affected in FTD and not in AD. Finally, Region 3 of 
the decision tree is shown in Figure 3c. If the z-score of this selected area is more than 3, the subject is 
classified as having FTD, and if the z-score is less than 3, the subject is being classified as having AD. This 
area is the right anterior temporal, typically affected in FTD and not in AD. However , it was not 
immediately clear why the algorithm showed a preference for right vs. left anterior temporal regions. One 
explanation is the small sample size that is left after two previous branchings. This small sample size might 
not be able to support a robust decision in choosing the region with highest information gain resulting in 
over-fitting; hence a neurologically unexplained preference for right vs. left anterior temporal regions. 
We validate the proposed approach using a set of 48 subjects (33AD, 14 FTD) with ground truth 
determined by autopsy results. We experimented with different radii for defining building-block 
neighborhoods and different threshold values to compare against z-scores for determining the value of 
binary attributes that were the input of the decision tree.  The accuracy of the algorithm was assessed with a  
leave-one-out-cross validation approach: one of the 48 subjects is left out of the training set and the 
resulting classifier is tested on this left-out subject, the experiment is repeated 48 times leaving each subject 
out once. Table 1 summarizes our findings.  We conclude that radius of eight (R=8) and threshold value of 
three (T=3) offer the best results in terms of accuracy. Notice that R=0 corresponds to starting from single 
pixels and as expected performs poorly. On the other hand, using very large R for the building blocks, such 
as R=16, can diminish the discriminative power of the resulting regions as seen in Table 1. Using T=2 was 
not selective enough in terms of difference from normal controls (very few binary attributes with value 1) 
while T=4 was overly selective (too many binary attributes with value 1). The threshold T=3 provided the 



best trade-off. We also experimented with automatically choosing optimal T values for each node of the 
decision tree based on maximum information gain criteria as is typically done when using decision trees 
with continuous-valued attributes. However, the results obtained with this approach were worse than fixing 
the threshold at T=3.  

Table 1. Classification accuracy results for different radii (R) and threshold values (T) 

 
Radius Size - R T= 2, Z>T T=3, Z > T T=4, Z> T 

2 75% 81% 88% 
4 71% 90% 92% 
8 78% 94% 73% 
12 67% 88%     78% 
16 75% 80%     59% 

 
 

These results can also be compared to previously reported experiments in the literature with the same 
dataset [8]. The visual rating of six neurologists using the SSP z-score images was reported to be 89%.  
Using principal component analysis (PCA) to project the data to a lower-dimensional space followed by 
learning a linear classifier in this space gave results in the range 80-85% depending on the dimensionality 
used in PCA. Slightly better results, as high as 90%, were obtained using Partial Least Squares, which takes 
into account target classifications, instead of PCA [8].  

4 Conclusions 

We have discussed a method for the automatic classification of brain images of AD and FTD subjects. The 
dynamic region selection of decision tree based on the information gain is a powerful tool, especially when 
compared to ROI analysis which requires prior knowledge.  This method also makes it possible to locate 
areas of abnormalities for specific type of dementia, something that is not easily seen in PCA or in other 
classifiers such as neural networks. Furthermore, due to the grouping of adjacent pixels, this method is less 
sensitive to noise or any registration error.  The results obtained using the proposed method are very 
encouraging in classifying FTD and AD subjects. We are planning to further confirm our results on other 
databases of AD and FTD subjects. In future research directions, we are planning to apply the same image-
based classification paradigm to other diseases that present similar clinical symptoms. This method could 
be modified to correlate clinical symptoms with brain regions to determine which areas of the brain are 
associated with particular symptoms, and may be useful in determining a particular approach to take when 
treating a particular patient. 
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