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ABSTRACT

Existing methods for rendering arbitrary implicit functions are lim-
ited, either in performance, correctness or flexibility. Ray tracing
methods in conjunction with an inclusion algebra such as interval
arithmetic (IA) or affine arithmetic (AA) have historically proven
robust and flexible, but slow. In this paper, we present a new stack-
less ray traversal algorithm optimized for modern graphics hard-
ware, and a correct inclusion-preserving reduced affine arithmetic
(RAA) suitable for fragment shader languages. Shader metapro-
gramming allows for immediate and automatic generation of func-
tions and their interval or affine extensions, enhancing user inter-
action. Ray tracing lends itself to multi-bounce effects, such as
shadows and depth peeling, which are useful modalities for visu-
alizing complicated implicit functions. With this system, we are
able to render even complex implicits correctly, in real-time at high
resolution.

Figure 1: An animated sinusoid-kernel surface. Ray-traced directly on
fragment units, no new geometry is introduced into the rasterization
pipeline. IA/AA methods ensure robust rendering of any inclusion-
computable implicit.
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1 INTRODUCTION

To render implicits, one is principally given two choices: sampling
the implicit and extracting proxy geometry such as a mesh, vol-
ume or point cloud; or ray tracing the implicit directly. Though the
former methods are often preferred due to the speed of rasterizing
proxy geometries, extraction methods yield isotropic geometry and
often scale poorly. Though computationally expensive, ray trac-
ing methods parallelize efficiently and trivially. Modern graphics
hardware offers enormous parallel computational power, at the cost
of poor efficiency under algorithms with branching and irregular
memory access. GPU-based ray tracing [22] is increasingly com-
mon, but often algorithmically inefficient.

Ray tracing methods for implicits have historically sacrificed ei-
ther speed, correctness or flexibility. Piecewise algebraic implicits
have been rendered in real-time on the GPU using Bezier decom-
positions [14], but approximating methods do not render arbitrary
functions directly, nor always robustly. Inclusion methods, such as
interval arithmetic (IA) or affine arithmetic (AA), are considered
the most general and robust, but traditionally the slowest. Recently,
arbitrary implicits were rendered interactively on the CPU by opti-
mizing IA ray tracing with SIMD vector instructions, and by mak-
ing practical assumptions about the numerical precision needed for
correct visualization [13]. Though that system is over two orders
of magnitude faster than its predecessors, it is still only roughly
interactive on current CPU hardware. A GPU implementation is
desirable for its superior computational throughput, and use in con-
junction with the conventional rasterization pipeline.

The major contributions of this paper are a new iterative spatial
traversal algorithm for implicit intersection; and an efficient im-
plementation of a correct reduced affine arithmetic (RAA) suitable
for shader languages. Together, these allow real-time rendering of
complex implicit functions. Shader metaprogramming allows users
to design implicits and procedural hypertextures flexibly, with im-
mediate results and full support for dynamic 4D surfaces. The ray
tracing algorithm enables multi-bounce effects to be computed in-
teractively without image-space approximations, enabling effects
such as translucent depth peeling and shadows which further assist
visualization.

2 RELATED WORK

2.1 Proxy Geometry Methods

Due to the popularity of GPU rasterization, the most common ap-
proach to rendering implicits has been extraction of a mesh or proxy
geometry. Application of marching cubes [31] or Bloomenthal
polygonization [1] can generate meshes interactively, but will en-
tirely omit features smaller than the static cell width. More sophis-
ticated methods deliver better results, at the cost of interactivity.
Paiva et al. [19] detail a robust algorithm based on dual marching
cubes, using interval arithmetic in conjunction with geometric ora-
cles. Varadhan et al. [28] employ dual contouring and IA to decom-
pose the implicit into patches, and compute a homeomorphic trian-
gulation for each patch. These methods exploit inclusion arithmetic
to generate desirable meshes that preserve topology within geomet-
ric constraints. However, they generally compute offline, and do
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not scale trivially. Moreover, each mesh is a view-independent re-
construction.

Non-polygonal proxy geometry is also practical. Splatting uses
view-dependent point sampling of an implicit reconstruction of
point cloud data [24]. Dynamic particle sampling methods for im-
plicits have been demonstrated by Witkin & Heckbert [29] and ex-
tended by Meyer et al. [16]. Slice-based GPU volume rendering,
often in conjunction with ray casting, is a practical method of visu-
alizing implicits [8].

2.2 Ray Tracing Implicits
Hanrahan [9] proposed a general but non-robust point-sampling
algorithm using Descartes’ rule of signs to isolate roots. Van
Wijk [27] implemented a recursive root bracketing algorithm us-
ing Sturm sequences, suitable for differentiable algebraics. Kalra
& Barr [12] devised a method of rendering a subclass of algebraic
surfaces with known Lipschitz bounds. Hart [10] proposed a robust
method for ray tracing algebraics by defining signed distance func-
tions from an arbitrary point to the surface. More recently, Loop &
Blinn [14] implemented an extremely fast GPU ray caster approx-
imating implicits with piecewise Bernstein polynomials. Romeiro
et al. [23] proposed a hybrid GPU/CPU technique for casting rays
through constructive solid geometry (CSG) trees of implicits. De
Toledo et al. [5] demonstrated interactive ray casting of cubics and
quartics using standard iterative numerical methods on the GPU.

Ray Tracing with Interval and Affine Arithmetic: Toth [26]
first applied interval arithmetic to ray tracing parametric surfaces,
in determining an initial convex bound before solving a nonlinear
system. Mitchell [17] ray traced implicits using recursive IA bi-
section to isolate monotonic ray intervals, in conjunction with stan-
dard bisection as a root refinement method. De Cusatis Junior et
al. [4] used standard affine arithmetic in conjunction with recursive
bisection. Sanjuan-Estrada et al. [25] compared performance of two
hybrid interval methods with Interval Newton and Sturm solvers.
Florez et al. [6] proposed a ray tracer that antialiases surfaces by
adaptive sampling during interval subdivision. Gamito and Mad-
dock [7] proposed reduced affine arithmetic for ray casting specific
implicit displacement surfaces formulated with blended noise func-
tions, but their AA implementation fails to preserve inclusion in the
general case. Knoll et al. [13] implemented a generally interactive
interval bisection algorithm for arbitrary implicits on the CPU. Per-
formance was achieved though SSE instruction-level optimization
and coherent traversal methods; and exploiting the fact that numer-
ically precise roots are not required for visual accuracy.

3 BACKGROUND

3.1 Ray Tracing Implicits

An implicit surface S in 3D is defined as the set of solutions of an
equation f (x,y,z) = 0 (1)

where f : Ω ⊆ R3 → R. In ray tracing, we seek the intersection of
a ray ~p(t) =~o+ t~d (2)

with this surface S. By simple substitution of these position coordi-
nates, we derive a unidimensional expression

ft(t) = f (ox + tdx,oy + tdy,oz + tdz) (3)

and solve where ft(t) = 0 for the smallest t > 0.
In ray tracing, all geometric primitives are at some level defined

implicitly, and the problem is essentially one of solving for roots.
Simple implicits such as a plane or a sphere have closed-form solu-
tions that can be solved trivially. General implicits without a closed-
form solution require iterative numerical methods. However, easy
methods such as Newton-Raphson, and even “globally-convergent”
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Figure 2: The inclusion property. (a) When a function f is non-
monotonic on an interval I, evaluating the lower and upper compo-
nents of a domain interval is insufficient to determine a convex hull
over the range. This is not the case with an inclusion extension F
(b), which, when evaluated, will enclose all minima and maxima of
the function within that interval. Ideally, F(I) is equal or close to the
bounds of the convex hull, CH(I).

methods such as regula falsi, only work on ray intervals where f is
monotonic. As shown in Fig. 2, “point sampling” using the rule of
signs (e.g. [9]) fails as a robust rejection test on non-monotonic in-
tervals. While many methods exist for isolating monotonic regions
or approximating the solution, inclusion methods using interval or
affine arithmetic are among the most robust and general. Histor-
ically, they have also been among the slowest, due to inefficient
implementation and impractical numerical assumptions.

3.2 Interval Arithmetic and Inclusion

Interval arithmetic (IA) was introduced by Moore [18] as an ap-
proach to bounding numerical rounding errors in floating point
computation. The same way classical arithmetic operates on real
numbers, interval arithmetic defines a set of operations on inter-
vals. We denote an interval as x = [x,x], and the base arithmetic
operations are as follows:

x+ y = [x+ y,x+ y], x− y = [x− y,x− y] (4)

x× y = [min(xy,xy,xy,xy),max(xy,xy,xy,xy)] (5)

Moore’s fundamental theorem of interval arithmetic [18] states
that for any function f defined by an arithmetical expression, the
corresponding interval evaluation function F is an inclusion func-
tion of f :

F(x)⊇ f (x) = { f (x) | x ∈ x} (6)
where F is the interval extension of f .
The inclusion property provides a robust rejection test that will

definitely state whether an interval x possibly contains a zero or
other value. Inclusion operations are powerful in that they are com-
posable: if each component operator preserves the inclusion prop-
erty, then arbitrary compositions of these operators will as well. As
a result, in practice any computable function may be expressed as
inclusion arithmetic [17]. Some interval operations are ill-defined,
yielding empty-set or infinite-width results. However, these are
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easily handled in a similar fashion as standard real-number arith-
metic. A more difficult problem is converting existing efficient
real-number implementations of transcendental functions to inclu-
sion routines, as opposed to implementing an IA version from base
operators. This requires ingenuity, but is usually possible and far
faster than implementing an extension approximation from scratch.

The IA extension is often referred to as the natural inclusion
function, but it is neither the only mechanism for defining an inclu-
sion algebra, nor always the best. Particularly in the case of mul-
tiplication, it greatly overestimates the actual bounds of the range.
To overcome this, it is necessary to represent intervals with higher-
order approximations.

3.3 Affine Arithmetic

Affine arithmetic (AA) was developed by Comba & Stolfi [3] to ad-
dress the bound overestimation problem of IA. Intuitively, if IA ap-
proximates the convex hull of f with a bounding box, AA employs
a piecewise first-order bounding polygon, such as a parallelogram
(Fig. 3).

IA AA

Figure 3: Bounding forms of interval and affine arithmetic operations.
An affine quantity x̂ takes the form:

x̂ = x0 +
n

∑
i=1

xiei (7)

where the xi,∀i ≥ 1 are the partial deviations of x̂, and ei ∈ [−1,1]
are the error symbols. An affine form is created from an interval as
follows:

x0 = (x+ x)/2, x1 = (x− x)/2, xi = 0, i > 1 (8)
and can equally be converted into an interval

x = [x0− rad(x̂),x0 + rad(x̂)] (9)

where the radius of the affine form is given as:

rad(x̂) =
n

∑
i=1

|xi| (10)

Base affine operations in AA are as follows:

c× x̂ = cx0 + c
n

∑
i=1

xiei

c± x̂ = (c± x0)+
n

∑
i=1

xiei (11)

x̂± ŷ = (x0± y0)±
n

∑
i=1

(xi± yi)ei

However, non-affine operations in AA cause an additional error
symbol ez to be introduced. This is the case in multiplication be-
tween two affine forms,

x̂× ŷ = x0y0 +
n

∑
i=1

(xiy0 + yix0)ei + rad(x̂)rad(ŷ)ez (12)

Other operations in AA, such as square root and transcenden-
tals, approximate the range of the IA operation using a regression

curve – a slope bounding a minimum and maximum estimate of the
range. These operations are also non-affine, and require a new error
symbol.

The chief improvement in AA comes from maintaining corre-
lated error symbols as orthogonal entities. This effectively allows
error among correlated symbols to diminish, as opposed to always
increasing monotonically in IA. Unfortunately, as the number of
non-affine operations increases, the number of non-correlated error
symbols increases as well. Despite computing tighter bounds, stan-
dard AA ultimately is inefficient in both computational and memory
demands.

3.4 Ray Tracing Implicits with Inclusion Arithmetic

The inclusion property extends to multivariate implicits as well,
making it suitable for a spatial rejection test in ray tracing. More-
over, by substituting the inclusion extension of the ray equation
(Equation 2) into the implicit extension F(x,y,z), we have a uni-
variate extension Ft(X ,Y,Z). To check whether any given ray in-
terval t = [t, t] possibly contains our surface, we simply check if
0 ∈ Ft(t). As a result, once the inclusion library is implemented,
any function composed of its operators can be rendered robustly.
To select domain intervals on which to evaluate the extension, one
has a wide choice of interval numerical methods [17, 2, 25]. Em-
pirical results [13, 7, 4] suggest that simple bisection works best,
particularly at coarser precision ε . In practice, evaluating a gradient
extension is expensive, and higher-order convergent methods resort
to bisection on non-monotonic regions. Moreover, high numerical
precision is seldom required for accurate visualization [13].

4 RAY TRACING IMPLICITS WITH IA AND AA ON THE GPU

In many ways, modern shader languages such as Cg or GLSL al-
low for a far more graceful implementation than the optimized SSE
C++ counterpart on the CPU. Thanks to this language flexibility, it
is possible to design a full ray tracer within a fragment program.
On-the-fly shader compilation, in conjunction with metaprogram-
ming, can easily and dynamically generate IA/AA extension rou-
tines from an input expression.

Nonetheless, implementing a robust interval-bisection ray tracer
on the GPU poses challenges. Principally, the CPU algorithm re-
lies on an efficient iterative algorithm for bisection: employing
a read/write array for the recursion stack. Storing such an ar-
ray per-fragment occupies numerous infrequently-used registers,
which slows processing on the GPU. Similar problems have clearly
hampered performance of hierarchical acceleration structure traver-
sal for mesh ray tracing [21]. Our most significant contribution
is a traversal algorithm that overcomes this problem. By em-
ploying simple floating-point modulus arithmetic in conjunction
with a DDA-like incremental algorithm operating on specially con-
structed intervals, we are able to perform traversal without any
stack. Though this algorithm would be prohibitively expensive on
a CPU, it is well-suited for the GPU architecture due to efficient
division operations.

In implementing affine arithmetic to mitigate IA bound overes-
timation, it was immediately clear that a full array-based imple-
mentation of conventional AA would be impractical on the GPU.
Though efficient, the reduced affine arithmetic method proposed by
Gamito & Maddock [7] only preserves inclusion under specific cir-
cumstances. Fortunately, with modifications ensuring that the last
error term is positive-definite, a formulation similar to that of Mes-
sine et al. [15] implements a correct inclusion for all compositions
of AA operations. In adopting such an arithmetic, we implement
a robust reduced AA suitable for ray tracing on the GPU. Particu-
larly for complex implicits requiring cross-multiplication between
interval entities, this yields more correct results at lower required
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precision than standard IA, and superior frame rates for most func-
tions.

4.1 Application Pipeline

As input, the user must simply specify an implicit function, a do-
main Ω ⊂ R3, and a termination precision ε . User-specified vari-
ables are stored on the CPU and passed dynamically to Cg as uni-
form parameters.

Some runtime options, such as the implicit function, choice of
inclusion algebra, or shading modality, are compiled directly into
the Cg shader through metaprogramming. In simple cases, the CPU
merely searches for a stub substring within a base shader file, and
replaces it with Cg code corresponding to the selected option. The
most complicated metaprogramming involves creating routines for
function evaluation. Given an implicit function, we generally re-
quire two routines to be created within the shader: one evaluating
the implicit f , and another evaluating an inclusion function, the
interval or affine extension F . We use a simple recursive-descent
parser to generate these routines in the output Cg shader. Alter-
nately, we allow the user to provide “inline” Cg code, which can be
useful in optimizing performance of implicits with repeated identi-
cal blocks of terms, and expressing special-case CSG models.

Though our system is built on top of OpenGL, we use the fixed-
function rasterization pipeline very little. Given a domain Ω ⊂ R3

specified by the user, we simply rasterize that bounding box once
per frame. We specify the world-space box vertex coordinates as
texture coordinates as well. These are passed straight through a
minimal vertex program, and the fragment program merely looks
up the automatically interpolated world-space entry point of the ray
and the bounding box. By subtracting that point from the origin,
we generate a primary camera ray for each fragment.

4.2 Interval Arithmetic Library

Implementing an IA library is straightforward in Cg. Most op-
erations employed in interval arithmetic (such as min and max)
are highly efficient on the GPU, and swizzling allows for graceful
SIMD computation (Algorithm 1). Transcendental functions are
particularly efficient for both their floating-point and interval com-
putations. Moderate integer powers are yet more efficient, thanks to
unrolling multiplication chains via metaprogramming and the Rus-
sian peasants algorithm; and a bound-efficient IA rule for even pow-
ers.

Algorithm 1 Interval Arithmetic examples.
typedef float2 interval;

interval iadd(interval a, interval b) {

return interval( add(a.x, b.x), add(a.y, b.y) );

}

interval imul(interval a, interval b) {

float4 lh = a.xxyy * b.xyxy;

return interval(min(lh.x, min(lh.y, min(lh.z, lh.w))),

max(lh.x, max4(lh.y, max(lh.z, lh.w))));

}

interval ircp(const float inf, interval i) {

const bool ic0 = (i.x <= 0 && i.y >= 0);

return ( (i.x <= 0 && i.y >= 0) ?

interval(-inf, inf) : 1/i.yx );

}

4.3 Reduced Affine Arithmetic Library

In implementing our RAA library on the GPU, we adopt a formu-
lation similar to AF1 in Messine et al. [15], with changes to the
absolute value bracketing that are mathematically equivalent but
slightly faster to compute. In AF1, for some constant n a reduced
affine form is given as:

x̂ = x0 +
n

∑
i=1

xiei + xn+1en+1 (13)

Our arithmetic operations are then as follows:

c± x̂ = (c± x0)+
n

∑
i=1

xiεi + |xn+1|εn+1

x̂± ŷ = (x0± y0)+
n

∑
i=1

(xi± yi)εi +(xn+1 + yn+1)εn+1

c× x̂ = (cx0)+
n

∑
i=1

cxiεi + |cxn+1|εn+1 (14)

x̂× ŷ = (x0y0)+
n

∑
i=1

(xoyi + y0xi)εi+

(|x0yn+1|+ |y0xn+1|+ rad(x̂)rad(ŷ))εn+1

We implemented this formulation with n = 1 using a float3 to
represent the reduced affine form. We also experimented with n = 2
(float4), and n = 6 (a double-float4 structure). For all the functions
in our collection, the float3 version delivered the fastest results by
far. We also found that the computational overhead of the bound-
improved AF2 formulation [15] was too high to be efficient. Exam-
ples of the float3 version are given in Algorithm 2.

The float3 implementation of AF1 makes for a versatile and fast
reduced affine arithmetic. Particularly for functions with signif-
icant multiplication between non-correlated affine variables, such
as the Mitchell function or the Barth implicits involving cross-
multiplication of Chebyshev polynomials, significant speedup can
be achieved over standard IA.

Algorithm 2 Reduced Affine Arithmetic examples.
typedef float3 raf;

raf interval_to_raf(interval i){

raf r;

r.x = (i.y + i.x);

r.y = (i.y - i.x);

r.xy *= .5; r.z = 0; return r;

}

float raf_radius(raf a){

return abs(a.y) + a.z;

}

interval raf_to_interval(raf a){

const float rad = raf_radius(a);

return interval(a.x - rad, a.x + rad);

}

raf_add(raf a, raf b){

return a + b;

}

raf_mul{raf a, raf b){

raf r;

r.x = a.x * b.x;

r.y = a.x*b.y + b.x*a.y;

r.z = abs(a.x*b.z) + abs(b.x*a.z) +

raf_radius(a)*raf_radius(b);

return r;

}

4.4 Numerical Considerations

A technical difficulty arises in the expression of infinite intervals,
which may occur in division; and empty intervals that are necessary
in omitting non-real results from a fractional power or logarithm.
While these are natively expressed by nan on the CPU, GPU’s are
not always IEEE compliant. The NVIDIA G80 architecture cor-
rectly detects and propagates infinity and nan, but the values them-
selves (inf = 1/0 and nan = 0/0) must be generated on the CPU
and passed into the fragment program and subsequent IA/AA calls.

Conventionally, IA and AA employ a rounding step after ev-
ery operation, padding the result to the previous or next express-
ible floating point number. We deliberately omit rounding – in
practice the typical precision ε is sufficiently large that rounding
has negligable impact on the correct computation of the exten-
sion F . However, numerical issues can be problematic in certain
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affine operations: RAA implementations of square root, transcen-
dentals and division itself all rely on accurate floating point divi-
sion for computing the regression lines approximating affine forms.
Though inclusion-preserving in theory, these methods are ill-suited
for inaccurate GPU floating point arithmetic; and a robust strat-
egy to overcome these issues has not yet been developed for RAA.
We therefore resort to interval arithmetic for functions that require
regression-approximation AA operators.

Algorithm 3 Traversal algorithm with RAA.
float traverse(float3 penter, float3 pexit, float w,

float max_depth, float eps, float nan, float inf){

const float3 org = penter;

const float3 dir = pexit-penter;

interval t(0,1);

raf F, it, ix, iy, iz;

//rejection test

ix = raf_add(org.x, raf_mul(it, dir.x));

iy = raf_add(org.y, raf_mul(it, dir.y));

iz = raf_add(org.z, raf_mul(it, dir.z));

F = evaluate_raf(ix, iy, iz, w, nan, inf);

if (raf_contains(F, 0)){

int d=0;

float tincr = .5;

const int dlast = log2(length(dir)/epsilon);

//main loop

for(;;){

t.y = t.x + tincr;

(compute ix, iy, iz, F again for rejection test)

if (raf_contains(F, 0)){

if (d==dlast){ return t.x; /*hit*/}

else{ tincr *= .5; d++; continue; }

}

t.x = t.y;

//back-recursion

float fp = frac(.5*t.x/tincr);

if (fp < 1e-8){

for(int j=0; j<24; j++){

tincr *= 2;

d--;

fp = frac(.5*t.x/tincr);

if (d==-1 || fp > 1e-8) break;

}

if (d==-1) break;

}

}

}

return -1; //no hit

}

4.5 Traversal

With the IA/RAA extension and a primary ray generated on the
fragment unit, we can perform ray traversal of the domain Ω ⊂
R3. Though not as trivial as standard numerical bisection for root
finding, the ray traversal algorithm is nonetheless elegantly simple.

Initialization: We begin by computing the exit point pexit of
the generated ray and the bounding box Ω. We reparameterize the
ray as~r(t) := ~penter + t(~pexit −~penter). The interval t along the ray
intersecting Ω is now [0,1]. We now perform a first rejection test
outside the main loop.

Rejection test: In the rejection test, we evaluate the IA/AA
extensions of the ray equation to find X ,Y and Z over t, and use
these (as well as scalars w,ri for time and other animation variables)
to evaluate the extension of our implicit function. The result gives
us an interval or affine approximation of the range F . If 0 ∈ F , then
we must continue to bisect and search for roots. Otherwise, we may
safely ignore this interval and proceed to the next, or terminate if it
is the last.

Main loop: If the outer rejection test succeeds, we compute the
effective bisection depth required for the user-specified precision ε .
This is given by

dmax := log2(
||~pexit −~penter||

ε
) (15)

We initialize our depth d = 0, and distance increment, tincr = 0.5.
Now, recalling the bisection interval t, we set t := t + tincr. We then
perform the rejection test on this new t. If the test succeeds, we
either hit the surface if we have reached d = dmax, or recurse to the
next level by setting tincr := tincr/2, and incrementing d.

If the rejection test fails, we proceed to the next interval segment
at the current depth level by setting t := t. Within the main loop, we
now perform another loop to back-recurse to the appropriate depth
level.

Back-recursion loop: In back-recursion, we basically decre-
ment the depth (and update tincr) as long as we have visited both
“sides” of the bisection tree at the current depth. Conventionally,
this algorithm is performed by caching an array in place of a recur-
sion stack. As this is ineffective on the GPU, we note that we can
perform a similar query by a floating-point modulus: checking if
(t % 2tincr = 0). Currently on the G80, the fastest method proves
to be performing division and examining the remainder. Back-
recursion proceeds iteratively until either one side of the bisection
has not yet been visited, or d =−1.
4.6 Traversal Metaprogramming

The traversal algorithm largely remains static, but some functions
and visualization modalities require special handling. To render
functions containing division operations, we must check whether
intervals are infinitely wide before successfully hitting, as detailed
in Knoll et al. [13]. Multiple isovalues and transparency require
modifications to the rejection test and hit registration, respectively,
as discussed in Section 5.2. More generally, modifications to the
traversal algorithm are simple to implement via “inline” implicit
files (Section 4.1). We allow the user to directly program behavior
of the rejection test, hit registration and shading. This is particularly
useful in rendering special-case constructive solid geometry objects
(Fig. 9).
4.7 Shading
Phong shading requires a surface normal, specifically the gradient
of the implicit at the found intersection position. We find central
differencing to be more than adequate, as it requires no effort on
the part of the user in specifying analytical derivatives, nor special
metaprogramming in computing separable partials via automatic
differentiation. By default we use a stencil width proportional to
the traversal precision ε; variable width is often also desirable [13].

5 RESULTS

All benchmarks are measured in frames per second on an NVIDIA
8800 GTX, at 1024x1024 frame buffer resolution.

CPU GPU
ε = 2−11 correct

function (fig) degree IA RAA IA/RAA
sphere 2 15 75 147 165
steiner (5) 4 7.5 34 40 38
mitchell (4) 8 5.2 16 58 60
teardrop (6a) 4 5.5 102 115 121
4-bretzel (6c) 12 13 78 48 90
klein b. (6b) 6 11 30 110 101
tangle (6d) 4 3.2 15 68 71
decocube (8) 4 5.5 28 27 28
barth sex. (7l) 6 7.4 31 76 88
barth dec. (7r) 10 0.9 4.9 15.6 15.6
superquadric 200 18 119 8.3 108
icos.csg (9l) na - 13.3 - 13.3
sq.csg (9r) na - 8.9 - 7.2
sin.blob (1) na - 6.0 - 6.0
cloth (10l) na - 38 - 44
water (10r) na - 37 - 44

Table 1: Single-ray casting performance in fps. We indicate the figure
illustrating each function where available. We compare the SSE IA
implementation of Knoll et al. [13] on four 2.33 GHz cores; and our
IA and RAA implementations on the G80 GPU, using a common
ε = 2−11. The last column shows frame rate at the lowest ε yielding
visually correct results, using either IA or RAA.
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5.1 Performance
Table 1 shows base frame rates of a variety of implicits using single
ray-casting and basic Phong shading. Performance on the NVIDIA
8800 GTX is up to 22× faster than the SSE method of Knoll et
al. [13] on the 4-core Xeon 2.33 GHz CPU workstation. Frame rate
is determined both by the bound tightness of the chosen inclusion
extension, and the computational cost of evaluating it. In practice,
the order of the implicit has little impact on performance. Equations
for most functions can be found in [13] and [30].

IA vs RAA: For typical functions with fairly low-order coef-
ficients and moderate cross-multiplication of terms, reduced affine
arithmetic is generally 1.5−2× faster than interval arithmetic. For
functions with high bound overestimation, such as those involv-
ing multiplication of large polynomial terms (the Barth implicits)
or Horner-like forms, RAA is frequently 3 to 4 times faster. Con-
versely, thanks to an efficient inclusion rule for integer powers, IA
remains far more efficient for superquadrics, as evident in Table 1.
As explained in Section 4.4, IA is currently required for extensions
of division, transcendentals, and fractional powers.

ε = 2−6 2−8 2−10 2−12

IA 63 fps 34 fps 19 fps 13 fps

RAA 80 fps 64 fps 59 fps 56 fps

Figure 4: IA (top) and RAA (bottom) at various ε

Precision and Quality: Concerning visual quality and robust-
ness, our findings for IA are generally in line with those of the
CPU implementation of Knoll et al. [13]. For the analytic functions
it supports, and particularly pathological cases for IA, RAA usu-
ally converges far more quickly to the correct solution, given lesser
bound overestimation at low precision ε . In addition, refining ε

has little impact on frame rate once RAA has effectively converged
(Fig. 4).

Figure 5: Fine feature visualization in the Steiner surface. Left to
right: shading with depth peeling and gradient magnitude coloration;
close-up on a singularity with IA at ε = 2−18; and with RAA at the
same depth.

Correctness and Robustness: As it entails more floating-point
computation than IA, RAA has worse numerical conditioning. This
is particularly noticeable with more precise ε . Fig. 5 illustrates the
challenge in robustly ray tracing the Steiner surface with IA and
AA. Both inclusion methods identify the infinitely thin surface re-
gions at the axes, but fairly precise ε < 2−18 is required for correct
close-up visualization of these features. Affine arithmetic yields a

tighter contour of the true zero-set than IA, but with some speckling
artifacts. Nonetheless, both IA and RAA yield more robust results
than non-inclusion ray tracing methods [14], or inclusion-based ex-
traction [19] on the teardop (Fig. 6a).

Figure 6: Shading Effects. Top left to bottom right: (a) shadows on
the teardop (40 fps); (b) transparency on the klein bottle (41 fps);
(c) shadows and multiple isovalues of the 4-Bretzel (18 fps); and (d)
the tangle with up to six reflection rays (44 fps).

5.2 Shading Modalities

As our algorithm relies purely on ray-tracing, we can easily sup-
port per-pixel lighting models and multi-bounce effects, many of
which would be difficult with rasterization (Fig. 6). We briefly de-
scribe the implementation of these modalities, and their impact on
performance.

Shadows: Non-recursive secondary rays such as shadows are
straightforward to implement. Within the main fragment program,
after a successfully hit traversal, we check whether ~N ·~L > 0, and if
so, perform traversal with a shadow ray. To ensure we do not hit the
same surface, we cast the shadow from the light to the hit position,
and use their difference to reparameterize the ray so that t = [0,1],
as for primary rays. Shadows often entail around 20−50% perfor-
mance penalty. One can equally use a coarser precision for casting
shadow rays than primary rays. With RAA, contour overestimation
is seldom a problem even at ε > .01; this can decrease the perfor-
mance overhead to 10−30%.

Transparency: Transparency is also useful in visualizing im-
plicits, particularly functions with odd connectivity or disjoint fea-
tures. With ray tracing, it is simple to implement front-to-back,
order-independent transparency, in which rays are only counted as
transparent if a surface behind them exists. Our implementation
lets the user specify the blending opacity, and casts up to four trans-
parent rays. This costs around 3× as much as one primary ray per
pixel.

Multiple Isosurfaces: One may equally use multiple isoval-
ues to render the surface. This is significantly less expensive than
evaluating the CSG object of multiple surfaces, as the implicit ex-
tension need only be evaluated once for the surface. The rejection
test then requires that any of those isovalues hit. At hit registra-
tion, we simply determine which of those isovalues hit, and flag the
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shader accordingly to use different surface colors. With no other
effects, multiple isovalues typically entail a cost of anywhere from
10−40%.

Reflections: Reflections are a good example of how built-in fea-
tures of rasterization hardware can be seamlessly combined with the
implicit ray tracing system. Looking up up a single reflected value
from a cubic environment map invokes no performance penalty.
Tracing multiple reflection rays in an iterative loop is not signifi-
cantly more expensive (20− 30%), and yields clearly superior re-
sults (Fig. 6d).
5.3 Applications

Mathematical Visualization: The immediate application of this
system is a graphing tool for mathematically interesting implicits
in 3D and 4D. Ray tracing ensures view-dependent visualization of
infinitely thin features, as in the teardrop and Steiner surfaces. It is
similarly useful in rendering singularities – Fig. 7 shows the Barth
sextic and decic surfaces, which contain the maximum number of
ordinary double points for functions of their respective degrees in
R3.

Figure 7: The Barth sextic and decic surfaces.

Figure 8: 4D sigmoid blending of the decocube and a sphere, with
interpolation and extrapolation phases, running at 33−50 fps.

Interpolation, Morphing and Blending: Implicits inher-
ently support blending operations between multiple basis functions.
Such forms need only be expressed as an arbitrary 4D implicit
f (x,y,z,w), where w varies over time. As ray-tracing is performed
purely on-the-fly with no precomputation, we have great flexibility
in dynamically rendering these functions. Useful morphing meth-
ods include product implicits, linear interpolation between surfaces;
and gaussian or sigmoid blending, shown in Fig. 8 between the de-
cocube and the sphere.

Constructive Solid Geometry: Multiple-implicit CSG ob-
jects can accomplish similar effects to product surfaces and sigmoid
blending, but with C0 trimming. In particular, CSG intersection al-
lows us to specify 3-manifold level sets as arbitrary conditions over
an implicit or set of implicits. Given an implicit f (ω) and a condi-
tion g(ω), inclusion arithmetic allows us to verify g+ = {g(ω) > 0}
or g− = {g(ω) < 0}, given the interval form of the inclusion exten-
sion G over an interval domain ω ⊆Ω. Then, one can render f ∩g+
or f ∩ g− for arbitrary level sets of g. By determining which level

Figure 9: CSG surfaces using level-set conditions.

sets are intersected inside the traversal, we can shade components
differently as desired (Fig. 9).

Figure 10: Sinusoid procedural geometry for dynamic simulation of
cloth and water. With IA, these surfaces render at 38 and 37 fps
respectively.

Procedural Geometry: Implicits have historically been non-
intuitive and unpopular for modeling large-scale objects. However,
the ability to render dynamic surfaces and natural phenomena us-
ing combinations of known closed-form expressions could prove
useful in modeling small-scale and dynamic features. Sinc expres-
sions, for example, define closed-form solutions of simple wave
equations for modeling water and cloth (Fig. 10). Previous applica-
tions of implicit hypertextures focused on blended procedural noise
functions [20, 7]. Recently, implicits based predominately on gen-
eralized sinusoid product forms similar to that in Fig. 1 have been
used within some modeling communities [11]. Arbitrary implicits
are intriguing in their flexibility, and ray tracing promises the ability
to dynamically render entire new classes of procedural geometries,
independently from any polygonal geometry budget.

6 CONCLUSION

We have demonstrated a fast, robust and general algorithm for ren-
dering implicits on the GPU. Performance was achieved by de-
vising a stackless-recursion ray traversal algorithm; and a shader-
language implementation of a generally correct reduced affine arith-
metic, which improves performance for complex functions with
high bound overestimation. We have shown the flexibility and po-
tential of this approach for mathematical function visualization and
rendering of procedural geometry.

Some drawbacks should be noted. While general, correct and
fast, IA/AA methods still require copious computation compared
to other approaches involving basis approximations, distance func-
tions, or point sampling. A comprehensive comparison using op-
timized implementations of these methods would be useful. Also,
while robust per-ray, our system ignores aliasing issues on bound-
aries and sub-pixel features. To robustly reconstruct the surface
between pixels, one would require beam tracing and likely super-
sampling.

Many extensions to this implementation would be useful. Fur-
ther development of approximating regression operations for RAA
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could allow for correct and fast affine extensions of transcendental
functions and their compositions. Of more general importantance
would be support on the application front-end for point, mesh or
volume data, which could then be filtered and reconstructed by ar-
bitrary implicits. This could be accomplished either by extending
the rasterization system and restricting the application to ray cast-
ing; or by attempting a full ray-tracing system, with hierarchical
acceleration structures, for the fragment shader. Though applied
here to general implicits, inclusion methods could potentially be
employed in rendering arbitrary parametric or free-form surfaces.
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