
1

Packet-based Ray Tracing of Catmull-Clark

Subdivision Surfaces

Carsten Benthin
∗
, Solomon Boulos

†
, Dylan Lacewell

‡
and Ingo Wald

§
∗
Intel Corporation

†
School of Computing, University of Utah

‡
Walt Disney Animation Studios

§
SCI Institute, University of Utah

UUSCI-2007-011

Scientific Computing and Imaging Institute
University of Utah

Salt Lake City, UT 84112 USA

July 31, 2007

Abstract:

Subdivision surfaces are the modeling primitive of choice for most production studios. Scanline
rendering of subdivision surfaces via tessellation is relatively straightforward due to the in-order
nature of the geometry processing, but directly ray tracing them is more complicated. Intersecting
a single ray with a patch of faces requires that the patch be subdivided to a sufficiently dense
level; in a naive implementation this process is repeated for every ray that hits the same patch. To
amortize the cost of subdivision, previous approaches have either pre-tessellated the entire scene
and traced it as triangles (often requiring a large amount of memory), or tessellated parts of the
scene on demand and cached them. In this paper, we propose an approach that instead uses large
packets to amortize the cost of subdivision. The proposed method performs competitively with
pre-tessellation, outperforms a single-ray implementation by up to 16× and Pixars PRMan by up
to 11×.

Packet-based Ray Tracing of Catmull-Clark Subdivision Surfaces
Carsten Benthin† Solomon Boulos� Dylan Lacewell‡ Ingo Wald∓†

†Intel Corporation �School of Computing, University of Utah ‡Walt Disney Animation Studios ∓SCI Institute, University of Utah

Figure 1: Direct ray tracing of a complex subdivision surface scene containing 1.79M base faces, from Disney’s Meet the Robinsons (c). Left: For
reference, production rendering using Pixar’s PRMan. Center: Pure ray casting of the subdivision surfaces (no water or skydome) with simple
shading. Using 5 levels of uniform subdivision, we can render this frame at 2.2 frames per second on a 2.0 GHz dual-CPU Core 2 Quad MacPro
(8 cores total, 1384×757 pixels). Right: Using an adaptive subdivision scheme at comparable quality at 4.8 fps (red = 5 subdivisions; green = 4,
blue = 3, cyan is crack fixing).

ABSTRACT

Subdivision surfaces are the modeling primitive of choice for most
production studios. Scanline rendering of subdivision surfaces via
tessellation is relatively straightforward due to the in-order nature
of the geometry processing, but directly ray tracing them is more
complicated. Intersecting a single ray with a patch of faces re-
quires that the patch be subdivided to a sufficiently dense level; in a
naive implementation this process is repeated for every ray that hits
the same patch. To amortize the cost of subdivision, previous ap-
proaches have either pre-tessellated the entire scene and traced it as
triangles (often requiring a large amount of memory), or tessellated
parts of the scene on demand and cached them. In this paper, we
propose an approach that instead uses large packets to amortize the
cost of subdivision. The proposed method performs competitively
with pre-tessellation, outperforms a single-ray implementation by
up to 16× and Pixar’s PRMan by up to 11×.

1 INTRODUCTION

Subdivision surfaces have become the standard modeling tool for
creating smooth surfaces. Many rendering systems choose to fol-
low the REYES system [9] and render subdivision surfaces through
dense tessellation. For scanline methods, this solution is very ef-
ficient because the finely tessellated geometry can be thrown away
immediately after use. For ray tracing, however, any portion of the
scene may be required by any ray, so dense tessellation usually re-
quires a caching system due to the large amount of data.

Despite the large amount of polygons required to render a subdi-
vision surface with adequate smoothness, the initial coarse mesh
(“base cage”) is relatively compact even for large production
scenes. This suggests that there is promise for ray tracing sub-
division surfaces without extensive caching if intersection can be
made efficient. Geometry caches make intersection more efficient
in terms of CPU usage, but also increase memory bandwidth, a
resource which historically has grown at a slower rate than process-
ing power. Geometry caches also complicate parallel ray tracing on

today’s multi-core architectures, since caches have to be synchro-
nized or replicated between processors. Read only access to the
base cages in a direct intersection method is therefore more attrac-
tive by comparison.

In this paper, we demonstrate that it is possible to efficiently support
direct ray tracing of Catmull-Clark subdivision surfaces without a
geometry cache. We instead rely on ray packets to provide a sim-
ilar amortization benefit but with lower memory bandwidth. Due
to the depth-first traversal of the implicit hierarchy created during
patch subdivision we use only kilobytes of memory, which fits in
the processor’s cache hierarchy. Compared to either single ray or
caching schemes, our packet traversal provides significant speedups
even for complicated production level scenes (see Figure 1).

In Section 2, we provide an overview of the specific subdivision
rules needed for production scenes. We also discuss recent progress
in interactive ray tracing, and specifically discuss ray tracing of
higher order surfaces. In Section 3, we detail our approach and
discuss implementation details. We demonstrate the effectiveness
of our packet based approach in Section 4 where we compare to
Pixar’s geometry caching system [7], the Razor system [23], and
our own single ray implementation.

2 BACKGROUND

2.1 Subdivision surfaces

Subdivision surfaces define a smooth limit surface by recursively
subdividing a polygonal mesh, called either the control mesh or
base cage. Various subdivision rules have been proposed (e.g., [5,
12, 14, 29]), but Catmull-Clark subdivision has become the most
common scheme in production rendering since it was adopted by
Pixar [10]. This subdivision scheme is well supported in commer-
cial modeling tools such as Maya.

Catmull-Clark subdivision

Catmull-Clark (CC) subdivision surfaces generalize bicubic B-
spline surfaces. The limit surface is C2 smooth except at extraor-
dinary vertices (vertices with valence not equal to 4). For detailed
background information, the recent SIGGRAPH course notes [30]
are an excellent primer. We will focus on the properties most rele-
vant to our implementation.

To refine one mesh Mi into another Mi+1, the Catmull-Clark sub-
division rules are as follows (also see, e.g., [10]):

1. Create new face points. For each face, compute it’s centroid,
and add it as a new face point f i+1.

2. Create new edge points. For each edge compute a new edge
point ei+1

j by averaging it’s two vertices vi
j, vi

j+1 and the mid-

points f i+1
j and f i+1

j+1 of its two neighboring faces.

3. Refine vertices. For each vertex vi, the new vertex vi+1 is
the weighted average of the adjacent edge points ei

j, all face

points f i+1
j of faces incident to this vertex and vi itself.

4. Generate new mesh by connecting each new face point f i+1

to all of its surrounding new edge ei+1 and vertex points vi+1.

This already suggests the cost of a subdivision step. Each face pro-
cessed needs to compute a new vertex, each edge produces another
vertex, and each original vertex computes another averaged point.
The rules also demonstrate the local nature of subdivision: only a
small neighborhood of a face (its 1-ring) is needed to determine the
refined faces at the next level.

Though not obvious from the simple rules above, CC subdivision
yields a number of nice properties after only one round of subdivi-
sion. All faces become quads, and except for boundaries, only one
vertex of a quad can have a valence not equal to 4. Also, CC sub-
division is invariant under affine transformations and so can be ap-
plied component-wise. This means that any data we wish to define
at the vertices can be interpolated according to subdivision rules
across the surface. Like many researchers, we use these features of
CC subdivision to optimize and simplify our implementation.

In addition to the original rules above, later researchers added
boundary conditions to handle open-meshes and “sharpness rules”
to allow for semi-sharp creases [10]. Alternatively, artists also com-
monly duplicate edges on the base mesh and place them near one
another to simulate a semi-sharp crease. For example, the Disney
scene in Figure 1 contains no labeled “crease” edges, but appears to
have sharp lines. Pixar’s PRMan further supports tagging individ-
ual faces of a subdivision mesh as “holes” which are not visible but
influence the surrounding geometry. The scene in Figure 1 makes
extensive use of this feature.

2.2 Interactive ray tracing

Researchers have demonstrated the feasibility of interactive ray
tracing in many settings over the last decade. With the supercom-
puter work by Parker et al. [18] and then later for commodity hard-
ware with SIMD by Wald et al. [27]. Extending this trend beyond
simple hardware gains, Reshetov et al. [21] demonstrated a novel
use of packets that allowed kd-trees to achieve amortization beyond
SIMD speedups alone. Wald et al. [24, 25] then presented a pair of
algorithms that handle dynamic scenes while also including new
packet based approaches that go beyond SIMD speedups alone.

In the packet based approaches, gains beyond single ray are only
achieved when the rays within packets follow the same traversal
path. In the case of primary rays and coherent shadow rays, the pre-
vious papers demonstrate excellent amortization results for packet
tracing. As noted by Reshetov [20], the speedups gained by recent
work in packets may not apply to more general ray tracing. Bou-
los et al. [4] recently demonstrated, however, that bounding volume
hierarchies still allow for both SIMD and algorithmic speedups for
both Whitted style and distribution ray tracing [8].

In all of these packet approaches, the gains of using packets is
strongly linked to the cost of the repeated operation. If a packet
is used to amortize only a few inexpensive operations (e.g., kd-tree
plane tests), there is not very much benefit in amortization. In this
paper, we demonstrate that ray packets provide an efficient way to
amortize subdivision cost, and significantly outperform a single ray
implementation.

2.3 Ray tracing higher-order surfaces

Methods for ray tracing higher-order surfaces tend to fall into two
broad categories: tessellation and direct intersection.

In a tessellation approach, the higher-order surface is diced up into
small polygons (triangles or quads). This works well for streaming
geometry in the REYES system [9] but usually requires a caching
system to support less coherent ray intersection. In Pharr et. al [19],
rays are coherently marched through a coarse scene grid and ge-
ometry is tessellated on demand and reused. Christensen et al. [7]
achieve high hit rates with a multi-resolution caching scheme, using
ray differentials to determine which level of the cache to access.

In contrast to tessellation, researchers have also demonstrated di-
rect ray intersection of smooth surfaces including Bezier surfaces,
trimmed NURBS surfaces, and subdivision surfaces. Direct ray
tracing of trimmed NURBS surfaces were demonstrated in the Utah
Interactive Ray Tracer [15, 18]. More recently, Benthin et al. [2]
demonstrated ray tracing of Bezier surfaces and Loop subdivision
with a focus on SIMD parallelism. Using multi-core systems it is
now possible to directly ray trace trimmed NURBS surfaces inter-
actively [17].

In Whitted’s original ray tracing paper [28], support for Catmull-
Clark subdivision was provided through a simple recursive method,
chosen for simplicity rather than efficiency. Kobbelt et al. [13]
present a basis function approach to building a bounding hierar-
chy over a subdivision surface and directly intersect this surface.
Mueller et al. [16] present a method to adaptively ray trace subdi-
vision surfaces. Both methods use single ray implementations and
were far from interactive even for relatively simple models.

3 RAY TRACING SUBDIVISION SURFACES

In this section, we explain how we directly intersect a ray with a
Catmull-Clark subdivision surface. We first sketch this for a single
ray and then discuss important technical issues such as handling
of boundaries, termination criteria, and tightness of bounding vol-
umes. Finally, we discuss how to extend this idea to ray packets to
improve performance.

3.1 Catmull-Clark patch intersection

We begin by separating the base mesh into individual faces and
their 1-rings, which we call “patches”. Due to the local support of
Catmull-Clark subdivision, the 1-ring is the only information re-
quired to subdivide a face.

Next we build an acceleration structure over the initial set of patches
(we use a BVH), and begin tracing rays. Once we have deter-
mined that a ray has intersected a patch’s bounding box (more on
that later), we either decide we have reached a sufficient refine-
ment level or continue to subdivide. Subdivision produces four sub-
patches assuming we have subdivided the mesh once on input, as is
commonly done.

For each of these sub-patches, we recurse until a termination cri-
terion is satisfied. A constant maximum depth is the simplest cri-

a) b) c) d)

Figure 2: a) 1-ring for a single vertex. The 1-ring of a quad consists of the union of the 1-rings of its four vertices. b) 1-ring for a regular face. The
sixteen control vertices can be stored in an efficient 4x4 layout. Explicit connectivity is not required. c) After one subdivision step, a quadrilateral
can only contain one irregular vertex. Even for irregular faces, the 4x4 layout is maintained and the 1-ring for the irregular vertex is stored as
vector of vertices separately. d) One-ring for a regular boundary face. Vertices 0 through 3 are extrapolated, e.g., v0 = 2v4− v8.

terion, which we use as a baseline, but we also describe a simple
adaptive scheme in Section 3.7.

When we reach the maximum depth, a final intersection test is per-
formed. We split the final quad (which may be non-planar) into
two triangles and perform intersection tests on each of them. For
readers that would like to skip some of the details and simply see
an algorithm, please refer to Algorithm 1.

This simple method is straightforward to implement and completely
general, although we have not yet presented all the technical details,
such as how to determine a tight bounding volume for a patch. The
single-ray approach serves as a useful baseline for comparison to
our more efficient packet approach in Section 4.

3.2 Efficient data layout

At first glance, it may seem like storing each patch separately is in-
efficient. However, the vast majority of faces on a mesh are regular
(each vertex has valence 4) and form a 4×4 grid as shown in Fig-
ure 2 (b). For this common case, connectivity is implicit; we only
need to store the 16 vertices. Irregular faces as shown in Figure 2
(c) are relatively rare, and their relative occurrence decreases with
the amount of subdivision applied. Furthermore, a face can have at
most one extraordinary vertex (EV), so the case illustrated is really
the only case, up to rotation and valence of the EV. We only need
to store the index and 1-ring of the EV separately.

For quads on the boundary of the mesh, we take advantage of ex-
trapolation to store the “virtual” 1-ring in our efficient 4× 4 for-
mat (see Figure 2d). Extrapolation produces a B-spline boundary
by canceling terms in the bicubic B-spline; this allows us to treat
boundary cases as regular subdivision and avoid more complicated
control flow.

In order to ensure high data locality we store the 1-ring for each
patch in a continuous memory region. Moreover, all vertices are
stored using aligned SIMD vectors (each of which is 4 floats). As
we wish to support texture coordinates, we allow each vertex to
represent a 5-tuple (x,y,z,s, t). Because of the SIMD requirement,
we end up storing this as 2 SIMD vectors.

Sometimes, however, rays only need to compute intersections with-
out regard to texture coordinates (e.g. shadow rays). In this case, we
subdivide only the first SIMD vector corresponding to the position
information. This can lead to almost a 2× speedup for these rays
and we make use of this in our implementation when possible (see
Section 4 for more concrete results).

3.3 Tight bounding volumes

As with any acceleration structure, tighter bounding volumes pro-
duce better traversal results. In this case we seek a tight bounding

box for the limit surface of a patch. From subdivision surface the-
ory, the only guarantee that can be made is that the convex hull of
the patch bounds the limit surface. By extension, an axis aligned
bounding box of the patch also bounds the limit surface. However,
the convex hull contains the full one-ring around the current patch,
and so is usually very large (for a regular mesh, it’s roughly 9× the
size of the eventual limit surface). Since the probability of random
ray hitting a box is proportional to its surface area, these boxes are
not very efficient to use for ray tracing.

In our system, we instead utilize a “look-ahead” scheme, based on
a nesting property: since we seek to bound the limit surface, we
may replace the bounds for a patch with the combined bounds for
its child patches. As part of reading the model, we subdivide each
patch a fixed number of times before calculating its bounding box.
This greatly reduces the overlap of bounding boxes for neighboring
patches and reduces the average number of intersections per packet
by up to an order or magnitude for some scenes.

3.4 Amortization using packets

The cost of a subdivision step in the modified Catmull-Clark
scheme is fairly high. Even in the regular case (see Figure 2b),
we must compute 9 new face vertices, 12 new edge vertices, and 4
new vertex positions. This maps well to an efficient SIMD imple-
mentation, but the computational costs are still large.

Extending this traversal algorithm is fairly straightforward for the
recursive subdivision method; its behavior with respect to culling
and first hit probabilities seems to remain roughly the same as in the
triangular case, as can be seen when comparing the culling proba-
bilities in Table 1 with those in [24]. Arguably, the benefit of early
culling is higher for subdivision surfaces, as we save more by avoid-
ing a subdivision step than by avoiding a triangle intersection.

As with any packet-based method, the packet size strongly corre-
lates with performance. If the number of rays within the packet is
too small, the costs for subdivision cannot be efficiently amortized.
On the other hand, a larger number of rays in a packet usually ex-
hibit less coherence and culling efficiency is greatly reduced. In our
case a packet size of 64 rays shows the best relation between culling
efficiency and amortization, which is in line with previous findings
for triangular scenes [24].

3.5 Final intersection

When the termination criteria is reached a final intersection step is
performed. Our approach separates the final quadrilateral, which
might not be planar, into two triangles which are intersected se-
quentially. As triangle intersections are typically more expensive
than ray-box intersections, we first shrink the packet by determin-
ing both the first and the last index of rays in the packet which inter-
sect the current bounding box [24]. Triangle intersections are then

Scene Killerroo Forest Disney
BVH Traversals 25.09 54.39 72.21
BVH Leaf Intersections 2.71 7.77 30.19
Subdivisions 12.54 35.49 803.48
- regular 11.99 35.26 797.55
- irregular 0.54 0.23 5.93
AABB Culling Tests 79.87% 61.04% 48.98%
- Early Hit Tests 25.82% 26.77% 17.72%
- IA Culling Tests 54.06% 34.27% 31.26%
Final Intersections 8.64 20.66 119.64
- Active SIMD packets 3.65 2.14 1.71

Table 1: Traversal stats for a ray packet size of 64 rays (max. 16
active SIMD packets) using a predefined subdivision level of 5 (1+4).
Each frame is rendered using ray casting (primary rays only) and
uses approximately 1M rays.

only performed for these active rays. It is still more likely for a ray
to miss a triangle than to hit it, so we perform an inside-outside test
before the distance test [1], typically resulting in a 5-8% speedup.

3.6 Pseudo-code and implementation details

Algorithm 1 shows the pseudo code for our patch intersection al-
gorithm. As vertices are stored in a SIMD-friendly layout, the
bounding box for each patch can be computed by a sequence
of SSE-min/max operations. In combination with the SIMD-
implementation of the BVH-first hit and BVH-interval culling test,
a patch can be either chosen for subdivision or quickly culled.

During intersection, we must maintain a stack of patches that need
to be subdivided. Essentially these patches are like nodes in a stan-
dard BVH, but the subdivision rules lead to a branching factor of
4. Each patch is fairly small, however, so the full stack for a rea-
sonable number of subdivisions requires only a few KB of storage.
Therefore we don’t bother pre-allocating the stack for each thread.
As regular and irregular patches have a slightly different memory
layout, the subdivision code checks the type and branches to differ-
ent optimized versions of the “Subdivide” method.

Algorithm 1 Pseudo C++ code for our on-the-fly subdivision inter-
section. Sub-patches are processed in a depth-first manner which
limits the size of the subdivision stack to four times the maximum
subdivision level. As the stack typically requires only a few KB of
memory, it can be resident within the CPU’s L1 cache.

while true do
if stack.isEmpty() == true then

break
currentPatch = stack.pop()
Bounds box = currentPatch.GetBounds()
if box.CulledByIATest(rayPacket) == true then

continue
if box.FirstHitTest(rayPacket) == false then

if box.AnyRayBoxIntersection(rayPacket) == false then
continue

if currentPatch.depth == maximumDepth then
currentPatch.FinalIntersection(rayPacket)

else
Patch sub[4]
currentPatch.Subdivide(sub)
stack.push(sub,4);

3.7 Adaptive subdivision

A fixed subdivision level is not efficient for scenes with a large
range of depth values, where a single resolution is too low for ob-
jects near the camera, but too high for distant objects. When ren-

dering from a known camera position it may be possible (although
tedious) for an artist to assign a subdivision level to each object;
this is not possible in interactive applications.

Some researchers have used adaptive metrics based on ray distance
to assign a subdivision level automatically to small units of geom-
etry (e.g., patches in our system). Since the subdivision level is
discrete, cracks can appear between adjacent patches with different
levels (see Figure 3). Cracking becomes worse if the subdivision
level is allowed to vary along a ray; this can produce “tunneling”,
or cracks between sub-patches within a single initial patch [23].

Like Christensen et al. [7] we avoid tunneling by using a fixed sub-
division level for an entire patch, although instead of ray differen-
tials we use a cheaper distance metric: level = log2 (αd/D), where
d is the diameter of the bounding box for the scene, D is the min-
imum distance from the camera to the center of the patch, and α

is a user parameter for the scene. We threshold this level value to
determine which of three levels to use: coarse, medium, or fine.
If adjacent patches have two different subdivision levels then we
stitch cracks on the lower resolution patch as shown in Figure 3.

Figure 3: Adjacent patches are subdivided to different depths, so
cracks might appear at T-vertices. We fix cracks by creating triangle
fans at border sub-patches (green). No crack fixing needs to be done
for interior sub-patches (red).

4 RESULTS

In this section, we evaluate our algorithm’s performance for a set of
test scenes against Pixar’s PhotoRealistic Renderman (PRman) [6].
We will compare each different approach under a variety of ren-
dering types: ray casting with simple shading, ray casting with
shadows, and general Whitted style ray tracing with 1 bounce of
reflections. The ray casting results will establish our best possi-
ble performance, while each refinement upon that (shadows and
then reflections) further steps along the continuum from coherent
towards incoherent ray distributions.

4.1 Comparison methodology

We have chosen a mix of scenes with wildly varying complexity:
a simple floating object (the Killerroo, 12K faces), the forest scene
from the Razor paper (122K faces), and a large, real-world produc-
tion scene (1.8M faces) as shown in Figure 4. The Killerroo and
Forest scenes are both rendered at a resolution of 1024×1024 pix-
els, while the Disney scene is rendered at a resolution of 1384×757
pixels to maintain an appropriate aspect ratio.

We have identified five major approaches for rendering these
scenes: PRMan’s geometry caching system, pre-tessellation, a
highly optimized single-ray implementation, the Razor system, and
our packet approach. Since pre-tessellation is conceptually differ-
ent, we will discuss it at the end, and focus first on “true” subdivi-
sion surface based ray tracing.

Single-Ray. The single-ray implementation uses the same SIMD-
optimized subdivision kernel as the ray-packet approach. Similar

Figure 4: The “killerroo” (12.1K base quads), the “Forest” scene
(122K base quads) and the “Disney” scene (1.8M base quads). In
these examples, we use a fixed subdivision depth of 5 with 1 subdivi-
sion performed as a model preprocess. The scenes then have geo-
metric complexity equivalent to 6.2M, 62.5M, and 918M triangles. On
a single 2 GHz core, these examples run at 1.7, 3.92, and 6.98 sec-
onds per frame, casting primary rays and performing subdivision for
8-tuples. For 4-tuples the scenes render at 0.96, 1.92, 3.54 seconds
per frame (of approximately 1M rays)

to our packet approach it performs on-the-fly subdivision until a
predefined or adaptively selected depth is reached.

PRMan. To compare to PRMan, we place a front-plane in the scene
and use a Renderman surface shader which shoots primary rays us-
ing the trace shade-op. This also allows us to accurately determine
tracing time as PRman reports statistics for the total “shading time”
separate from other setup values. Unfortunately, there is no way
(that we know of) to definitively compare PRMan’s adaptive sub-
division quality to our uniform subdivision case. Instead, we have
chosen uniform subdivision levels for each scene that appear to pro-
duce similar continuity in the surface normal. Those tests implied a
higher subdivision level than we would have guessed from simply
determining the number of micropolygons generated in relation to
the input geometry.

We also attempted to use the new multi-threading feature in
PRMan, but only found reduced performance when using this fea-
ture. Consequently, all comparisons between our approach and
PRMan use only a single core for both systems.

Razor. For Razor, we do not have access to the system to run com-
parisons and thus have to rely on the data available from the original
paper. Unfortunately, we also run into the same problem as when
comparing to PRman: differences in adaptive subdivision schemes
prevent easy direct comparison. We provide a set of subdivision
levels to allow the reader to decide but also point out which one we
believe matches most closely.

The data in the most recent Razor paper [11] only presents Catmull-
Clark subdivision results for the “Forest” scene. The rendering
method used for that setup is ray casting with shadows, so we will
only have a single point of comparison with the Razor system. We
hope to be able to conduct a more detailed comparison with the
Razor system at some point in the future. For now, however, most

comparisons will be between our single ray implementation, our
packet implementation and Pixar’s PRman.

Hardware Setup. All of our results are run on a system with 9GB
of memory and two Core 2 Quad 2.0GHz processors. None of our
scenes utilizes very much of that memory, however (the “Disney”
scene uses approximately 1.1GB). As noted earlier, when compar-
ing our results to PRman we will use only a single core. When only
comparing our system to itself or to Razor we will use all 8 cores.

4.2 Ray casting with simple shading

We begin by comparing ray casting performance with only simple
local shading. As demonstrated in Table 2, packets of rays allow us
to perform up to 16.6× faster than a single ray implementation and
up to 5.6× faster than a single ray geometry cache. The reason for
this improvement is similar to those in previous BVH approaches:
the early hit and the interval culling test reduce the traversal cost
of the implicit BVH (see Table 1). Note that each traversal step in
our subdivision surface intersection is much more expensive than a
regular BVH system would use, so the savings are larger.

To demonstrate the large cost of subdivision, we complete the tests
for both 4-tuple (position only) and 8-tuple (position and texture)
subdivision. As mentioned earlier, working on 4-tuples is signifi-
cantly more efficient on a 4-wide SIMD architecture than working
on 8-wide tuples, translating to significant savings in the subdivi-
sion step. For the single-ray implementation—which is dominated
by the subdivision cost—this translates to a 3× higher performance;
for the packet code—which partially hides the subdivision cost—
the savings is somewhat less, but still significant, at roughly 2×.

Even for the more expensive 8-tuples, however, we are 2.4−5.6×
faster than PRMan geometry caching, and about 5− 15× faster
than single ray traversal. In particular, our performance advantage
increases for realistically complex scenes, making us outperform
PRMan in the Disney scene by 5.6× and 11× for 8-tuples and 4-
tuples, respectively. Though production rendering obviously does
need the texture information, the faster 4- tuple case can still be ap-
plied for shadow rays which may dominate the total number of rays
during rendering.

Scene Absolute time speedup over
packet single PRMan single PRMan

4-tuple
Killerroo 0.96 5.50 4.23 5.7x 4.4x
Forest 1.92 5.62 19.43 2.9x 10.1x
Disney 3.54 37.70 39.03 10.7x 11.0x

8-tuple
Killerroo 1.70 16.40 4.23 9.7x 2.4x
Forest 3.92 19.47 19.43 5.0x 5.0x
Disney 6.98 115.67 39.03 16.6x 5.6x

Table 2: Ray casting performance in seconds per frame for 1M rays
with 4-tuple and 8-tuple subdivision, respectively (using 1 core). For
both packet and single-ray implementations we use a predefined sub-
division level of 5 (1+4) for all scenes to match the visual quality of
the PRMan renderings.

4.3 Ray casting with shadows

Primary rays, however, tend to exhibit higher coherence than other
types of rays. In Table 3, we investigate our performance for sec-
ondary rays with simple shadows from 2 point light sources. The
results demonstrate that packets are already beginning to lose some
ground in performance as compared to both single ray and PRman.

Figure 5: The “Disney scene” rendered using our adaptive termination criterion. In these examples, we set the maximum subdivision depth to 5
with 1 subdivision performed as a model preprocess. With all 8 cores these examples run at 2.67, 3.14, and 4.78 fps, casting primary rays and
performing subdivision for 4-tuples. For 8-tuples the scenes render at 1.2 fps, 1.4 fps, and 2.0 fps. By comparison, uniform subdivision runs at
2.2 and 1.1 fps for 4-tuple and 8-tuple subdivision, respectively.

The loss of performance versus single rays is due simply to coher-
ence, while the performance loss to PRman is due to both coherence
and PRman’s reuse of its cached data for shadow rays. This is the
intended use of PRman’s geometry cache, however, so this result is
expected. For the “Disney” scene there are still some areas of large
coherence due to large base cages on some of the buildings. This
allows the packets to remain more competitive with the single ray
and PRman approaches for this scene. We believe this is a useful
point to consider as the “Disney” scene is the only one that was “de-
signed” for subdivision while the others are more or less converted
versions of triangle scenes.

Scene Absolute time speedup over
packet single PRMan single PRMan

Killerroo 4.48 21.43 5.47 4.8x 1.2x
Forest 9.40 30.54 27.99 3.2x 3.0x
Disney 13.35 174.56 53.64 13.1x 4.0x

Table 3: Rendering performance in seconds per frame including
shadows from 2 point lights. For all scenes, shadow rays use 4-
tuples for subdivision while primary rays use 8-tuples.

4.3.1 Comparison to Razor

This particular setup—ray casting with two point lights—is also the
only one that allows for direct comparison to Razor. This scene is
the only one presented in the Razor paper that uses Catmull-Clark
subdivision. While Razor does provide three renderings of this
scene using different quality setups, our system has not yet been
extended for distribution ray tracing so we can only compare to the
ray casting with shadows case.

We modify our standard test case of 1024×1024 rays to match the
original Razor test of 512× 512. In Table 4 we demonstrate per-
formance for this test for a number of subdivision levels (for com-
pleteness). Due to the subdivision performed on input, we believe
that a subdivision level of 3 matches the Razor subdivision amount
most closely.

Level Absolute time speedup
packet Razor

1 13.81 .82 16.8x
2 8.69 .82 10.6x
3 4.29 .82 5.2x
4 2.23 .82 2.7x

Table 4: Ray casting with shadows for the Forest scene used by
Razor. The frame size is 512×512 using 8-cores with shadows from
two point lights. All values are frames per second and the Razor
result has been scaled to match our 2.0GHz processor.

As compared to Razor [11], we are using a similar processor but
at a lower clock rate (2.0GHz vs 2.66GHz). To take into account
this frequency difference, we have scaled their result to match our

clock. Depending on which level of subdivision is chosen, we are
anywhere between 2.7 and 16.8× faster than Razor for this setup.
Though the entire comparison is too “apples-and-oranges” to be
conclusive, the overall point is that our approach is at least highly
completive and apparently significantly faster. In particular we note
that this is only one scene and that Razor is designed to be a distri-
bution ray tracer not a ray caster with point light shadows.

4.4 Whitted style ray tracing

While primary and shadow rays are commonly believed to be
highly coherent, ray distributions including specular reflections
may behave quite differently [4, 20]. While our system does not
have actual production shaders to compare to, we have included a
port of the diffuse/specular model used by Boulos et al. [4]. We
have currently only focused on single bounce reflections, but hope
to do more extensive secondary ray comparisons in the future.

As can be seen from Table 5 we outperform PRMan by about
1− 2.5×. As expected, PRman’s geometry cache performs better
and better in relation to our approach as coherence decreases. Com-
pared to our single-ray implementation, the packet performance ad-
vantage is roughly 3−8×. This is somewhat lower than for primary
rays, but clearly indicates that the our approach is not limited to
primary rays only. In particular, we maintain an 8× performance
advantage even for the Disney scene, in the presence of both less
coherent packets and incredibly fine geometry (adaptive subdivi-
sion is not used).

Scene Absolute time speedup over
packet single PRMan single PRMan

Killerroo 7.70 38.08 7.58 4.9x 1.0x
Forest 21.28 66.99 52.63 3.1x 2.5x
Disney 33.88 268.02 66.59 7.9x 2.0x

Table 5: Rendering performance in seconds per frame including
shadows from 2 point lights and 1 bounce reflections. Note that
shadow rays are cast for both primary and reflected hit points.

4.5 Adaptive subdivision.

In comparing to PRman and our single ray implementation, we have
only considered uniform subdivision so far. To demonstrate the
possible benefit that adaptive subdivision may provide, we compare
uniform subdivision to our simple adaptive heuristic for varying
subdivision depths in Table 6. We have chosen to focus on the
Disney scene as it has enough depth variability to allow for a useful
demonstration.

Table 6 also demonstrates the linear increase in rendering time for
our subdivision method. This is due to ray tracing’s logarithmic
behavior applied to a scene that grows by a factor of 4× for every
subdivision step. Our simple adaptive criteria seems to regain about
a 2× speedup which suggests it is only performing approximately

Subdiv ray casting shadows
level uniform adaptive speedup uniform adaptive speedup

2 0.0423 0.0357 1.2x 0.1117 0.0993 1.1x
3 0.0924 0.0528 1.8x 0.2559 0.1719 1.5x
4 0.2155 0.1023 2.1x 0.6061 0.3624 1.7x
5 0.4470 0.2083 2.1x 1.2384 0.7298 1.7x

Table 6: Uniform vs adaptive subdivision depth for the “Disney”
scene, using 4-tuple subdivision for ray casting (left half) and ray
casting with shadows (right half). The adaptive results correspond
to the rendering in Figure 1 and Figure 5 right.

one level of subdivision less than the uniform case. Following the
trend in the previous results, adding shadows decreases the overall
gain to approximately 1.7× (while not explicitly shown in the table,
adding reflections decreases it further to approximately 1.5×).

As we can see from the chosen levels (Figure 1 and Figure 5 right), a
large portion of the geometry uses the finest level of subdivision (5)
as the uniform case. Another reasonable portion uses the medium
level (4), and only very distant objects use the coarsest level (3).
The crack fixing logic introduces overhead, so our currently modest
gains are understandable.

4.6 Comparison to pre-tessellation

For many models, it may be feasible to simply subdivide the model
as a preprocess and directly ray trace the resulting triangles. An
obvious question for our on-the-fly scheme is how close rendering
performance compares to ray tracing a pre-tessellated result.

Since each additional level of subdivision quadruples the triangle
count of the pre-tessellated model, we have performed this com-
parison only with a relatively coarse base mesh–the Killerroo. At
12K base quads, the equivalent number of triangles after 3 levels of
subdivision is already 1.55M triangles (12K ∗43 ∗2).

As can be seen from Table 7, our implementation is somewhat
slower than tracing a pre-tessellated model. This is not surprising,
since we eventually intersect exactly the same triangles, but have
to generate them on the fly. Also, the BVH over the base cages is
naturally looser and has more subtree overlap than in the tessellated
case. With this in mind, the performance difference is surprisingly
small (5-70% depending on subdivision amount). This is partic-
ularly interesting when we consider that the memory use for our
approach is only a small fraction of that used for tessellation (see
caption for Table 7). For “real” scenes like the Disney scene, full
pre-tessellation would far exceed available memory.

subdiv. number of Frames per second speedup
level triangles tessellated direct

1 97K 10.4 9.87 1.05
2 398K 6.15 4.99 1.23
3 1.55M 3.17 2.19 1.44
4 6.23M 1.75 1.04 1.68

Table 7: Our direct Catmull-Clark subdivision surface ray tracing
method vs. ray tracing a pre-tessellated model, for the Killerroo scene
with ray casting and 4-tuple subdivision. For every subdivision step
the number of triangles quadruple. Assuming a (rather low) size of 40
bytes per triangle, pre-tesselation for this (rather simple) model would
require more than 240 MB storage space; for the Disney scene, it
would be roughly 40GB triangle data alone.

5 DISCUSSION

In this paper, we have presented an approach to ray tracing subdi-
vision surfaces using packets of rays. For the sake of simplicity, we
have so far ignored several important issues such as how to support
displacement maps, crease surfaces, or animated models. We now

briefly discuss some open problems with our current approach and
potentially interesting design alternatives.

Adaptive subdivision using a more advanced metric would prob-
ably provide us with greater performance gains than we have al-
ready demonstrated. As pointed out in Section 4, we needed to use
a subdivision depth of 5 in order to match the quality that PRMan
produced for the Disney scene. While our performance when com-
pared to PRman for this scene is still approximately 5× faster for
ray casting, we believe that a more advanced adaptive termination
criterion would help us gain another factor of 2− 4×. Our first
results with adaptive subdivision already provide a factor of 2×.

The limit surface of a Catmull-Clark subdivision surface is usually
a regular bicubic b-spline. It might useful to exploit this property to
gain further performance. Each subdivision step in the b-spline ba-
sis should be less expensive than the more general Catmull-Clark
subdivision step and is very amenable to SIMD parallelization.
However, around an extraordinary vertex there will always be a
small area that cannot be represented in the b-spline basis (see [22]).
This limitation also holds in regions where edges or vertices have
crease weights assigned to them.

Displacement maps are commonly used in production to add high
frequency detail to subdivision surfaces. Subdivision modeling
tools like Mudbox (from Skymatter Ltd.) can export a detailed
mesh as a low resolution base cage plus a displacement map. All
that is required to support displacement maps in our approach is a
bound for a displaced patch; caching systems like PRMan have the
same requirement. It may be possible to compute sufficiently tight
bounds for a displaced patch without completely tessellating it.

Creases and other subdivision rules would expand the set of
scenes our approach can handle. We believe it would be straightfor-
ward to integrate crease rules. It also seems possible to extend our
method to support Loop subdivision or other rules; the basic idea
of testing a packet against a dynamically subdivided patch would
remain valid.

Tighter bounding volumes might be obtained using more ad-
vanced methods (see e.g. [3, 13]). We believe this could improve
performance, however, we have not yet experimented with adding
support for this into our framework.

Memory consumption for our efficient 4x4 control point layout is
higher than typical mesh structures which share vertices. In order
to ray trace scenes which would not fit into memory, it might be
necessary to do the conversion to the 4x4 layout on the fly, before
the actual patch intersection step. We have ignored this, however,
as even the Disney scene uses approximately 1GB of memory after
being subdivided once.

Dynamic models are particularly interesting for any on-the-fly
scheme. Under the assumption that the topology of the control
mesh remains unchanged, only the acceleration structure over the
(comparatively few) base cages has to be rebuilt. The typical bottle-
neck of building an acceleration structure over the tessellated trian-
gle equivalent is avoided. However, here again the question of how
to quickly compute a tight bounding box for each patch requires
further investigation.

Distribution ray tracing is the real reason for using ray tracing
and will likely generate a majority of rays in future applications.
Distribution ray tracing is likely to be less coherent than the kind
of rays we have focused on in this paper, and supporting them effi-
ciently will require further investigation. However, this is not much
different from cache-based tessellation schemes which also fail for
completely random rays. The ray differential caching approach [7]

avoids this performance deterioration, and we are interested in see-
ing how we might apply a similar idea to our approach.

Complex shading often accounts for a large portion of the ren-
dering time for production scenes. The REYES algorithm amor-
tizes shading over a grid of micropolygons, and also determines
grid-based derivatives, which are useful for determining texture fil-
ter size (PRMan also uses ray differentials to determine filter size
for rays). We hope to extract similar benefits from surface patches
and ray packets. Real world shaders often use large amounts of
stored texture; texture caching is largely orthogonal to our system,
although ray packet size and ordering will affect the coherence of
texture access.

6 SUMMARY AND CONCLUSION

We have proposed an approach to ray tracing subdivision surfaces
using on-the-fly tessellation. Whereas other systems like Razor or
PRMan amortize the cost for patch subdivisions by caching geom-
etry, we instead use large packets of rays coupled with an efficient
traversal algorithm. Our approach amortizes the cost of subdivi-
sion at least as well as geometry caching, and in addition allows
for all the other advantages of packet techniques. Consequently, we
not only need less memory for caches, but are also faster than both
Razor and PRMan.

For scenes with varying depth complexity, we have proposed an
adaptive subdivision method. Though crack fixing adds complexity
to the system, for the Disney scene it provides additional speedups
of up to 2.1×. Adaptive subdivision also becomes particularly in-
teresting when considering packets of less coherent secondary rays,
as these can use a coarser scene representation [7, 11].

Performance-wise, our system outperforms both Razor and PRMan
by up to 5.2× and 5.6×, and a single-ray implementation of the
same algorithm by 16.6×. Compared to pre-tessellated models with
pre-built acceleration structures we achieve a roughly competitive
performance, but require only a fraction of the memory. Further-
more, we can render even hugely complex scenes which would not
fit into memory.

Future Work. Potential extensions to our system abound. All
the issues raised in Section 5 are worthy of closer investigation.
Among those, we are particularly interested in supporting displace-
ment maps and creases, which are very important for real-world
production rendering. Apart from that, the biggest issue for sup-
porting real-world rendering is support for “real” shaders and, in
particular, for secondary rays. Since at least some of these will be
less coherent than the ones we have considered in this paper, sup-
porting those efficiently will require further investigation.

Acknowledgments

We would like to thank Walt Disney Animation Studios for provid-
ing us with a scene from Disney’s Meet the Robinsons. For model-
ing and providing us the Razor scene we would like to thank Jeffery
A. Williams, Headus (Metamorphosis), Phil Dench, Martin Rezard,
Jonathan Dale, and the DAZ studio team.

REFERENCES

[1] C. Benthin. Realtime Ray Tracing on current CPU Architectures. PhD
thesis, Saarland University, 2006.

[2] C. Benthin, I. Wald, and P. Slusallek. Interactive Ray Tracing of Free-
Form Surfaces. In Proceedings of Afrigraph, pages 99–106, Novem-
ber 2004.

[3] J. Bolz and P. Schröder. Rapid evaluation of catmull-clark subdivision
surfaces. In Web3D ’02: Proceeding of the seventh international con-
ference on 3D Web technology, pages 11–17, New York, NY, USA,
2002. ACM Press.

[4] S. Boulos, D. Edwards, J. D. Lacewell, J. Kniss, J. Kautz, P. Shirley,
and I. Wald. Packet-based Whitted and Distribution Ray Tracing. In
Proceedings of Graphics Interface 2007, May 2007.

[5] E. Catmull and J. Clark. Behavior of recursive division surfaces near
extraordinary points. In Computer Aided Design 10(6), pages 350–
355, 1978.

[6] P. H. Christensen, J. Fong, D. M. Laur, and D. Batali. Ray tracing
for the movie ’Cars’. In Proc. IEEE Symposium on Interactive Ray
Tracing, pages 1–6, 2006.

[7] P. H. Christensen, D. M. Laur, J. Fong, W. L. Wooten, and D. Batali.
Ray Differentials and Multiresolution Geometry Caching for Distribu-
tion Ray Tracing in Complex Scenes. In Computer Graphics Forum
(Eurographics 2003 Conference Proceedings), pages 543–552. Black-
well Publishers, September 2003.

[8] R. Cook, T. Porter, and L. Carpenter. Distributed Ray Tracing. Com-
puter Graphics (Proceeding of SIGGRAPH 84), 18(3):137–144, 1984.

[9] R. L. Cook, L. Carpenter, and E. Catmull. The REYES Image Ren-
dering Architecture. Computer Graphics (Proceedings of ACM SIG-
GRAPH 1987), pages 95–102, July 1987.

[10] T. D. DeRose, M. Kass, and T. Truong. Subdivision surfaces in charac-
ter animation. In Proceedings of SIGGRAPH 98, Computer Graphics
Proceedings, Annual Conference Series, pages 85–94, July 1998.

[11] P. Djeu, W. Hunt, R. Wang, I. Elhassan, G. Stoll, and W. R. Mark. Ra-
zor: An Architecture for Dynamic Multiresolution Ray Tracing. Tech-
nical report, University of Texas at Austin Dep. of Comp. Science,
2007. Conditionally accepted to ACM Transactions on Graphics.

[12] D. Doo and M. Sabin. Behavior of recursive division surfaces near
extraordinary points. In Computer Aided Design 10(6), pages 356–
360, 1978.

[13] L. Kobbelt, K. Daubert, and H.-P. Seidel. Ray Tracing of Subdivision
Surfaces. Proceedings of the 9th Eurographics Workshop on Render-
ing, pages 69–80, 1998.

[14] C. Loop. Smooth subdivision surfaces based on triangles. Master’s
thesis, University of Utah, 1987.

[15] W. Martin, E. Cohen, R. Fish, and P. Shirley. Practical Ray Tracing of
Trimmed NURBS Surfaces. Journal of Graphics Tools: JGT, 5:27–
52, 2000.

[16] K. Mueller, T. Techmann, and D. Fellner. Adaptive Ray Tracing of
Subdivision Surfaces. Computer Graphics Forum (Proceedings of Eu-
rographics ’03), pages 553–562, 2003.

[17] S. M. Oliver Abert, Markus Geimer. Direct and Fast Ray Tracing of
NURBS Surfaces. In Wald and Parker [26].

[18] S. G. Parker, W. Martin, P.-P. J. Sloan, P. Shirley, B. E. Smits, and
C. D. Hansen. Interactive ray tracing. In Proceedings of Interactive
3D Graphics, pages 119–126, 1999.

[19] M. Pharr, C. Kolb, R. Gershbein, and P. Hanrahan. Rendering Com-
plex Scenes with Memory-Coherent Ray Tracing. Computer Graph-
ics, 31(Annual Conference Series):101–108, Aug. 1997.

[20] A. Reshetov. Omnidirectional ray tracing traversal algorithm for kd-
trees. In Wald and Parker [26], pages 57–60.

[21] A. Reshetov, A. Soupikov, and J. Hurley. Multi-Level Ray Tracing
Algorithm. ACM Transaction on Graphics, 24(3):1176–1185, 2005.
(Proceedings of ACM SIGGRAPH 2005).

[22] J. Stam. Exact evaluation of catmull-clark subdivision surfaces at ar-
bitrary parameter values. In Proceedings of SIGGRAPH 98, Com-
puter Graphics Proceedings, Annual Conference Series, pages 395–
404, July 1998.

[23] G. Stoll, W. R. Mark, P. Djeu, R. Wang, and I. Elhassan. Razor:
An Architecture for Dynamic Multiresolution Ray Tracing. Technical
Report 06-21, University of Texas at Austin Dep. of Comp. Science,
2006.

[24] I. Wald, S. Boulos, and P. Shirley. Ray Tracing Deformable Scenes
using Dynamic Bounding Volume Hierarchies. ACM Transactions on
Graphics, 26(1):1–18, 2007.

[25] I. Wald, T. Ize, A. Kensler, A. Knoll, and S. G. Parker. Ray Trac-
ing Animated Scenes using Coherent Grid Traversal. ACM Trans-

actions on Graphics, 25(3):485–493, 2006. (Proceedings of ACM
SIGGRAPH).

[26] I. Wald and S. G. Parker, editors. Proceedings of the 2006 IEEE Sym-
posium on Interactive Ray Tracing, 2006.

[27] I. Wald, P. Slusallek, C. Benthin, and M. Wagner. Interactive Ren-
dering with Coherent Ray Tracing. Computer Graphics Forum,
20(3):153–164, 2001. (Proceedings of Eurographics).

[28] T. Whitted. An Improved Illumination Model for Shaded Display.
Communications of the ACM, 23(6):343–349, 1980.

[29] D. Zorin, P. Schröder, and W. Sweldens. Interpolating subdivision for
meshes with arbitrary topology. In Computer Graphics, volume 30,
pages 189–192, 1996.

[30] D. Zorin, P. Schroeder, T. DeRose, L. Kobbelt, A. Levin, and
W. Sweldens. Subdivision for modeling and animation. SIGGRAPH
course notes, 2000.

