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Abstract:

The Material Point Method (MPM) developed by Sulsky and colleagues is currently being
used to solve many challenging problems involving large deformations and/or fragmentations
with some success. In order to understand the properties of this method, an analysis of the
considerable computational properties of MPM is undertaken in the context of model problems
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SUMMARY

The Material Point Method (MPM) developed by Sulsky and colleagues is currently being used to solve
many challenging problems involving large deformations and/or fragementations with some success.
In order to understand the properties of this method, an analysis of the considerable computational
properties of MPM is undertaken in the context of model problems from gas dynamics. The MPM
method in the form used here is shown both theoretically and computationally to have first order
accuracy for a standard gas dynamics test problem. Copyright c© 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The need to solve problems involving large deformations in materials has led to the
development of a number of new computational methods. Examples of such methods are
meshfree and particle methods, for example as surveyed by [16], one of which is the relatively
new Material Point Method of Sulsky et al., [26, 27], which may, perhaps, be described as a
quasi-meshless method. This method (MPM) has evolved from the particle-in-cell(PIC) and
FLIP methods [5] originally developed by Brackbill et al. see [3] and the references within. An
interesting discussion of some of these methods and important theoretical results are given by
Grigoryev et al. [10]. Two important features of MPM are the use of a grid as a scratchpad
for calculations, hence the quasi-meshless characterization and the capability to model solid
materials undergoing large deformation. An important aspect of the MPM method is that it
has not yet been subjected to as much analysis as many of the methods surveyed by [16].

There has been considerable analysis of PIC type methods. One of fundamental aspects of
PIC methods is a discretization of a material into particles, and the interpolation of information
from particles to grids and vice-versa. In MPM, Lagrangian particles (or points) are used to
discretize the volume of the fluid or solid. These material points carry with them properties
such as mass, velocity, stress, strain and so on. The grid may be viewed as a temporary
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2 L.T. TRAN, J. KIM, M. BERZINS

computational scratch pad, which can be reconnected at any time when a mesh distortion
makes further calculation more difficult. Material response is governed by continuum mechanics
constitutive models, which generates stress based on both the history and current mechanical
states, [26]. The Generalized Interpolation Material Point method(GIMP), [2] provides a
general formulation covering MPM methods. MPM has been used for applications such as
the biomechanics of micro-vessels, the effects of wounding on heart tissue and the properties
of foam under large deformation [7]. The method has also been used extensively in large-
scale complex fluid-structure interactions, [13, 21], arising from the modeling of safety studies
involving explosions. Given the use of the method on such important and challenging problems
it is important to understand how accurate the method is.

In this paper, an analysis of the MPM procedure is considered in the context of a shock
propagation problem, using a modified form of the method developed by [14]. This problem
has also been studied by Brackbill [8], Sulsky [26], York et al.[30] and very recently in
the context of SPH methods by Brown et al. [6]. A comparison betweem MPM and the
SPH method has been undertaken by [18]. Although MPM is originally designed for solid
mechanics problems, this test problem has the advantage of being sufficiently simple and well-
understood to allow analysis of the method. Furthermore the problem’s analytical solution can
be used to evaluate the various sources of error in the MPM method. This paper describes
the accuracy and stability properties of the MPM method in a way that also allows these
properties to be extended to other more general situations. A particular focus of the paper is
an analysis of different methods used to project information from particles onto the grid. The
errors introduced when particles cross grid cells are also studied in some depth. The paper is
complementary to other recent studies of the method [24, 25, 28, 29].

2. Problem Description

The model problem used here is that of Sod [23] who used a simple gas dynamics problem to
investigate finite difference schemes for shock propagation type problems. This problem has an
analytical solution and may be used to compare the result of MPM to the analytical solution.
The same problem has often been used as a test problem for PIC and MPM methods, [30].

Sod’s gas dynamics problem consists of a shock tube, where a diaphragm is located in the
middle of the tube. Two sides of the diaphragm have different pressure and density, which
make the fluid flows when the diaphragm is broken. The left side of density is 1 and pressure
is also 1. The right side of density is 0.125 and pressure is 0.1, and the initial velocities of both
regions are zero. At time t=0, the diaphragm is removed the motion of the compressible and
inviscid fluid is governed by Euler’s equations, which are,

∂ρ
∂t + ∂ρv

∂x = 0

∂ρv
∂t + ∂(ρv2+p)

∂x = 0 (1)

∂ρe
∂t + ∂v(ρe+p)

∂x = 0

where e: total energy per unit volume, p: pressure, v: unit velocity, ρ: fluid density and
(x, t)ε(0, 1)× (0, 0.1) The state equation for pressure is

p = (γ − 1)

(
ρe− ρv2

2

)
(2)
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MPM FOR TIME DEPENDENT PROBLEMS 3

where γ = 1.4 denotes an ratio of specific heat for dry air as a perfect gas. These equations
may be written e.g. using equations 14.45-14.47 of [15] in the form given by Sulsky et al [26]
as:

∂ε

∂t
+ v

∂ε

∂x
+
p

ρ

∂v

∂x
= 0 (3)

∂ρ

∂t
+ v

∂ρ

∂x
+ ρ

∂v

∂x
= 0 (4)

where ε denotes internal energy. The state equation for pressure is then given by:

p = (γ − 1)ρε. (5)

The boundary conditions are those commonly used, [23].

3. MPM Spatial Discretization

3.1. Particle Basis Functions

The original form of the MPM method uses Delta functions for the basis functions associated
with the particles:

χp(x) = δ(x− xp)Vp, p = 1, ..., np (6)

where xp(t) are particle positions which are functions of time t and Vp is a particle volume
that is discussed below. Bardenhagen and Kober [2] use the piecewise constant form instead:

χp(x) =

{
1 if x εΩp,
0 otherwise

(7)

where Ωp is the interval [xp − hp/2, xp + hp/2] with hp is the particle width. This has the
advantage that the functions form a partition of unity on the interval [a, b]:

np∑

p=1

χp(x) = 1 ∀ x ∈ [a, b]. (8)

For both choices of basis functions, the approximation to the function f(x) in terms of particle
values is then written as

f(x) ≈
∑

p

fpχp(x) ∀ x ∈ [a, b]. (9)

The particle volumes are then defined by

Vp =

∫

Ωi
χp(x)dx (10)

where Ωi is the domain of cell i that contains the particle p. In the case when χp(x) is defined
as by equation (6) the ”volume” of a particle will be defined in Section 5 below.
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4 L.T. TRAN, J. KIM, M. BERZINS

3.2. Grid basis Functions.

The continuous representation of a function g(x) using grid data gi on a grid

a = x0 < x1 < ... < xN = b (11)

and where Ii = [xi−1, xi] and Ii+1 = [xi, xi+1] and hi = xi − xi−1; is given by

g(x) =

nv∑

i=1

giSi(x) (12)

where Si(x) is the piecewise linear basis function with value one at node xi in the mesh and
value zero at all other nodes; often these points are equidistant with an uniform mesh spacing
of h.

3.3. Mapping from Particles to Grid.

The mapping from particle values to values at grid points is defined by the convolution of the
linear basis functions or their gradients with the particle basis functions as follows. Let

S̄ip =
1

Vp

∫

Ωi
Si(x)χp(x)dx (13)

and

Ḡip =
1

Vp

∫

Ωi

dSi
dx

(x)χp(x)dx. (14)

In the case of the standard MPM case when delta functions are used for the particles and
linear basis functions are used for the grid, then, [2],

S̄ip = Si(xp) (15)

and

Ḡip =
dSi
dx

(xp). (16)

The mapping from particle values to values at grid points is then defined by

f(xi) =

np∑

p=1

f(xp) S̄ip (17)

4. Computational Method

Given an initial distribution of particles on the domain, the point masses, mp, are defined in
terms of density by:

mp =

∫

Ωi
ρ(x)χp(x)dx. (18)

A point density average, ρp, may also be defined by

ρp = mp/Vp. (19)

Copyright c© 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 00:1–23
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MPM FOR TIME DEPENDENT PROBLEMS 5

Particle momentum values, Pp,are given by

Pp =

∫

Ωi
ρ(x)v(x)χp(x)dx, (20)

where ρ(x) is the continuum body’s mass density and v(x) is the velocity.
The Cauchy stresses are:

σp =

∫

Ωi
σ(x)

χp(x)

Vp(x)
dx (21)

where σ(x) is continuum bodies initial Cauchy stress. In the most general case, the stress
tensor is given by σ = −pI + T , where p is the pressure, T denotes the viscous stress tensor
and I is an identity tensor whose size is same as the modeling dimension. In a perfect fluid
model such as the gas dynamics problem considered here, the stress at a particle is equal to
the pressure:

σp = −pp. (22)

4.1. Mesh and Particle Movement per Timestep

This subsection is an abbreviated form of the description of the MPM method in [25]. At
the start of a timestep, the mass at each grid point, mi, is calculated from the masses of the
particles, by using the lumped mass matrix form of MPM, [26].

mi =

np∑

p=1

S̄ipmp, i = 1, ..., nv. (23)

Momentum at a grid node, Pi, is given by

Pi =

np∑

p=1

S̄ipmpvp, i = 1, ..., nv. (24)

The nodal velocity, vi, is calculated from the mass and the momentum of the node:

vi =
Pi
mi

. (25)

The force at each node, F inti ,is given by:

F inti =

np∑

p=1

ppḠipVp (26)

where pp is the particle pressure. The acceleration at a node, ai, is calculated from the force
and the mass at the node:

ai =
F inti

mi
. (27)

The nodal velocity at the end of Lagrangian step is calculated using Euler’s method:

vn+1
i = vni + ani dt (28)
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6 L.T. TRAN, J. KIM, M. BERZINS

where ani is the acceleration at time tn. The particle velocity and location are updated using
these new values:

vn+1
p = vnp +

nv∑

i=1

S̄ipa
n
i dt, (29)

xn+1
p = xnp +

nv∑

i=1

S̄ipv
n+1
i dt. (30)

Remark If vn+1
p was used to replace the sum in the right side of equation (30), the time

integration method could be viewed as a first order Runge-Kutta-Nystrom method, [9].

5. Application to Gas Dynamics

At the start of a timestep, the approximate particle volume for particle p can be calculated
from the width of the cell it lies in, hj , and the number of particles in that cell, N j

p , by:

Vp =
hj

N j
p

. (31)

while this is a reasonable approximation for compressible flow, and was first used by [14], it
represents a departure from the standard MPM approach for solid mechanics, in which the
volumes associated with particles are tracked, see [24] for an analysis of this case. The particle’s
mass is calculated from the density and the volume of the particle as

mp = ρpVp. (32)

The mass at each grid point is calculated from the projection of the particle properties as in
(23) and momentum at a grid node is given by equation (24). The nodal velocity is calculated
from the mass and the momentum of the node as given in (25). The force at each node may
be written as the jump on the averaged particle pressures:

F inti = p−p,i − p+
p,i (33)

where

p−p,i =
∑

p:xp∈Ii
pp

1

N i
p

(34)

p+
p,i =

∑

p:xp∈Ii+1

pp
1

N i+1
p

. (35)

The internal force at a node is thus equal to the averaged pressure drop around that node.
The acceleration at a node is calculated from the force and the mass at the node.

ai =
p−p,i − p+

p,i

mi
. (36)

The particle velocity and location are updated using these values by equations (28-30). This
method of force calculation has been developed here as being more appropriate for compressible
gas dynamics as it assumes that the particles within a cell have the same volume. Analysis
and investigation of alternative methods for solid mechanics and different approaches to gas
dynamics are provided by [10, 24, 30].
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MPM FOR TIME DEPENDENT PROBLEMS 7

5.1. Particle Energy, Density and Pressure Update

Once the nodal velocities are known as in equation (29), it is possible to update the velocity
gradient and hence calculate the energy and a density of the particles at the next time step,
as denoted by εn+1

p , ρn+1
p by:

εn+1
p = εnp −

pnp
ρnp

∂vn+1
p

∂x
dt, (37)

and

ρn+1
p = ρnp (1− ∂vn+1

p

∂x
dt), (38)

where the velocity gradient of each particle is calculated using nodal velocities and the gradients
of the nodal basis functions by using:

∂vn+1
p

∂x
=

nv∑

i=1

Ḡipv
n+1
i

where Ḡip is defined by equation (14). The pressure update is given by:

pn+1
p = (γ − 1)ρn+1

p εn+1
p + av. (39)

The term av is a standard artificial viscosity term which is defined by

anv =

{
C2dx2ρ(

∂vp
∂x )2 if

∂vp
∂x ≤ 0

0 otherwise.

where C = 2.5. This form of artificial viscosity was used by Monaghan and Gingold [19, 20] to
reduce oscillations in the numerical solution SPH methods. This formula exploits the property
of shock front that the gradient of velocity is less than zero, there. Using the pressure equation
(5) to substitute for the pressure/density ratio in the energy equation gives:

εn+1
p = εnp (1− (γ − 1)

∂vn+1
p

∂x
dt)− av

ρnp

∂vn+1
p

∂x
dt. (40)

In the same way the pressure equation (5) may itself be rewritten as:

pn+1
p =

[
(pnp − an−1

v )(1− ∂vp
∂x

dt)) + anv

]
(1− (γ − 1)

∂vn+1
p

∂x
dt). (41)

5.2. Positivity, Overshoots and Stability

As density, energy and pressure values are positive, their numerical approximations should also
be positive. From equations (37)-(38) it may be seen that this occurs for the discrete density
and energy equations under a Courant-like condition:

0 ≤ ∂vn+1
p

∂x
dt ≤ 1. (42)

Although this ensures that values of density and energy remain positive; local extrema may
be caused by use of the velocity gradient from ”old”cell when cell crossing occurs. Suppose

Copyright c© 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 00:1–23
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8 L.T. TRAN, J. KIM, M. BERZINS

that there are two adjacent particles in different mesh intervals with densities, ρp and ρp+1.
Suppose further that

ρp(tn) < ρp+1(tn), (43)

and that the velocity gradients differ in adjacent intervals so that:

(1− dt∂v
n+1
p (xp)

∂x
) >> (1− dt∂v

n+1
p (xp+1)

∂x
), (44)

then it is possible that one particle will over take the other in magnitude:

ρp(tn+1) > ρp+1(tn+1), (45)

this may result in a new extremal value. A similar argument may be developed for the creation
of new extrema in energy. In order to prevent this further artificial diffusion is applied in the
case when extrema occur in velocity (vi−1 − vi)(vi+1 − vi) > 0. The new value of velocity

is then calculated by the addition of an artificial viscosity like that approximates to ∂x2

3
∂2v
∂x2

gives:

vi = vi +
vi−1 − 2vi + vi+1

3
(46)

and the same approach is applied if extrema are detected in density.

5.3. Particle Redistribution

Once particles move to an adjacent cell, the changed number of particles in a cell is used to
calculate new particle volume and mass after the density calculation is completed. If there
were too few particles per cell and some of these particles move from one cell to another cell, it
is possible for a cell not to have any particles. This may cause stability problems. To prevent
this situation, care must be taken in the initial assignment of particles, see Section (6.1). The
main idea is to ensure that there are always sufficient number of particles per cell. This may
be obtained by redistribute of particles or by ensuring that particles are placed where they
will move into cells with less particles. It may also be necessary to create new particles in the
empty cells with the particles’ properties obtained by interpolating the particles’ properties in
the adjacent cells.

6. Gas Dynamics Computational Experiments

6.1. Initial Uniform Particle Distribution

In these experiments the spatial mesh is fixed, and as particles can move from one cell to
another cell, the number of particles in a cell varies, and so does their volume according to
equation (31). Since we assume each material point is part of a perfect compressible gas,
changing the particle’s volume is a reasonable modeling assumption. Initially, same number
of particles per a cell is used. Figures 1a and 1b below are the results after 0.2 seconds. The
initial number of particles in a cell is 8, the cell size is 0.005, and time step is 0.00025. Each
dot represents a material point and a solid line is the analytical solution.

Copyright c© 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 00:1–23
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[Fig. 1a] Density Error [Fig. 1b] Velocity Error
L1 Norm: 0.00640 L1 Norm: 0.01847
L2 Norm: 0.01524 L2 Norm: 0.05800

Figures 1a and 1b show large errors behind the shock front. The smoothing process described
in Section (5.2) was applied to density and velocity as a remedy for this. Figures 2a and 2b
show the solution after the smoothing process was applied. The error norm after the smoothing
process is about 67 to 90% of that when smoothing is not applied.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4
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0.8

1

0 0.2 0.4 0.6 0.8 1
−0.5

0
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1

[Fig. 2a] Density Error [Fig. 2b] Velocity Error
L1 Norm: 0.00434 L1 Norm: 0.01471
L2 Norm: 0.01046 L2 Norm: 0.05070

In investigating the relationship between the error and cell size, number of particles, and time
interval, a smaller cell size generated more accurate results. When number of particles is too
small (1, 2 or 3), the computation was inaccurate or unstable no matter how small the cell size
was. When the number of particles in a cell was between 4 to 8 and a sufficiently small cell
size was used the best results were obtained. Also it is interesting to see that the smaller cell
size doesn’t reduce the need for a certain number of particles in a cell in order for a stable and
accurate result to be obtained. Smaller time-steps generated slightly better results at the cost
of increased calculation times. The conclusion thus is that between 4 and 8 particles should
be used in this ... with this method. Section (6.2) below will show that this may be modified
based on the difference of density in various regions.

Copyright c© 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 00:1–23
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10 L.T. TRAN, J. KIM, M. BERZINS

Table I. Values of Stable Time Step-size

Cell Size (dX) 0.005 0.01 0.015
N.S.* S* N.S. S N.S. S

Max stable time step (dt) 0.00057 0.0006 0.00114 0.00124 0.00171 0.00185
Max stable CFL(dT/dX) 0.114 0.124 0.114 0.124 0.114 0.123

*(N.S.: Non Smoothing Process, S: Smoothing Process Applied)

2 4 6 8 10 12 14 16 18
0

0.05

0.1

0.15

0.2

0.25

Number of particles

L2
 n

or
m

L2 Norm of Density at T=0.2

cellsize = 0.005
cellsize= 0.01
cellsize=0.02
cellsize=0.04

2 4 6 8 10 12 14 16 18
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0.04
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L2
 n
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m

L2 Norm of Density at T=0.2

CFL = 0.04
CFL= 0.05
CFL=0.06
CFL=0.08
CFL=0.1

[Fig. 3a] Error vs Cell Size [Fig. 3b] Error vs CFL Number

Fig 3a shows the final L2 error norms with a fixed time interval but different cell sizes and
shows that the L2 norm is decreasing as the cell size decreases. The figure also shows that the
number of particles is not the main factor for a smaller error norm if the number of particles is
not too small. Fig 3b shows that for the same cell size but different time steps the error did not
change much for CFL numbers below 0.1. Fig 3b shows slightly increasing errors as the time
interval decreases, perhaps due to error buildup over the larger number of steps, but overall the
spatial error dominates the temporal error. In order to investigate stability and choice of CFL
number, two test cases were used. First of all, cell size and number of particles per cell were
fixed, and time interval is changed. When the cell size was 0.005, the modeling system was
unstable if the time interval was bigger than 0.00057. The meaning of ”unstable” is that the
particle’s velocity was so large that the particle left the spatial domain. Table I show that the
method generates stable results only if the CFL number is smaller than about 0.11 ∼ 0.12, and
the smoothing process allows a slightly larger CFL number than the non-smoothing process
does.

6.2. Alternative Particle Distribution

Although the smoothing process reduced much of instability of the particles, there are still
remaining spurious oscillations in the solution. Brackbill [4] showed that the ringing instability
in the PIC method was reduced with smaller number of particles, see Section (8) below. This
result suggests using a smaller number of particles. However using (2 ∼ 3 particles) increases
error and one particle in a cell may generate unstable results. This problem is overcome
by noting that, based on the given initial condition, the gas to the right of the diaphragm
has a lower density. Hence particles are assigned in proportion to the relative density of the

Copyright c© 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 00:1–23
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MPM FOR TIME DEPENDENT PROBLEMS 11

gasses. Since the gas on the left side’s has normalized density 1 and that on the the right has
density 0.125, eight particles per a cell are assigned to the left and one particle to the right.
Interestingly, this particle distribution gives a stable result although the number of particles
on the right side is one per cell. During the time integration process, the left particles move
rightwards. As there are enough number of particles on the left side and these particles move
to the right where there is only one particle per cell, the solution process remains stable as
we are constantly introducing particles into the cells on the right. Figures 4a and 4b show
the results from using fewer particles on the righthand side of the diaphram. The Smoothing
process of Section (5.2) was also applied. Comparing these images to Fig. 2a and Fig 2b, this
approach results in fewer oscillations, but has a similar error norm to the previous cases. A
generalization of this approach is to equally distribute particles with respect to density.
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1

[Fig. 4a] Density [Fig. 4b] Velocity
L1 Norm: 0.005389 L1 Norm: 0.014942
L2 Norm: 0.013781 L2 Norm: 0.056484

7. Time Integration Error and Grid Crossing by Particles

7.1. Time Integration Discontinuities Arising from Grid Crossing

The comparative lack of smoothness of the spatial basis grid functions used in the MPM
translates into a lack of smoothness in time when particles cross grid points and then have
properties that are redefined in terms of the basis functions in the next interval. The definition
of particle velocity updates in terms of nodal velocity values means that the higher time
derivatives of the particle velocity are discontinuous when a particle crosses a grid point. This
may be illustrated by considering equation (28) which is a forward Euler discretization of

v̇p =
∑

i

Si(xp)ai. (47)

If the point xp(t) is in the interval [xi−1, xi] then this equation may be written as

v̇p = αiai−1 + (1− αi)ai, αi =
xp(t)− xi
xi−1 − xi

, (48)

whereas if the point xp(t) is in the interval [xi, xi+1] then this equation may be written as

v̇p = αi+1ai + (1− αi+1)ai+1, αi+1 =
xp(t)− xi+1

xi − xi+1
. (49)
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Prepared using fldauth.cls



12 L.T. TRAN, J. KIM, M. BERZINS

The second derivative of vp when the point xp(t) is in the interval [xi−1, xi] is given by

v̈p = αiȧi−1 + (1− αi)ȧi + ẋp
ai−1 − ai
xi−1 − xi

(50)

or if the point xp(t) is in the interval [xi, xi+1] then

v̈p = αi+1ȧi + (1− αi+1)ȧi+1 + ẋp
ai − ai+1

xi − xi+1
. (51)

The jump in the second derivative of particle velocity as the particle crosses the point xi is
given by

[v̈+
p − v̈−p ]xi = ẋp

[
ai − ai+1

xi − xi+1
− ai−1 − ai
xi−1 − xi

]
. (52)

The local error associated with one step of the forward Euler method applied to equation (29)
is given by

le =
dt21
2
v̈p. (53)

This formula does not apply if v̈p is discontinuous with ”left”and ”right” values denoted by
v̈−p and v̈+

p respectively. One standard ODE method for crossing a discontinuity is to march
up to it with one step of size dt1 and one step from it of size dt2. The local error for an Euler
time-step in region one may be estimated by

le1 ≈
dt21
2
v̈−p , (54)

and the local error for an Euler time-step in region two is estimated by

le2 ≈
dt22
2
v̈+
p (55)

by assuming that the second derivatives may be regarded as constant on a step. It may be
shown by using techniques such as those used by Shampine [22], that the error introduced over
one time-step, denoted here by ep+1

p , that crosses the discontinuity is then the sum of these
local errors and the difference between the one and two step solutions, i.e.

ep+1
p = le1 + le2 + (v̄n+1

p − vn+1
p ) (56)

where vn+1
p is the solution computed using one Euler step of size dt and where v̄n+1

p is the
solution computed using two Euler steps of size dt1 and dt2. The next two sub-sections will
show that the gap between the two Euler solutions (v̄n+1

p − vn+1
p ) is one power of dt less than

the local errors for both velocity and position errors.

7.2. Time Integration Errors in Velocity

Having determined the nature of the discontinuity it now remains to determine the error
introduced by stepping over it. In both these cases the discontinuity in the first time derivative
of the right hand side of equation (43)(after noting that xp is time dependent) means that the
time integration method accuracy is restricted to first order unless special action is taken, [1],
p.64. It is worth noting that with a standard p.d.e method discontinuities in time derivatives
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do not occur in the same way as when material point method particles cross cells. In the case
when a particle xp lies in Ii and passes over a mesh cell then

vn+1
p = vnp +

[
ai−1 +

xnp − xi−1

xi − xi−1
(ai − ai−1)

]
dt. (57)

Alternatively, the forward Euler method may be applied to march up to the edge of the cell
in one step and then take another step to arrive at the same point. For the first sub step of
length dt1 the velocity is

v̄i = vnp +

[
ai−1 +

xnp − xi−1

xi − xi−1
(ai − ai−1)

]
dt1. (58)

For the second sub step
v̄n+1
p = v̄i + [ai + dt1ȧi] dt2 (59)

where dt = dt1 +dt2. Hence the difference in the velocities calculated using the two approaches
is given by:

v̄n+1
p − vn+1

p = (ai − ai−1)

[
xi − xnp
xi − xi−1

]
dt2 + dt1dt2ȧi, (60)

and so may be written as

v̄n+1
p − vn+1

p ≈ Cdt2(ai − ai−1) + h.o.t (61)

where C =
[
xi−xnp
xi−xi−1

]
and where 0 ≤ C ≤ 1. For the Euler equations considered here the values

of (ai − ai−1) may be as large as 103. This dictates the use of a time-step of the order of that
used in Section (6). †

7.3. Time Integration Errors in Spatial Position

Having determined the nature of the discontinuity it now remains to determine the error
introduced by stepping over it. In both these cases the discontinuity in the higher derivative
means that the time integration method accuracy is again restricted to first order. In the case
when a particle xp lies in Ii and passes over a mesh cell then

xn+1
p = xnp +

[
vn+1
i−1 +

xnp − xi−1

xi − xi−1
(vn+1
i − vn+1

i−1 )

]
dt (62)

which may be written as

xn+1
p = xnp +

[
vni−1 +

xnp − xi−1

xi − xi−1
(vni − vni−1)

]
dt+

[
ani−1 +

xnp − xi−1

xi − xi−1
(ani − ani−1)

]
dt2. (63)

As stated above, consider using the forward Euler method to march up to the edge of the cell
in one step and then in another step to step to the same time point. For the first step

xi = xnp +

[
vni−1 +

xnp − xi−1

xi − xi−1
(vni − vni−1)

]
dt1 +

[
ani−1 +

xnp − xi−1

xi − xi−1
(ani − ani−1)

]
dt21. (64)

†The reader should note that throughout C will be used as a generic constant whose value may be different
each time it is used.
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14 L.T. TRAN, J. KIM, M. BERZINS

For the second step

x̄n+1
p = xi + vn+1

i dt2 (65)

and so

x̄n+1
p = xi + vni dt2 + ani dt dt2 (66)

where dt = dt1 + dt2. Hence the difference between the positions calculated by the two
approaches is:

x̄n+1
p − xn+1

p = (vn+1
i − vn+1

i−1 )

[
xi − xnp
xi − xi−1

]
dt2 −

[
ani−1 +

xnp − xi−1

xi − xi−1
(ani − ani−1)

]
dt1dt2 (67)

Figure 6 illustrates the different values of spatial position that may result when the

X X
t

t

n

n+1

p
n

i

X X p
n+1

p

n+1

[Fig. 5] Mesh Crossing Diagram.

discontinuity is and is not considered.

Dividing both sides of equation (67) by (xi − xi−1) gives:

x̄n+1
p − xn+1

p

xi − xi−1
≈ dt2

(vn+1
i − vn+1

i−1 )

(xi − xi−1)
C +

dt1dt2
xi − xi−1

[
ani−1 +

xnp − xi−1

xi − xi−1
(ani − ani−1)

]
(68)

where C =
[
xi−xnp
xi−xi−1

]
and where 0 ≤ C ≤ 1.

The term
x̄n+1
p −xn+1

p

xi−xi−1
is the relative error in the position. And as the values of (vn+1

i − vn+1
i−1 )

are O(1) for the case considered here it follows that limiting dt ∂v∂x < 0.1 will control the relative
position error on the step, as also suggested in Section 6.2.

8. Spatial Error Estimation.

In evaluating the spatial error there are three main sources of errors: the mass mapping error
introduced by equation (23), the momentum mapping error introduced by equation (24), and
the force mapping error introduced by equation (26). Before considering these equations it is
helpful to establish some notation relating to an important result Theorem 2.3 of Hickernell

Copyright c© 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 00:1–23
Prepared using fldauth.cls



MPM FOR TIME DEPENDENT PROBLEMS 15

[12], who proves that for any function f(x) ∈ Xp ≡
[
f : df

dx ∈ Lp([0, 1])
]

:

∣∣∣∣∣∣

∫ 1

0

f(y)dy − 1

Np

Np∑

i=1

f(zi)

∣∣∣∣∣∣
≤ D2(P,Np)

∥∥∥∥
df

dx

∥∥∥∥
2

(69)

where

D2(P,Np) =

√√√√ 1

12N2
p

+
1

Np

Np∑

i=1

(
zi −

2i− 1

2Np

)2

, (70)

zi is an ordered set of the points xp ∈ [0, 1]. Although Hickernell proves the result for more
general norms, the above result is sufficient for this analysis. It is important to translate
Hickernell’s result to the sub-intervals used in the MPM method. The constant D2(P,Np) is
unchanged except that the points 2i−1

2Np
need to be translated to the interval Ii+1. In considering

an integral over a domain of width h, Theorem (2.3) then becomes

∣∣∣∣∣∣
1

hi+1

∫ xi+1

xi

f(y)dy − 1

N i+1
p

Ni+1
p∑

i=1

f(xi)

∣∣∣∣∣∣
≤ D2(P,N i+1

p ) (hi+1)1/2

∥∥∥∥
df

dx

∥∥∥∥
2,hi+1

(71)

where
∥∥∥∥
df

dx

∥∥∥∥
2,hi+1

=

[∫ xi+1

xi

(
df

dx

)2

dx

]1/2

(72)

and where

D2(P,N i+1
p ) =

√√√√ 1

12(N i+1
p )2

+
1

N i+1
p h2

Ni+1
p∑

i=1

(
(hzi + xi)−

(
xi +

(2i− 1)h

2N i+1
p

))2

(73)

It should also be noted that from the mean value theorem for integration

(hi+1)1/2

[∫ xi+1

xi

(
df

dx

)2

dx

]1/2

= (hi+1)

∣∣∣∣
df

dx
(ξ)

∣∣∣∣ (74)

for some ξ ∈ Ii+1. Hence

∣∣∣∣∣∣

∫ xi+1

xi

f(y)dy − hi+1

N i+1
p

Ni+1
p∑

i=1

f(xi)

∣∣∣∣∣∣
≤ D2(P,N i+1

p ) h2
i+1

∣∣∣∣
df

dx
(ξ)

∣∣∣∣ (75)

The values of D2(P,N i+1
p ) clearly depend on the point distribution and thus in turn on the

problem being solved. Considering the worst case of particles negligible distances apart at the
end of an interval it is straightforward to show that

1

2
√

3N i+1
p

≤ D2(P,N i+1
p ) ≤ 1√

3
(76)
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16 L.T. TRAN, J. KIM, M. BERZINS

This result has a similar form to the results of Vshivkov[10] (as quoted by Brackbill, [3]) except
that the key difference here lies in the choice of quadrature rule. Vshivkov calculates the error,
δk, in the charge density at node k as computed with the PIC. His result states that

δk ≤
(

3ρ2
av

2ρmin
+ h

ρ2
avρmax

6ρ3
min

∣∣∣∣
∂ρ

∂x

∣∣∣∣
max

)
1

N2
+
h2

12

∣∣∣∣
∂2ρ

∂x2

∣∣∣∣
max

(77)

where N is the average number of particles in a cell. In the discussion that follows it is
convenient to assume that the meshpoints are evenly spaced i.e.

h = hi+1 = hi. (78)

8.1. Ringing Instability

It is also important to remark that, as with any quadrature rule, there exist values of f(x)
such that f(xj) = 0. For example if

f(x) =

Nip∏

j=1

(x− xj) (79)

then the integral approximation is zero and the error is the value of the integral. Furthermore
there are functions which are non-zero at the particle points such as

f(xi) = (−1)i (80)

which in the case of even numbers of mesh points will give a zero contribution to the integral.
The problem is made worse by the fact that the quadrature rule is essentially using a piecewise
constant approximation to function in forming the integral in the most general case. This loss
of information due to quadrature is known as the ”Ringing Instability” and is a well-known
feature of particle methods that is attributed to the under-representation of particle data on
the grid. Brackbill [4] and Macneice [17] explain this instability in terms of Fourier analysis.

8.2. Mass Projection Error

The mass error associated with equation (23) is denoted by E im and is defined by

Eim =

∫ xi+1

xi−1

ρ(x)Si(x)dx −mi (81)

where there are N j
p points in the interval Ij . This may be written more explicitly in terms of

the points in each interval, by using equation (15) and (23), as

Eim =

∫ xi

xi−1

ρ(x)Si(x)dx − h

N i
p

∑

p:xp∈Ii
Si(xp)ρp +

∫ xi+1

xi

ρ(x)Si(x)dx − h

N i+1
p

∑

p:xp∈Ii+1

Si(xp)ρp

(82)
The error term is thus composed of two terms each of which is similar to the right side of
equation (75):

∣∣Eim
∣∣ ≤ D2(P,N i

p)h
2

∣∣∣∣
d(ρ(x)Si(x))

dx
(ξ1)

∣∣∣∣+D2(P,N i+1
p )h2

∣∣∣∣
d(ρ(x)Si(x))

dx
(ξ2)

∣∣∣∣ (83)
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for some ξ1 ∈ Ii and some ξ2 ∈ Ii+1. However as the first derivative of Si(x) depends on 1
h ,

this results in the mass error Eim being first order in h. An approximate L1 norm of mass
projection error is calculated by using the trapezoidal quadrature rule, based upon the true
error in the mass at mesh points. The result in Figure 6 shows how the mass projection error
grows for different mesh sizes and is first order of mesh size as expected. The errors grow in
time in a way that is consistent with first time integration using the forward Euler method.
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[Fig. 6] L1 norm of mass errors at nodes for different meshes

8.3. Momentum Projection Error

The momentum error associated with equation (36) is denoted by E iP and is given by a
similar expression as the mass error except that terms of the from ρ(x)Si(x) are replaced with
v(x)ρ(x)Si(x) i.e.

∣∣EiP
∣∣ ≤ D2(P,N i

p)h
2

∣∣∣∣
d(ρ(x)v(x)Si(x))

dx
(ξ1)

∣∣∣∣+D2(P,N i+1
p )h2

∣∣∣∣
d(ρ(x)v(x)Si(x))

dx
(ξ2)

∣∣∣∣ (84)

for some ξ1 ∈ Ii and some ξ2 ∈ Ii+1. It follows that the momentum error is also first order in
h. A graph of the momentum projection error is very similar to Fig. 6.

8.4. Velocity Projection Error

The nodal velocity, vi, is calculated from the mass and the momentum of the node as in
equation (25). The exact projected velocity is given by

vexproi =
P exproi

mexpro
i

=

∫
Si(x)ρ(x)v(x)dx∫
Si(x)ρ(x)dx

. (85)

While the division by an integral containing ρ(x) may be problematic; the method described
above has a number of steps to ensure that at least one particle with mass is in every cell
interval.

The error in the velocity projection, Eivproj(t), is defined by:

Eivproj(t) = vexproi − vi. (86)
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18 L.T. TRAN, J. KIM, M. BERZINS

Let v(xi, t) be the exact nodal velocity at t, and define the error from projection in the exact
value as:

Eiv1(t) = v(xi, t)− vexproi . (87)

Then overall error in velocity projection may be split into two parts:

Eiv(t) = v(xi, t)− vi = Eiv1(t) +Eivproj(t). (88)

Let:
δ2U

δx2
(x, t) = ρ(x, t)v(x, t) (89)

and:
δ2V

δx2
(x, t) = ρ(x, t). (90)

Then the exact velocity is defined by:

v(xi, t) =
h δ

2U
δx2 (x, t)

h δ
2V
δx2 (x, t)

. (91)

Using integration by parts, the projection of the velocity satisfies:

vexproi =

∫
Si(x)ρ(x)v(x)dx∫
Si(x)ρ(x)dx

=
1
h (U(xi −H, t)− 2U(xi, t) + U(xi +H, t))
1
h (V (xi −H, t)− 2V (xi, t) + V (xi +H, t))

.

Define two projection errors EiU (t) and EiV (t) by:

EiU (t) = h
δ2U

δx2
(xi, t)−

∫
Si(x)ρ(x)v(x)dx (92)

where using standard finite differeence analysis EiU = O(h3) +H.O.T , and

EiV (t) = h
δ2V

δx2
(xi, t)−

∫
Si(x)ρ(x)dx (93)

and where EiV = O(h3) + H.O.T similarly. The partial projection error Eiv1(t) is then given
by:

Eiv1(t) =
h δ

2U
δx2 (x, t)

h δ
2V
δx2 (x, t)

−
∫
Si(x)ρ(x)v(x)dx∫
Si(x)ρ(x)dx

=
1∫

Si(x)ρ(x)dx
(EiU − v(xi, t)E

i
V ).

As EiU and EiV are third order in h and
∫
Si(x)ρ(x)dx is first order in h, it follows that Eiv1(t)

is second order in h. The second part of the projection error is defined by:

Eivproj(t) =

∫
Si(x)ρ(x)v(x)dx∫
Si(x)ρ(x)dx

− Pi
mi

=
1

mi
(Eip(t)− v(xi, t)E

i
m(t))
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where

Eip(t) =

∫ xi+1

xi−1

ρ(x)Si(x)v(x)dx − h

N i
p

∑

p:xp∈Ii
Si(xp)ρpvp −

h

N i+1
p

∑

p:xp∈Ii+1

Si(xp)ρpvp

Using a Taylors series expansion of velocity about xi gives:

Eip(t) = v(xi, t)E
i
m(t) + vx(xi, t)E

i
vp1(t) +

vxx(xi, t)

2
Eivp2(t) + ...+ (94)

where:

Eivpk =

∫ xi+1

xi−1

Si(x)ρ(x)(x−xi)kdx−
h

N i
p

∑

p:xp∈Ii
S̄ipρp(xp−xi)k−

h

N i+1
p

∑

p:xp∈Ii+1

S̄ipρp(xp−xi)k

(95)
Therefore:

Eiv(t) = Eiv1(t) +
1

mi

(
vx(xi, t)E

i
vp1(t) +

vxx(xi, t)

2
Eivp2(t) + ...

)
(96)

Using Hickernell’s result from equation (71), gives:

∣∣Eivpk
∣∣ ≤ D2(P,N i

p)h
2

∣∣∣∣
d(ρ(x)Si(x)(x − xi)k)

dx
(ξ1)

∣∣∣∣+D2(P,N i+1
p )h2

∣∣∣∣
d(ρ(x)Si(x)(x − xi)k)

dx
(ξ2)

∣∣∣∣
(97)

for some ξ1 ∈ Ii and some ξ2 ∈ Ii+1. For the lowest order term k = 1 this is second order.

8.5. Acceleration Projection Error

We define the projection error in acceleration, Eia, is:

Eia = a(xi, t)− ai (98)

where a(xi, t) is the exact acceleration at node xi at time t. As for the velocity projection
error, the acceleration projection error may be split into two parts:

Eia = (a(xi, t)− aexproi ) + (aexproi − ai) = Eia1(t) +Eiaproj(t) (99)

where aexproi is exact nodal acceleration obtained by projecting the exact pressure and density
onto the mesh points, and ai is calculated nodal acceleration from (30). The error E ia1(t) may
be shown to be second order in h using the same approach as in equations (85) to (94). The
second part of acceleration projection error is:

Eiaproj(t) =

1
h (
∫ xi
xi−1

p(x)dx −
∫ xi+1

xi
p(x)dx)

∫ xi+1

xi−1
ρ(x)Si(x)dx

− 1

N i
p

∑

p:xp∈Ii
pp −

1

N i+1
p

∑

p:xp∈Ii+1

pp (100)

Then:

Eiaproj(t) =
1

mi
(EiF (t)− a(xi, t)E

i
m(t) (101)

where:

EiF =


 1

h

∫ xi

xi−1

p(x)dx − 1

N i
p

∑

p:xp∈Ii
pp


+


− 1

h

∫ xi+1

xi

p(x)dx +
1

N i+1
p

∑

p:xp∈Ii+1

pp


 . (102)
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Expanding the values of pressure about xi gives:

1

h

∫ xi

xi−1

p(x)dx − 1

N i
p

∑

p:xp∈Ii
pp = px(xi)


xi + xi−1

2
− 1

N i
p

∑

p:xp∈Ii
xp




+
pxx(xi)

2



∫ xi

xi−1

(x− xi)2

h
dx− h

N i
p

∑

p:xp∈Ii

(xp − xi)2

h




and similarly for the interval [xi, xi+1]. The lowest order term in the error is then:

EiF = px(xi)


h− 1

N i
p

∑

p:xp∈Ii
xp +

1

N i+1
p

∑

p:xp∈Ii+1

xp


+H.O.T. (103)

In order to investigate the order of this term it is necessary to consider the evolution of the
points that contribute to the calculation of acceleration at the point xi at time tn. Let means
of particle positions and velocities be defined by

x̄ni+1(t) =
1

N i+1
p

∑

p:xp(tn)∈Ii+1

xp(t) (104)

v̄ni+1(t) =
1

N i+1
p

∑

p:xp(tn)∈Ii+1

vp(t) (105)

Furthermore define
dv̄ni
dx

(t) =
v̄ni+1(t)− v̄ni+1(t)

x̄ni+1(t)− x̄ni (t)
(106)

From equations (104),(105) and (107) it follows that

x̄ni+1(tn+1)− x̄ni (tn+1) = [1 + ∆t
dv̄ni
dx

(tn)](x̄ni+1(tn)− x̄ni (tn)) (107)

and hence that the gap between the means may be related back to the initial mesh distribution.

x̄ni+1(tn+1)− x̄ni (tn+1) =
∏

j

[1 + ∆t
dv̄ni
dx

(tj)](x̄
n
i+1(t0)− x̄ni (t0)). (108)

Suppose that initially all the points are evenly distributed at time t0 with spacing hp, then

(x̄ni+1(t0)− x̄ni (t0)) = hp(N
i+1
p +N i

p)/2 (109)

where the interval spacing h is connected to the initial particle spacing hp through

h = hp(N
0
p + 1) (110)

where N0
p is the total number of points in every interval at t0. Hence

x̄ni+1(tn+1)− x̄ni (tn+1) = h
∏

j

[1 + ∆t
dv̄ni
dx

(tj)]

[
N i+1
p +N i

p

2(N0
p + 1)

]
. (111)
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Using the CFL condition as defined by equation (46) then gives

x̄ni+1(tn+1)− x̄ni (tn+1) = h[1 + h CFL K]
N i+1
p +N i

p

2(N0
p + 1)

+ h.o.t (112)

where

K =
∑

j

[
dv̄ni
dx

(tj)] (113)

This result shows that the acceleration order may be first order if local velocity gradients are
”small” if particles are rezoned as to be closer to evenly spaced as in section (5.3).

8.6. Velocity gradient error.

The accuracy of the equations used to update energy and density in Section 5.1 depends on
the accuracy of the velocity gradient and velocity gradient at any particle xp ∈ Ii+1 is defined
as:

δv

δx
(xp) =

vi+1 − vi
xi+1 − xi

− (
xi+1 + xi

2
− xp)

δ2v

δx2
(xp) +H.O.T (114)

The velocity gradient error at particles is rewritten as:

EpV G =
Ei+1
v −Eiv
h

+
∆t

h
[Ei+1
a −Eia]− (

xi+1 + xi
2

− xp)
δ2v

δx2
(xp) (115)

Thus the velocity gradient error depends on teh first order interpolation error.

9. Combining the error estimate results.

The density errors at T=0.2 in the apprpoximate L1-Norm and L2-Norm for different mesh
sizes are shown in Table II. We are using same CFL as in section 6 and the initial number
of particles per cell is also 8 throughout. The numbers in this Table indicate that the density
error is order of h in the approximate L1-Norm and order of h

1
2 in the approximate L2-Norm.

To understand the orders of these norms a detailed inspection of the order of accuracy in each

Table II. Density Error at T=0.2 in L1-Norm and L2-Norm and Pointwise maximum error at mesh
points.

h L1-Norm L2-Norm Max. Density Err. at Mesh Pts
0.02 0.00161 0.02484 0.1051
0.01 0.00831 0.01587 0.0812
0.005 0.00434 0.01046 0.1139
0.0025 0.00231 0.00759 0.1063
0.00125 0.00136 0.00626 0.1002
0.000625 0.00110 0.00619 0.0989

part of the spatial domain was made. In the regions around the contact discontinuity and the
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shock the maximum pointwise error does not decrease but the interval over which it occurs is
reduced with the mesh spacing h. The approximate L1 norm is h|Emax| while the approximate
L2 norm is

√
h|Emax|, thus giving rise to the observed orders of convergence. Figure 7 shows

the evolution in time of the L1 norm of the density error for different mesh sizes.
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[Fig. 7] L1 norm of density errors over time for different meshes

10. Summary

In this paper the accuracy properties of a variant of the Material Point Method are investigated
in depth on a well-known test problem in one space dimension. The analysis leads to the same
conclusion that the method is order one half to first order in accuracy for a sufficently small
CFL number. The analysis also shows that this accuracy depends on a sufficiently well-behaved
point distribution. This point distribution can be verified computationally in a straightforward
manner. Computational experiments have been used to show that the observed experiments
match the computed experiments. The importance of this analysis is that it provides a way
to make a more formal assessment of many of the errors in MPM type methods. This inturn
makes it possible to start to consider an analysis of higher space dimensional Meterial Point
Methods.
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