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Abstract

Moving-Least Squares (MLS) surfaces are a popular way to define a smooth
manifold surface from a set of unorganized points without normals. In this paper
we present a formulation of MLS surfaces that sheds light on shortcomings of the
original technique proposed by Levin, which is based on a two-step minimization
procedure. We show that there are cases intrinsic to the geometry of the underlying
surface from which the points are sampled where Levin’s projection fails to find
an adequate fit. These shortcomings occur regardless of sampling density or the
amount of noise. Our formulation solves this problem by directly fitting a local
approximating function to the surface using a unified minimization scheme. We
present a modification of Levin’s original proof that can be directly adapted to our
unified approach. Consequently, this suggests our method can be used to create
different families of MLS surfaces, depending on the function space used for the
fit. This allows specific priors to be used in the approximation, leading to better
reconstructions. We present experimental results that show our technique performs
adequately in a wide range of conditions.

1 Introduction

Recently, there has been substantial interest in the area of surface reconstruction from
point-sampled data. This work is driven by a set of important applications where the
ability to define surfaces out of a set of discrete samples is necessary. For instance,
devices capable of acquiring high-resolution 3D models have become affordable and
commercially available, and such reconstruction techniques are required for the effec-
tive use of these devices. A particularly powerful approach has been the use of the
moving least-squares (MLS) technique of Levin [Lev03] for modeling point-set sur-
faces [ABCO*01, ABCO*03, AKO4a]. Variants of this framework have become the
basis for much of the current point-based modeling work in the graphics, visualization,
and computational geometry communities.

The key idea in Levin’s original formulation is to define the surface in terms of
a projection operator, the fixed points of which are defined as the surface. The idea



() (b) (©)

Figure 1: When Levin’s original MLS projection [Lev03] is applied to a wedge shaped
set of input points (shown in black) (a), the resulting surface (shown in red) can pinch
in an undesirable way as seen in (b). The surface pinches because the local reference
frame bisects the input points (see Figure 4), which does not allow a good functional
approximation to the points. Our new unified projection operator avoids this pinching
artifact and rounds the surface as one might expect (c).

is similar to the seminal work of Lancaster and Salkauskas [LS81] for the interpola-
tion and approximation of functions. Levin generalizes this previous work in func-
tion approximation theory to accommodate manifolds. Levin’s operator involves a
non-linear optimization for each point projection, but unlike simpler, subsequent def-
initions [AAO03], it does not require as input normal information at the points. The
operator is defined as a two-step optimization procedure. The first step computes a
reference frame for a local neighborhood of the point being projected by a non-linear
weighted least squares fit. (Note that this is the main difference from [LS81].) The sec-
ond (linear) step finds a best-approximating function in the reference frame computed
during the first step. Typically a tensor-product quadratic is fit to the input points, from
which differential-geometric properties of the MLS surface can be approximated. It is
possible to skip the second step, which is equivalent to fitting a zero degree function to
the point set, and this is advocated in many works (e.g., [AKO4a]). This second step
is critical for our reformulation of the projection procedure. We show that assuming a
constant function will make the original MLS definition fail to produce a suitable sur-
face reconstruction for certain geometric configurations, regardless of neighborhood
size or sampling density.

It can be demonstrated that cases exist when during the finding of a non-constant
function f in the second stage, the reference frame computed by the first stage will
generate a poor fit to the input points. The motivating insight for our reformulation
lies in the observation that for the same input configuration there still exists another
reference frame that would allow an accurate fit (see Figure 4). We address this issue
by incorporating the function fitting into the non-linear optimization, thereby unifying
the projection procedure into a single fitting step. Furthermore, we show that it is
possible to tailor this new MLS formulation for a variety of geometric processing tasks
by changing the function space from which the function f is selected.



2 Related work

The problem of defining surfaces out of point samples has been actively approached by
researchers for many years. Pioneering work has been done by Hoppe et al. [HDD*92]
and others [CL96, TL94, WSI98] in the context of surface reconstruction, where the
primary focus was on building triangle meshes of the sampled surface. Early important
work in the area was also done in the computational geometry community, particu-
larly in the area of connectivity reconstruction using techniques based on the Delaunay
triangulation [ABK9S].

During the development of Point-Based Graphics as an independent sub-area of
interest [PZvBGO00, RL0O0], it was natural to consider the more general problem of
defining surfaces directly from point sets. Alexa et al. [ABCO*01]’s Point Set Sur-
faces was one of the first papers in this area. It showed how a simple and effective
representation could be achieved by the use of a moving least-squares (MLS) tech-
nique [Lev03], even in the case of noisy sets of points. Other related formulations
followed, e.g., [AKO4a, FCOAS03, MVF03,PKKG03, XWH*03].

At this point, there are many variations and extensions of the original approach
to defining point set surfaces. A set of popular techniques are based on defining the
point projection in terms of a combination of weighted centroids and a normal field
[AAO07,AA04, AAO3, AKO4a]. This type of projection defines the surface in terms of
a level set of a scalar function. This function can be evaluated very efficiently, but an
iterative method is required to project points onto the surface. Also, their simplicity
makes them more suitable for analysis that give strong theoretical guarantees [Kol05,
AAO07,DS05, AKO4a, BHO5]. We note that some of these linear techniques require
normal information, which may be unavailable or unreliable.

There is also continued interest in further analysis of the original approach using
Levin’s MLS [Lev03] which involve a non-linear projection, e.g., [LCOL06, FCOSO05,
SSFS06, ABCO*03]. The work of Amenta and Kil [AK04b] raised many important
practical and theoretical issues, including what happens to the projection near edges
and corners; they show that the original projection sometimes has undesirable behavior
in those locations. Fleishman et al. [FCOS05] propose to use robust statistics and a
modified projection scheme for recovering sharp features as well as increasing stability
of the projection operator near features. This approach is sound and produces good
results, but it introduces extra processing steps which break the natural elegance of the
original formulation.

In our work, we follow on the footsteps of Amenta and Kil, and show that the
failures near corners and edges are unrelated to sampling conditions — they are in fact
intrinsic to the geometry of the surface from which the points are sampled. Our work
also proposes an alternative way to define sharp features. Instead of using multiple
steps, our technique is based on a conceptually simple modification (extension) of the
original non-linear projection by Levin.



Figure 2: Energy fields for several input point configurations are visualized for Levin’s
projection (Equation (1), top row), and our unified approach (Equation (4), bottom
row). The horizontal and vertical axis correspond to a parameterizaton of all possible
reference frames, whose center is at an angle 6 from the vertical wedge direction, and a
distance p from the center point of the wedge, respectively. Notice that for the sharpest
wedge, the minimum (always encircled in a white contour) appears in the wrong place
for Levin’s formulation, while ours has a minimum with angle zero in all situations.

3 The Unified Projection Operator

We wish to project a point 7 in a domain D C R3 to a point on the MLS surface, defined
by a set of input points p;. This is done by defining a function P : D — S. We begin
by reviewing Levin’s original MLS projection. We then show how our new projection
relates to Levin’s formulation, and give a proof to show that it is indeed a projection.

3.1 Levin’s Projection

Levin’s projection [Lev03], P., has two stages. It first looks for a local reference frame
defined by a point g relative to r. This is the plane that passes through g, with normal
(g—r)/lg—r|, and is denoted by H,,. The orthogonal projection onto the plane is
denoted by A, : R* — H,,. The plane H,, is found by

argmin Yilhq(pi) — pil*o(|pi —ql)

, 1
, T 0(pi—d)) )

where ® is a weighting function (often a Gaussian). Note that a non-linear minimiza-
tion is required to find this weighted least-squares fit due to the weighting function’s



Figure 3: Like the original MLS, our unified projection is quite resilient to noisy and
irregularly sampled inputs. Our approach has the extra benefit of properly rounding
sharp corners. The grey lines show the paths of the point projections.

dependence on ¢, and is typically found using a Powell method [PTVF92, Chapter
10.5]. Once this local reference frame has been found, a second step is performed
where a function f : H,, — R, from a function space F, is fit to the points p;, in a
weighted least-squares sense. Let g, : (H,4 x R) — R? be the linear function map-
ping the plane and a scalar value back into the global R*> domain (similar to 2~!). With
r, g subscripts omitted for clarity, the function f can then be found by

argmin Zi |g(h(Pz)7f(h<P:))) —p;lzw(|q—p,-|)

. 2
; Y o(q—pi) @

Intuitively, this can be thought of as finding a weighted least squares function approx-
imation to the points p; over the R? local domain formed by H. Since the weights
are constant, the function f can be computed directly by solving the resulting lin-
ear system, when F is a finite-dimensional linear function space. After the func-
tion f is found, Levin’s projection of r onto the MLS surface is simply defined to be
Pr(r) =g(h(r),f(h(r))), i.e. the projection of r onto f in the direction (g —r)/|qg —r|.

This two-step formulation works well when applied to most point configurations,
but can sometimes break down. The intuition for the two-step process is that the first
step is trying to find a local reference frame for the surface, analogous to the traditional
differential-geometric reference frame, while the second step actually computes the
function.

Unfortunately, the first step of the process fails to produce the expected reference
frame when the points p; are in certain, but common, geometric configurations. Specif-
ically, we consider the covariance matrix of the neighborhood of points p; around r,
represented by the covariance matrix of the points. The reference frame found by the



optimization process will have its normal aligned with the minor eigenvector of the
matrix. In some cases, this is not the normal of the natural reference frame for the
local surface (see Figure 4(left)). When this happens, the MLS projection operator will
pinch and extend away from the points p; (as demonstrated in Figure 1(b)).

Even if the function space used in the second step of the projection procedure is
capable of accurately representing the local surface, it needs a reasonable reference
frame from which to be applied. It is natural and probably intuitive to target the sam-
pling density as the source of the problem. In particular, we know from differential
geometry that an appropriate plane must exist, but the original MLS definition is sim-
ply not finding it. The reason for the original MLS definition’s deficiency is that it is
performing the optimization in two different spaces. The first stage of the projection
is fundamentally limited to planar approximations, and there is no chance for the sec-
ond stage to correct (or adequately compensate for) the problems generated by the first
stage.

3.2 Unifying the Projection Operator

We now describe a generalization of the Levin projection that unifies the search for
H and f. Since the search for H is the aspect that leads to poor results, we take the
approach of trying to minimize its influence on the projection procedure. We begin
by assuming that the function space F is the set of constant functions. Then when
H is a minimizer of Equation (1), Equation (2) will be minimized by f = 0. Since
g(h(pi), f(h(p;))) = h(p;), we can then rewrite Equation (1) as

argmin Yile(h(p), f(h(pi))) — pil*©(lg — pil)
of Yio(lg—pil)

. 3)

In this simplified setting, with constant f, it is clear that equation (3) is equivalent to
equation (1). We further generalize the projection by writing

|C N — p:2w(lC — D
argmin):ll w.¢(Pi) = Pil”O(|Ch £ (r) pz\)7
a.f Y o(|Ch f(r) — pil)

where Cy ¢(x) is the closest point projection of x onto the function f over domain H,
and the result of the unified projection is defined to be Py (r) = Cy (r). Again, when
f is constant, this is equivalent to equation (1). For more complex function spaces F,
however, f is not constant, and the unified projection is quite different than Levin’s
version. The first difference is that the weights computed by ® are in reference to
the final result of the projection, rather than the projection onto the plane H. This
is one step in removing the dependence on the local frame on which f is defined.
A second difference is in the way the error residuals are measured when fitting the
function f. The original projection measured the residuals in the direction orthogonal
to H. Our unified approach measures them orthogonally to the function f itself. The
encapsulation of H into the closest point projection function C effectively removes
any major dependence on the local reference frame. H can now simply be thought
of as a means of parameterizing all possible functions in F, over all orientations and
translations.

“



Figure 4: When projecting a point r onto the surface, Levin’s MLS (left) may find a
reference frame H that does not naturally allow the input points to be approximated
by a function. Our approach (right) searches for H and the approximating function
f simultaneously. Errors are measured differently. In Levin’s, the error residuals are
measured perpendicular to H, and weighted by the distance to g. In ours, the residuals
are measured by closest point distances, weighted by the closest point projection of r
onto f.

Another significant change is in the way that the point 7 is projected onto the func-
tion f approximating the surface. Levin’s projection always projects in the direction
(g—r)/|q— r|- The unified projection is always orthogonal to f. This allows f to be
found in a way that best approximates the surface, followed by a projection onto that
approximation.

In essence, our projection operator is aware of the local function approximations
being used, rather than searching for a reference frame with the hope that a function fit
over that domain will be adequate. Levin’s projection essentially searches the reference
frame whose normal agrees with the minor eigenvector of the inertia tensor. However,
this might be a reference frame in which the function fit and resulting surface approxi-
mation to p; will be poor. With the new operator, finding the local reference frame on
which f is defined is an effect of finding a good surface approximation.



3.3 Proof of Projection

An important question that must be answered is whether or not our new operator, Py,
is still a projection (for the reasons outlined in Levin’s original work). We start by
showing an alternative proof that Levin’s operator is a projection. We refer the reader
to step 1 of Section 3 in [Lev03]. Assume Levin’s operator was applied to a point » such
that P.(r) = g, and r # q. We will now examine the effect of Py, in a one-dimensional
neighborhood of r along (¢ —r)/|(g — r)| (Levin calls this direction a = a(g)). Let
' =r+u(r—q),u € (—¢,¢), with € such that the stated assumptions in Levin’s work
hold. It is clear that ' = (9 —+")/|qg — | = a, so using g and a as directions for
projecting 7’ is admissible. Then, the first and third conditions in [Lev03] hold for #/,
and the second is satisfied by construction. The consequence of these conditions is that
q is the result of the first stage of Levin’s projection for all #. Since the second stage of
the projection procedure only moves ¢ in the direction a and does not depend on r, the
final result is

Va(PL(r)) =0. &)

This means that the null space of the Jacobian J(Py(r)) is non-trivial, and therefore
rank-deficient. Therefore it follows that P, is a projection.

In order to prove that our operator is indeed a projection we will similarly show that
the Jacobian of Py(r) is rank-deficient. We use notation as used previously: Py (r) =
q,r # g,a= (q—r)/|(g—r)|, and so forth. If ¢ minimizes Equation (4) for r, then
there exists an € for which any r’ = r+u(r — q), u € (—¢,€) has the same minimizer.
First note that Cy ¢(r') = g for all u, and therefore V,(Cp ¢(r)) = 0. This is because
the closest point projection follows a distance field whose gradient agrees with a. Now,
since the only dependence of Equation (4) on r is through Cy ¢(r), applying the chain
rule results with

Va(Py(r)) =0. (6)

Again, since the null space of the Jacobian is non-trivial, Py is a projection. In the case
of r = g, we simply set a to be in the direction of the normal of f at g, and the same
argument applies. This result is quite general as any function space used in Py will
produce a projection operator.

4 Results and Discussion

Our proposed operator has several desirable features, compared to the original MLS
definition and subsequent work. It directly fits local functions to the input, and so is less
susceptible to incorrect minima arising from an inadequate reference frame. Therefore,
some feature from the sampled model might be “pinched” in these definitions. In our
unified projection, these corners are “rounded” — the behavior is more similar to a
surface under low-pass filtering. This can be seen in Figures 1, 3, and 8.

At the same time, our formulation can also be used to exactly reconstruct CY fea-
tures of the surface. If the functions we are using for the optimization are only C°, there
will be 3-dimensional balls in R® that project down to a single point, as illustrated in
Figure 5. This runs counter to the intuition that our surfaces should be as continuous as



Figure 5: The unified operator can reconstruct C° surfaces when the function space F
consists of wedge shaped functions. A d-dimensional ball R collapses to a point g at
CY features under the closest point projection. Since this is the point that determines
the weights, if g is a minimum for some r € R, then it is a minimum for all of them.
Hence the surface retains the C° feature.

the weighting functions, as Levin conjectures in [Lev03]. To the best of our knowledge,
this is the first technique to directly incorporate sharp features, without formulations
that use intersections of smooth surfaces or explicit tagging [FCOS05,RJIT*05]. Figure
6 illustrates the effect using f(x) = |x| as the single basis vector for the function space,
which is then searched over all origins and orientations.

It is interesting to consider the conditions that cause the breakdown of the original
MLS operator. This happens when the minor eigenvector of the inertia tensor switches
from being aligned with the normal of the expected reference frame to being tangent
to the frame. We believe that this is related to the uniqueness of the minor eigenvector
of the inertial tensor and how it changes over the surface. Bremer and Hart [BHOS]
have recently used a related technique for proving sampling conditions under which an
MLS formulation properly reconstructs a surface.

The flexibility that the unified projection operator affords can be exploited for un-
usual applications. One can define the function space F used by the unified operator
to contain the expected local surfaces for the model being reconstructed. By bias-
ing the function space in this way, we can interpret this unified formulation in terms
of providing surface priors for the reconstruction. One interesting application of this
technique is for automatic completion. In Figure 7, we show two examples of recon-
structions from an incomplete set of input points. On the right, the function space F
only contains smooth functions, so a smooth surface is reconstructed. In contrast, the
left shows a a case where the F includes functions with sharp features, so a sharp point
is reconstructed to fill the gap.



Figure 6: Using C° functions in the function space leads to a C” reconstruction of the
surface.

5 Conclusions and Future Work

In this paper, we have proposed a unified MLS projection operator. Our operator is
close in spirit to [Lev03, LS81], and it allows for the use of rich function spaces that
contain functions relevant to the surface being reconstructed. It is a natural extension to
Levin’s approach, and addresses a key shortcoming of the technique. We have provided
an alternate proof that Levin’s formulation is a projection, which naturally extends to
our more general operator.

We believe that our approach has many applications. Our unified projection allows
manifolds to be defined on embedding spaces richer than R3. For example, it should
be possible to reconstruct color information by operating on the product space of color
and geometric information. The same technique should be applicable to texture coor-
dinates, and other continuous fields associated to the manifold.

An exciting avenue for future work is to automatically determine the most likely
priors within the point set and use those to iteratively improve the point set surface def-
inition, computing an intrinsically best point set surface for the particular scan. Sim-
ilarly, it may be possible to use parts of a surface as priors for the reconstruction of
other, more poorly sampled areas.

Acknowledgments

Removed for anonymity.

10



Figure 7: A function space F that contains predetermined priors that fit the original
surface can be used to complete missing details. On the left, 7 contains wedge shaped
functions, so a sharp point is reconstructed to fill the gap. On the right, 7 only contains
smooth functions, so the gap is filled with a smooth reconstruction.
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Figure 8: On reasonably well-behaved models like the fandisk (first row), our formu-

lation (right columns) performs similarly to Levin’s (middle column). On an under-
sampled point set of the Stanford bunny, or the Twirl model, Levin’s projection pro-

duces degeneracies, while our direct fitting generates an appropriate surface.
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