
1

Interactive Isosurface Ray Tracing of Time-Varying

Tetrahedral Volumes

Ingo Wald
∗
, and Heiko Friedrich

†
, Aaron Knoll

∗
, Charles D. Hansen

∗
∗
SCI Institute, University of Utah

†
Computer Graphics Group, Saarland University

UUSCI-2007-003

Scientific Computing and Imaging Institute
University of Utah

Salt Lake City, UT 84112 USA

April 3, 2007

Abstract:

We describe a system for interactively rendering isosurfaces of tetrahedral finite-element scalar
fields using coherent ray tracing techniques on the CPU. By employing state-of-the art methods
in polygonal ray tracing, namely aggressive packet/frustum traversal of a bounding volume
hierarchy, we can accomodate large and time-varying unstructured volume data. In conjunction
with this efficiency structure, we introduce a novel technique for intersecting ray packets with
tetrahedral primitives. Ray tracing is flexible, allowing for dynamic changes in isovalue and time
step, visualization of multiple isosurfaces, shadows, and depth-peeling transparency effects. The
resulting system offers the intuitive simplicity of isosurfacing, guaranteed-correct visual results, and
ultimately a scalable, dynamic and consistently interactive solution for visualizing unstructured
volumes.

SCI Institiute, Technical Report No UUSCI-2007-003

Interactive Isosurface Ray Tracing of Time-Varying Tetrahedral Volumes

Ingo Wald
SCI Institute

University of Utah

Heiko Friedrich
Computer Graphics Group

Saarland University

Aaron Knoll
SCI Institute

University of Utah

Charles D Hansen
SCI Institute

University of Utah

Abstract— We describe a system for interactively rendering isosurfaces of tetrahedral finite-element scalar fields using coherent ray tracing tech-
niques on the CPU. By employing state-of-the art methods in polygonal ray tracing, namely aggressive packet/frustum traversal of a bounding volume
hierarchy, we can accomodate large and time-varying unstructured volume data. In conjunction with this efficiency structure, we introduce a novel
technique for intersecting ray packets with tetrahedral primitives. Ray tracing is flexible, allowing for dynamic changes in isovalue and time step, visu-
alization of multiple isosurfaces, shadows, and depth-peeling transparency effects. The resulting system offers the intuitive simplicity of isosurfacing,
guaranteed-correct visual results, and ultimately a scalable, dynamic and consistently interactive solution for visualizing unstructured volumes.

Index Terms—Ray Tracing, Isosurfaces, Unstructured meshes, Tetrahedra, Scalar Fields, Time-varying data.

1 INTRODUCTION

Visualization of large unstructured data is a persistent challenge for
data analysis. Due to its adaptive nature and simplicity, finite element
(FE) analysis has experienced widespread adoption in simulations for
numerous computational scientific and engineering disciplines such
as CFD, meteorology, geology, and astronomy. With increasingly so-
phisticated simulation techniques and powerful parallel computing en-
vironments, the effective size of finite element fields is quickly outpac-
ing the memory capacity of commodity graphics processors (GPUs).
Nonetheless, scientists generally desire accurate visualization of these
data sets in their entirety, with few, if any, compromises. Ideally, the
visualization system should allow the user to interactively change the
viewpoint, light sources, isovalues, time steps, etc.

A conventional method of rendering isosurfaces of volume data has
been extraction via marching cubes or marching tetrahedra, followed
by Z-buffer rasterization on GPU hardware. While more than adequate
for small data, this approach faces difficulties for large, high-frequency
volumes, where significant amounts of geometry must be extracted to
faithfully reproduce a surface. View-dependent and multiresolution
extraction methods can reduce the amount of geometry, but ultimately
extraction is bound by geometric complexity.

Recent techniques for rendering unstructured data have leveraged the
power of GPU hardware, applying direct volume rendering (DVR)
techniques to depth-sorted tetrahedra. Large data has been addressed
through multiresolution and progressive rendering techniques, as well
as out-of-core mechanisms. While powerful, these methods incur lim-
itations, as interactivity is realized through simplification or temporary
omission of the full data set. Conversely, ray tracing methods on CPU
workstations can directly address large memory, and are inherently
scalable to multiple processors and large data.

Multi-core CPU’s are increasingly prevalent. Large-scale multi-core
architectures, such as Terascale [13], are clearly on the horizon. Cur-
rent cc-NUMA workstations support 16 to 32 cores, and can directly
address nearly two orders of magnitude more memory than a GPU.
Algorithmic flexibility and SIMD instructions on the CPU encourage
coherent ray tracing techniques, which amortize the costs of accel-
eration structure traversal and primitive intersection across multiple
rays. Unstructured tetrahedral volumes encourage adaptive accelera-
tion structures, such as bounding volume hierarchies, that have proven
efficient for dynamic triangle mesh ray tracing. Isosurfaces for first-
order FE are inherently polygonal, allowing for fast ray tracing via
simple geometric intersection tests.

In this paper, we propose a new approach to directly ray tracing isosur-
faces defined over tetrahedral domains by combining recent advance-
ments in polygonal ray tracing with existing techniques for unstruc-
tured isosurface extraction. We detail a novel packet-tetrahedron inter-
section algorithm inspired by marching tetrahedra, and its integration
with a coherent implicit bounding volume hierarchy traversal. We ex-

tend this technique to practical shading and visualization features such
as multiple transparent isosurfaces and dynamic shadows. Ultimately,
we find that ray tracing unstructured data on the CPU allows for inter-
active performance on current laptop hardware, flexible and correct vi-
sualization of isosurfaces, and the ability to render large time-varying
unstructured data, limited only by the size of CPU main memory.

2 RELATED WORK

2.1 Isosurface Extraction

Marching cubes were first applied to isosurface extraction of struc-
tured data by Wyvill et al. [38], and Lorensen & Cline [20]. Doi &
Koide [8] developed a similar and arguably simpler algorithm based
on marching tetrahedra for isosurfacing unstructured scalar fields.
Nonetheless, naïve extraction of surfaces is bound by data complexity,
and often slow. Recent works have accelerated marching tet extraction
on the GPU. Pascucci [24] showed that the vertex processor of can be
utilized to create appropriate quadrilaterals for the isosurface within a

Fig. 1. Several samples of our interactive system running at 1024×1024 pixels:
a) bucky ball (225K tets) with simple shading. b) bucky cube (11.3m tets). c)
buckyball with two isosurfaces, clip box, and shadows, d) Time step 60 of the
time-varying fusion data set (3m tets, 116 time steps), rendered with four isosur-
faces, clip box, shadows, and transparency. With a 1024× 1024 frame buffer,
these examples render at 12.2, 2.7, 5.4, and 0.8 fps, respectively, on a Intel Duo
2.33 GHz laptop with 1 GB RAM; and and 90, 19, 42, and 7 fps, respectively, on
a 16-core 2.4 GHz Opteron workstation with 64 GB RAM.

1

tetrahedron. Similarly, Klein et al. [14] exploit fragment programs for
their quadrilateral computation. These GPU approaches yield over-
all rendering frame rates from 1 fps for million-tet data to 60 fps for
smaller data sets. Though not implemented for dynamic unstructured
extraction, techniques exist to improve performance on complex ge-
ometry, such as view-dependent frustum culling [19], adaptive extrac-
tion [35], and implicit occlusion culling [25].

2.2 Unstructured Volume Rendering

Garrity [9] first applied ray casting to unstructured meshes, by comput-
ing the entry and exit points of each ray with a face of the tet mesh, and
accumulating opacity as in volume ray casting. Shirley & Tuchman
presented an approach similar to splatting, based on rasterization of
depth-sorted projected tetrahedra (PT). Due to the power of rasteriza-
tion hardware, methods involving projection and sorting have become
popular, such as vertex shader methods for performing PT classifica-
tion [37]. Nonetheless, GPU ray casting approaches such as Weiler
et al. [34], and Bernardon et al. [1] have proven feasible, thanks to
clever mapping of geometry structures and the ray-tet marching al-
gorithm to GPU fragment shaders. However, these implementations
deliver barely-interactive frame rates for even moderate datasets of 1
million tets. Callahan et al. [5] proposed an extremely efficient GPU
method of partially ordering projected tet fragments by depth in both
image and object space. The HAVS method has been extended to han-
dle large data using LOD [4], progressive rendering, and out-of-core
streaming [3]. Their system allows for direct volume rendering of
unstructured data at real-time rates, albeit with minor artifacts and de-
layed full visualization of large data.

2.3 Interactive Ray Tracing on the CPU

Instead of using rasterization techniques, our system builds on fast ray
tracing. Interactive ray tracing was first proven feasible on commod-
ity CPU’s by Wald et al. [33], using SIMD instructions on coherent
ray packets in a kd-tree. More aggressive coherent methods involve
culling geometry outside the packet bounding frustum (e.g. Dim-
itriev et al. [7]), or frustum traversal of wide packets (e.g. Reshetov et
al. [26], or Wald et al. [30]), both of which ideas we will employ. Ray
tracing today can easily trace millions of rays on desktop PCs, and an-
imated scenes (the counterpart to time-varying data) have successfully
been addressed [18, 30, 32]. Of particular interest to our approach is
the dynamic BVH traversal proposed by Wald et al. [30].

2.4 Interactive Isosurface Ray Tracing

Isosurface ray tracing on the CPU has been explored before, particu-
larly for large data applications. Parker et al. [23] employed a hier-
archical grid to ray trace isosurfaces on a small supercomputer; De-
Marle et al. [6] extended this implementation to clusters. Knoll et
al. [15] proposed losslessly compressed octree volumes for rendering
larger data. Wald et al. [31] showed how coherent optimizations could
be applied to ray trace isosurfaces interactively on small workstations,
using implicit min-max kd-trees; our method is heavily inspired by
this work. Marmitt & Slusallek [21] proposed a new ray marching al-
gorithm for directly traversing tet meshes using Plücker coordinates.
Optimized coherent ray tracing has not yet been applied to unstruc-
tured isosurfacing.

3 COHERENT RAY TRACING OF TETRAHEDRAL ISOSURFACES

Our core approach to ray tracing unstructured scalar fields is an im-
plicit dynamic bounding volume hierarchy in the spirit of implicit kd-
trees [31], combined with aggressive large-packet coherent ray traver-
sal; and a specially designed packet-isopolygon intersection technique
inspired by fast packet-triangle intersectors and the Marching Tetrahe-
dra algorithm.

In unstructured grids, the scalar field is defined through linear inter-
polation over tetrahedral primitives; each such isotetrahedron can then
contain one or more more isosurfaces given user-specified iso values.
As with implicit kd-trees [31], we build a hierarchical data structure

over these primitives such that each node in the hierarchy contains the
minimum and maximum of the scalar field below that node’s subtree;
these isoranges can then be used during traversal to discard subtrees
that cannot contain the isovalue. Instead of kd-trees, we opt for bound-
ing volume hierarchies. In practice, they are at least as fast, equally
efficient for time-varying data, and better suited to the irregular, over-
lapping geometry of unstructured volumes.

The implicit bounding volume hierarchy encourages a variation of the
aggressive packet-frustum BVH traversal that was recently proposed
for polygonal ray tracing [30]. This operates on much larger packets
(typically 8x8 or 16x16 rays) than the 4-ray SIMD traversal proposed
for implicit kd-trees, and uses frustum culling and speculative descent
to minimize the number of ray-node traversal steps. Larger packets
also imply better amortization of per-packet costs, and thus help in
hiding the overhead induced through implicit culling. Since the im-
plicit BVH is built over the space of all isovalues, the isovalue(s) of
interest can be changed interactively any time, and even multiple iso-
values can be trivially supported. A BVH also allows for easily up-
dating the data structure once the scalar field or even vertex positions
change, and thus allows for naturally supporting time-varying data.

When a packet reaches a leaf of the BVH, we intersect the isotetra-
hedra contained in that leaf using a new technique inspired both by
marching tetrahedra [8] and fast packet-polygon tests. In both inter-
section and traversal, we will make heavy use of large-packet/frustum
techniques recently developed in polygonal ray tracing. Unless other-
wise specified, both intersection and traversal are assumed to operate
on packets of 16×16 rays.

4 ISOSURFACE INTERSECTION

An isosurface is the implicit surface f (~x) = v where a scalar field f (~x)
takes on a given isovalue v. For conventional first-order finite ele-
ments, the scalar field is given as a tetrahedral mesh in which the scalar
values specified at the vertices A, B, C, and D; the scalar field inside
each isotetrahedron, or isotet, is defined by linear interpolation

f (~x) = f (α,β,γ,δ) = αA+βB+ γC +δD,

where α,β,γ,δ are the barycentric coordinates of~x.

To intersect a ray ~x(t) =~o + t~d with any isosurface f (~x) = v one can
immediately substitute the ray equation into the linear interpolation,
solve a linear system for t, and check that the solution lies within the
isotet. However, we can also observe that for linear interpolation the
isosurface must be planar. This plane is bounded by line segments
along the edges of the isotet in which it exists, forming either a trian-
gular or quadrilateral polygon as shown in the various cases of March-
ing Tetrahedra, and illustrated in Figure 3. We denote this polygon an
isopolygon (or isopoly), as it represents the base geometric primitive
we seek to ray-trace. Unlike solving the ray-parametrized implicit,
this isopolygon must only be computed once per isotet traversed; that
cost is amortized over all rays in the packet, and the full array of fast
ray-polygon techniques can be applied.

4.1 Extracting the Isopolygon

To compute the plane equation and bounding edges of the isopoly-
gon, we turn to the Marching Tetrahedra algorithm [8]. Vertices of the
isopolygon lie on edges of the isotet, and isopolygon edges lie on the
tet faces. Polygon vertices will lie only on those tet edges for which
one vertex is greater and one is smaller than the isovalue. Having
four vertices, there are only 16 cases for which a given vertex is ei-
ther larger or smaller than the isovalue. For each of these cases, we
can store however many vertices the resulting polygon will have, and
the indices of the two tet vertices that span the edge on which that
polygon vertex must lie. In SSE, this lookup is particularly simple:
after loading the four vertices’ isovalues into a SIMD register, an SSE

2

SCI Institiute, Technical Report No UUSCI-2007-003

Fig. 2. From left to right: ell32P (149K tets), feok (122K), bucky ball (177K), bluntfin (225K tets, two isosurfaces), bucky cube (4x4x4 bucky balls, for a total of 11.3m
tets), and time step 50 of the fusion data set. With simple shading, these examples run at 14.2, 12.6, 13.3, 18.9, 2.8, and 3.3 frames per second (1024× 1024
pixels) on a Intel Core 1 duo laptop with 1GB RAM, and at 95, 93, 90, 94, 19.1, and 26.1 frames per second on a 16-core 2.4 GHz Opteron workstation.

comparison followed by a movemask operation will return the de-
sired case. The result is conveniently returned in a 4-bit integer (one
bit for each comparison) that can be directly used to index into afore-
mentioned table of 16 cases. Once we know which tet edges contains
an isopolygon vertices, each isopoly vertex can be computed by linear
interpolation along the two vertices of the corresponding tet edge.

4.2 Ray-Isopolygon Intersection

Once the vertices of our polygon are known, we can use an extension
of Wald’s triangle test [29] to intersect it. As shown in Figure 3 (left),
ray-isopolygon intersection first computes the distance to the precom-
puted plane, then projects the ray hit point onto a suitable 2D coordi-
nate plane. Here, each of the edges defines a (2D) half-space, which
we orient to point towards the inside of the isopolygon. Since the
isopolygon must be convex, we can then take the projected hit point
and perform a 2D half-space test with each of the edges, and can re-
ject the hit point as soon as any of these tests fails. This test can be
performed efficiently for four rays in SSE for both triangle and quad
cases.

4.3 SIMD Frustum Culling

In addition to fast SIMD intersection, we also apply conservative “full
miss” and “full hit” tests for the entire packet, using packet frustum
culling, e.g. [2, 7]. These tests require computation of the four cor-
ner rays bounding the packet frustum in SSE. For a given isopolygon,
we can forgo individual ray intersections when all four bounding rays
fail for the same 2D half-space test (Figure 3, right). Similarly, if all
four rays pass all half-space tests, the entire packet passes through the
triangle, and we must only compute perform a distance test for our
component rays. Thus, intersection tests for individual rays are only
required when the frustum neither fully misses nor fully hits.

The efficiency of frustum culling depends on the relative areas of the
frustum and isopolygon within the plane. For complex scenes, tets
are too small to have full hits, and frustum culling rarely succeeds.

A

B

C

D

A

B

C

D

Fig. 3. Ray-Isopolygon Intersection in an Isotetrahedron. Knowing that the iso-
surface inside the tetrahedron is a plane, we first extract an isopolygon. We
then compute the point where the ray pierces that polygon’s supporting plane,
and project both the polygon and that hit point to a 2D coordinate plane. In 2D,
we then perform a point in (convex) polygon test by considering if the point is
on each of the edges’ positive half-spaces. The test can trivially be extended
to support frustum culling: If all corner rays of the bounding frustum fail at the
same edge, all the rays inside the frustum must fail.

However, full misses are quite common due to the loose nature of the
implicit BVH, making this test highly effective overall. Typically,
frustum culling can reject 40–60% of the packet-isopolygon tests,
tough this ratio declines for larger models. Every times SIMD frus-
tum culling rejects a packet test, 256 individual ray-isopolygon tests
are avoided.

4.4 Isopolygon Pre-Computation

Isopolygon computation can be executed in three ways:

1. Full pre-computation. Pre-compute all isopolys every time the
user changes the isovalue(s) of interest.

2. On-the-fly computation from scratch on demand.

3. On-the-fly computation with caching. Compute isopolys only
when needed, but keep a cache of already computed isotets; clear
the cache every time the user changes the isovalue(s) or time step.

Full precomputation maximizes performance for navigation with static
isovalues, but requires larger memory footprint and incurs delays when
the user changes isovalue or time step. On-the-fly computation is
slower during rendering, but offers greater flexibility with scene in-
teraction. Caching in theory offers a compromise, but in practice is
quite complicated in a multi-core environment, as it requires the reso-
lution of cache conflicts in a thread-safe manner, requiring significant
synchronization overhead. We therefore opt for pure on-the-fly com-
putation by default. Due to the use of large packets – which allow for
amortizing the on-the-fly computations over 64 rays – the overhead
is in the range of 5–8%, which we believe is a tolerable price for the
ability to arbitrarily change the time step or isovalue.

5 THE IMPLICIT BOUNDING VOLUME HIERARCHY

The concept of the implicit BVH is similar to that of the implicit kd-
tree [31] in that the acceleration structure is not built for a single iso-
value, but rather as a tree of min-max isovalue ranges (e.g. Wilhelms
& Van Gelder [36]). Each node stores the minimum and maximum
of all scalar field values contained within that subtree. During traver-
sal, we can consequently cull all BVH nodes that do not contain our
desired isovalue. Once built, the implicit BVH structure is valid for
all isovalues, and thus allows for simultaneously rendering multiple
isosurfaces from the entire range of isovalues. As subtrees that do
not contain the isovalue are never traversed, the only effective cost of
supporting arbitrary isovalues is a slightly looser-fitting BVH.

5.1 Building the BVH

Building an implicit BVH for tets in fact is similar to building a BVH
for triangle meshes. Most mesh-BVH builds rely on bounding boxes
or centroids of their primitives as construction metrics [28, 30], and
tets behave similarly to triangles in this regard.

Traditional bottom-up BVH builds (e.g. [10]) generally result in ineffi-
cient BVHs [12]. Recent BVH literature has favored top-down builds,
which recursively partition primitives into two subgroups. Two parti-
tioning strategies are of particular interest: Wald et al.’s sweep surface

3

area heuristic (SAH) build [30], and Wächter et al.’s fast spatial me-
dian build as proposed in his bounding interval hierarchy paper [28].
The SAH build employs a surface area heuristic [10, 12] to select a
partition with lowest expected cost, but is costly to build. The BIH-
style build is closer in spirit to spatial median builds and, as it requires
no cost function evaluation, it builds significantly faster than SAH
methods. In both constructions, nodes are partitioned until leaves con-
tain 12 or fewer tet primitives. Empirically, we have found this fixed
value to work best.

BVH Structure. Our BVH node employs the same structure as [30],
with a crucial modification: we interpret the isovalue v as a 4th dimen-
sion of the bounding volume, leading to 4D bounds {x,y,z,v}. This
can then be stored and processed as SSE vectors. Integers for the child
node index and traversal bookkeeping follow, padded to ensure SSE-
friendly 16-byte alignment. Storing isovalues alongside geometric ex-
tents allow all dimensions to be processed simultaneously in SSE.

5.2 Implicit BVH Traversal

Having constructed the implicit BVH, we now proceed to traversal.
As previously mentioned, we employ the coherent traversal algorithm
of Wald et al. [30], and extend it to implicit iso range culling. In gen-
eral, this algorithm operates on large packets of rays, and tracks both a
bounding frustum and the first “active” ray in the packet that intersects
a current BVH node. Instead of intersecting each traversed node with
all the rays in the packet, it employs optimizations such as speculative
descent and frustum culling of nodes. With the implicit BVH, nodes
not containing an isovalue in their min-max range are culled.

I) Implicit culling. At the heart of implicit BVH traversal lies the con-
cept of culling subtrees that are known to be inactive – those whose
isorange does not contain an isovalue. As this test is very cheap, we
naturally perform it first. In addition, we observe that each active node
must have at least one active child, and if the first child is inactive, we
can proceed to its active sibling. Only at bifurcation nodes - where
both children are active - do we actually revert to the geometric tests
outlined below. In the worst case, this behavior causes us to descend
several times into a subtree that is not actually visible. Since these
speculative descents are fast, however, this is still quicker than testing
all the nodes for visibility; and even if the fast descent led to a sub-
tree that is outside the packet’s bounding frustum, this node would be
immediately rejected by the frustum test outlined below.

II) Speculative first-active descent. For our first geometric traversal
test, we examine the first active ray in the packet. If that hits the current
node, we can immediately descend without performing any more ray-
box tests, as illustrated in Figure 6(a). Since we never test whether any
of the other rays actually hit the current node, this test is speculative.
Though it may cause modest extra work when few rays in the packet

0,100

0,60 20,100

0,30 20,60 20,30 30,100

0,20 20,30 20,40 38,60 20,22 21,30 30,60 40,100

isovalue = 39

0

1

2 3

4

5

6

bifurcation nodes

intersected leaves

Fig. 5. Implicit Culling. The implicit BVH is a min-max tree containing only a
subset of BVH nodes containing our desired isovalue(s). We can speculatively
descend the min-max tree until we reach a leaf, or an intersection test fails.
Only at bifurcation nodes (dark blue) must we resort immediately to geometric
packet-BVH traversal computation. Thus, geometric tests are performed as if
the BVH had only been built over active nodes for a single isovalue.

Fig. 6. First-active descent, frustum test, and active ray tracking in BVH Traver-
sal. Given a BVH node, we speculatively test the first “active” ray in the packet
against the, and immediately descend if it hits (a). If the first hit test failed, we
perform a frustum test to reject nodes completely outside the frustum (b). If nei-
ther of these tests proved successful, we test all rays sequentially in a packet
until one hits; rays that missed are deactivated for future traversal steps (c).

are also active, this strategy allows many ray-box tests to be skipped
when numerous consecutive rays are active.

III) Frustum test. If the first active test fails, we know that the packet
at least partially misses the box, and can perform a frustum test to
conservatively determine if the entire packet misses. Technically we
employ an interval arithmetic (e.g. [2, 26]) test instead of a geometric
frustum test, but the effect is similar in behavior. If the full packet
missed, we reject the current node and go to the next node on the stack
(see Figure 6(b)).

IV) First-active ray tracking. If both the speculative descent and
frustum tests fail, we test all remaining rays until we find the first active
one that hits the current node. Those rays that failed the test are marked
inactive by tracking the index of the first active ray in the packet (all
rays with a smaller index are known to be inactive). If no active ray
could be found, we reject the node and pop the next subtree from the
stack. Rays with indices higher than the first active one we found are
not tested, and are speculatively descended into the subtree as well.

V) Leaf traversal. When encountering a leaf, we first perform a frus-
tum test as for all other nodes. If that test passes, we iterate over all the
tets referenced in that node, then determine that tet’s isorange (which
may be smaller than the node’s isorange), test that range, and finally
either reject the tet or intersect it as described above.

6 TIME-VARYING DATA

Time-varying data is extremely common in FE simulations. In the
simplest time-varying tet meshes, geometry remains constant and only
scalar values change. More complex scenarios include changing ge-
ometry and topology, and potentially dynamic addition and removal
of elements from one time step to the next. To address these possi-
bilities, we propose two schema for dynamic IBVH construction, bal-
ancing performance and memory footprint. Results are analyzed in
Section 8.5.

6.1 Schema I: Unique BVH Per-Step

The naïve way of accommodating time-varying data is to compute
a unique IBVH for each individual time step. Thus, no render-time
computation is necessary to progress from one time step to the next,
regardless of changes in geometry or scalar element values. As we op-
erate completely in host memory, this approach is in fact very efficient.
However, for large data sets with many time steps such as the fusion
data set in Figure 4, this approach may require considerable amounts
of memory.

6.2 Schema II: Dynamic Refitting

Fully computing a new BVH on-the-fly during rendering is too costly
for large data, even using the fast BIH-style build. However, we ob-
serve that when tet mesh vertices change position but connectivity re-
mains constant, the BVH structure will not change between time steps.
Thus, simply refitting the nodes’ bounding extents will yield a correct

4

SCI Institiute, Technical Report No UUSCI-2007-003

Fig. 4. Two examples of time-varying data sets, rendered at 1024× 1024 pixels, using a 16-core 2.4 GHz Opteron workstation. Top: An artificially created
deforming bucky ball that shows severe deformation of its 226K tets, running at 50+ frames per second including shadows from a point light source. Bottom: The
fusion data set with a time-varying scalar field (3m tets, 116 time steps), rendered with four layers of isosurfaces, a crop box, shadows, and transparency, running
at 7 to 15 frames per second. Camera and light positions, time step, and number and parameters of the isosurfaces can be changed interactively.

BVH. This technique has been successfully applied to ray tracing dy-
namic triangle meshes [18, 30]. The main drawback is that, particu-
larly in cases of extreme geometric deformation, the refit BVH may
perform worse than a BVH built from scratch for that particular time
step. Fortunately, for tet meshes and our IBVH, this method works
extremely well due to the continuous nature of tet deformations in FE
simulation, particularly for rigid bodies. Moreover, when vertices re-
main constant but the scalar field changes, the BVH is identical for all
time steps, as only the min-max isovalues must be updated.

As previously mentioned, minimum and maximum geometric bounds
and isovalues are stored adjacently in 4D SSE vectors. Refitting the
4D extents can thus be accomplished with one SSE min and one SSE
max per BVH node. Tet vertices and scalars are also stored as 4D
points; thus computing the 4D bounds of a tet is also extremely effi-
cient, requiring only 3 SSE min and max operations each per tet. With
multi-core CPU’s, it is straightforward to parallelize the update pro-
cess. After the initial BVH has been built we find all the subtrees for
a given level in the BVH hierarchy, and store their indices. During a
refit, we can then update these subtrees in parallel. Once all subtrees
are updated, a single thread refits the remaining few nodes close to the
root node.

7 SHADING AND INTERACTION MODALITIES

Having leveraged these algorithms for efficient unstructured volume
ray tracing, we describe several visualization modalities that can assist
in understanding our data sets.

Smooth Normals. Since linear interpolation in tetrahedral meshes
leads to piecewise-planar isosurfaces, the rendered isosurface has nor-
mal discontinuities where different tets abut, resulting in a faceted sur-
face appearance. Instead of using the geometric surface normal for

Fig. 7. Instead of shading with the surface normal, a smoother appearance can
be achieved by precomputing and interpolating the tets’ vertex gradients.

shading, we can achieve a smooth surface appearance by precom-
puting and interpolating vertex normals, with little additional cost.
Though visually more pleasing, most scientists prefer seeing the data
“as computed”, so we disable this feature by default.

Shadows. A far more useful effect that a ray tracer can support is shad-
ows, which can add important visual cues over an object’s shape (see
Figure 8). In casting shadow packets, rays are generally coherent and
share a common origin in the case of point lights. Unlike primary rays,
shadow rays do not inherently form a regular beam, and thus have no
concept of “corner rays” for SIMD frustum culling. Though bound-
ing corner rays could easily be computed from a packet [2], this is not
yet implemented. Fortunately, frustum culling during BVH traversal
still works for shadow rays using the Reshetov et al. [26] technique,
which requires no actual geometric frustum. In theory, shadow rays
are simpler than other rays, as they can be terminated as soon as any
valid intersection is detected. These special cases, however, are not
yet exploited. The overall speed impact of shadow rays varies, but is
typically lower than 2× (see Figure 8a-b).

Multiple Isosurfaces. Supporting multiple isosurfaces in an implicit
BVH is straightforward, by simply testing whether a BVH subtree
overlaps any of the isovalues before descending it. To follow the
SIMD paradigm, we currently support up to four different isosurfaces,
though it would be trivial to add more. Keeping the four isovalues in
a SIMD vector, we can test when a BVH node’s or isotetrahedron’s
iso range contains any of these four isovalues in parallel. These are
in turn intersected with all the rays that actually hit the leaf node.
Though rendering multiple surfaces can require tracing more rays per
image, particularly when transparency is enabled, it causes no signifi-
cant computation penalty in and of itself.

Clipping Planes and Boxes. While isosurfaces provide an intuitive
way of visualizing a data set, one of their drawbacks is that the surface
often occludes the data set’s interior. For that reason, visualization
systems often employ clipping planes (or boxes) that allow for crop-
ping certain parts of the model to expose its interior. We currently
allow for a single box that may or may not extend to infinity (to sim-
ulate a plane), and use this to clip BVH sub-trees. During traversal, if
a node’s subtree is completely enclosed in the crop box, we skip the
subtree just as if it was out of the isorange. In SIMD, a box-in-box test
is very cheap and can be amortized per packet, incurring negligible
cost. An example of this feature is shown in Figure 8.

Transparent Depth Peeling. Another effect that allows one to see
through an isosurface is to render it with transparency. Though
straightforward to implement, transparency multiplies the complex-
ity of rendering an image by the number of transparent hits required.
Depth peeling could also be handled by storing multiple hit points in a

5

Fig. 8. Impact of adding additional shading effects: a) A bucky ball rendered
with a single isosurface, and diffuse shading. b) After turning on diffuse shading
with shadows. c) With a second isosurface and an interactive clip-box to expose
the interior. d) Adding transparency as well. At 1024× 1024 pixels on a Intel
Core 1 duo laptop, these screenshots render at 15.6, 10.2, 5.4, and 2.6 frames
per second, respectively. On our 16-core Opteron 2.4 GHz workstation, they
render at 90, 70, 42, and 19 frames per second, respectively.

ray packet, but in our ray tracing architecture it is more elegant to im-
plement via secondary rays in the shader. Rather than generating a set
of completely new rays at the first surface, we can re-use the original
ray packet by specifying a minimum hit distance for each ray. Thus,
the secondary packet has exactly the same (common) origin, corner
rays and frustum as the primary packet, allowing for all of the afore-
mentioned optimizations. Rays that do not require a transparency ray
are disabled, sometimes leading to partially-filled packets, but incur-
ring no additional traversal steps or isopolygon intersections. Note
that even though a BVH can have overlapping subtrees, shading will
always be performed front-to-back, so both shadows and transparency
are always computed accurately (Figure 8).

8 RESULTS AND DISCUSSION

Thus far, we have addressed performance tradeoffs of individual al-
gorithmic components in their respective sections. In this section, we
consider benchmarks for the system as a whole, and evaluate the over-
all success of coherent IBVH ray tracing for tet-volume isosurfaces.
For our experiments, we consider three representative machines: a lap-
top equipped with an Intel Core (1) Duo 2.33 GHz and 1 GB RAM;
a Mac Pro desktop PC with a dual Intel Core 2 Duo 2.66 GHz and 4
GB RAM; and a 8-CPU dual-core (16 cores total) Opteron 2.4 GHz
workstation with 64 GB RAM. In general we found the desktop fre-
quently performed on par with the workstation, except in the case of
multiple transparent isosurfaces on large data where the large L2 cache
of the workstation had a major impact. If not mentioned otherwise, all
examples run at 1024×1024 pixels, and use packets of 16×16 rays.
The data sets and scenes we used for our comparisons are depicted in
Figures 2 and 4.

8.1 Build Time and Performance

Because a tetrahedral mesh has far less geometric variation than a
polygonal model (i.e., tets form a partition of space, and never over-
lap or self-intersect), the qualitative difference between a SAH and
a BIH build is virtually nonexistent (Table 1). Because of the lower

build times, we default to the BIH-style build. With the fast BIH-style
build, most of the smaller data sets could in fact be rebuilt from scratch
per frame.

ell32p feok bucky blunt buckycube fusion (t=50)
#tets 148,955 121,668 224,874 176,856 11.3m 3m x 116

render performance (frames per second)
BIH 27.0 23.6 18.8 28.4 6.23 11.47
SAH 26.3 23.6 18.9 28.5 6.30 12.13

build time (ms, dual Intel Core 2 Duo 2.66 GHz)
BIH 46 42 61 87 4988 1495
SAH 2432 1854 2932 3887 312620 70689

Table 1. BIH-style build vs SAH for building the Implicit BVH. Because the tetra-
hedra are distributed over space for more evenly than triangles in a polygonal
model, the render performance between BIH-style build and SAH build is very
similar, but executing the BIH-style build is much faster.

8.2 Rendering Performance

As can be seen from Table 1 and Figure 2, all of the static examples
can be rendered at multiple frames per second even on the dual-core
laptop. For static scenes, performance is typically linear in the number
of CPU cores, but with an upper bound of 50–60 fps due to the cost
of writing ray-traced pixels to the GPU frame buffer. Empirically, we
find our application scales roughly linearly with respect to number of
pixels per frame. Thus, a frame buffer of 512×512 generally renders
four times faster than at 1024× 1024, allowing for quite interactive
rates even when rendering difficult scenes on the laptop.

ell32p feok bucky blunt buckycube fusion (t=50)
render performance (frames per second)

laptop 14.2 12.6 13.3 18.9 2.8 3.3
desktop 29.4 25.9 27.3 45.5 7.21 8.47
workstation 95 93 90 94 19.1 26.1

Table 2. Performance in frames per second for various data sets and platforms.
Laptop is an Intel Core Duo 2.33 GHz, 1 GB RAM. Desktop is a 4-core dual
Intel Core 2 Duo 2.66 GHz, 4 GB RAM. Workstation is a 16-core cc-NUMA 2.4
GHz Opteron, with 64 GB RAM. Refer to Figure 2 for images.

Scalability in model size. Performance degrades quite gracefully
when increasing model size, dropping at most by 4x when going from
the smallest model (feok, 121k tets) to the most complex one (bucky-
cube, 11.3m tets), even though the latter has nearly 100 times the num-
ber of tets. This is largely due to the logarithmic complexity of ray
tracing efficiency structures, and the packet-amortized cost of memory
access. To further evaluate scalability to large models, we have gener-
ated several example scenes where we replicated a bucky ball n×n×n
times without instancing. As evident in Table 3, performance drops
moderately even for hugely complex models of up to nearly a billion
tets.

replications 1 23 43 83 163

tets total 177k 1.4m 11.3m 90.4m 724m
frames per second 34 13.5 5.0 1.8 0.66

Table 3. Performance in frames per second on four Opteron 2.4GHz cores, for
varying numbers of replication of the bucky ball scene (no instancing is used).

Comparison to existing approaches. Our results compare quite fa-
vorably to the isosurface ray tracing performance achieved by Marmitt
et al.’s Plücker-based tet marching algorithm [21], which reported 1.67
and 0.92 fps at 512× 512 on a dual-Opteron for isosurfaces on the
bluntfin and buckyball, respectively. On comparable hardware (and
scaled to same viewport size), our system performs approximately 40
times faster. However, it is important to note that the Marmitt et al.
method also supports semi-transparent volume ray casting, which ours
doesn’t. Comparison with GPU isosurfacing methods is more difficult,
due to completely different and continually changing hardware and
programming models. We therefore restrain from any absolute com-
parisons, but believe that the frame rates we achieve are sufficiently
interactive to compete with most GPU based methods for large data
sets, while offering more flexibility and unconditional accuracy.

6

SCI Institiute, Technical Report No UUSCI-2007-003

8.3 Traversal Efficiency

The key to this interactive performance lies in the aggressive large-
packet traversal scheme, as can be seen from Table 4. Speculative
descent and frustum culling greatly reduce the number of individual
ray-box tests during traversal by roughly a factor of 18–51 compared
to tracing 2×2 packets (the smallest an SSE-based system can trace).
Using packets allows for traversal and intersection code in SSE, which
is crucial to realizing the performance potential of modern CPU’s.

Because we have transformed the ray-isotet intersection to a polyg-
onal problem, the same frustum culling techniques can also be used
to significantly reduce the number of individual ray-isopolygon tests,
by about 2–3×, even though for the most complex scene the num-
ber of ray-isopolygon tests actually increases (see Table 4). Finally,
larger packets allow for amortizing per-packet operations like isorange
culling and isotet extraction over the entire packet, thus reducing the
total number of these operations per frame. As evident in Table 4, this
reduces the number of isopolygon generations by about 6–40×, and
the number of culling tests by 22–55×.

scene bluntfin buckyball ell32P fe_ok fusion50 bucky cube

number of individual ray-box tests
2x2 48.05 93.84 56.75 57.42 175.83 95.89
16x16 0.94 1.8 1.11 1.10 4.32 5.44
ratio 51× 52× 52× 52× 41× 18×
number of individual ray-isopolygon tests
2x2 8.90 13.52 8.0 12.45 29.35 15.51
16x16 3.19 4.42 3.39 3.86 16.47 23.91
ratio 2.8× 3.0× 2.4× 3.5× 1.8× 0.65×
number of total packet isorange tests
2x2 76.75 152.31 99.89 95.96 279.75 181.48
16x16 1.45 2.84 1.88 1.79 6.48 8.29
ratio 51× 54× 53× 53× 43× 22×
number of total isopolygon extractions (×1000)
2x2 2216 354 1908 4436 7285 3468
16x16 69 10 6429 109 296 616
ratio 32× 34× 29× 41× 25× 5.6×

Table 4. Traversal statistics of using our aggressive packet-frustum traversal
scheme (using 16×16 rays) vs. standard 2×2 packet traversal.

Isopolygon caching vs on-the-fly recomputation. Because the large
packets reduce the number of isopolygon extractions, caching the
isopolygons has a relatively low impact. Even when using only a sin-
gle CPU and a large enough cache (so no conflicts occur, and all syn-
chronization can be disabled), caching only increases total frame rate
by 5–8% over on-the-fly recomputation, thus we opt for the on-the-fly
recomputation by default.

8.4 Multiple Isosurfaces, Shadows, and Transparency

As mentioned in Section 7, more advanced shading bears a signifi-
cant cost, mostly due to the higher number of rays traced in the scene.
Shadows usually increase the render cost by about 2x if the rendered
object covers the entire screen, and somewhat less, otherwise (also see
Figure 8). Of course, adding more shadow-casting light sources–or
even soft shadows or global illumination–would further increase the
cost per image, making these effects infeasible on low-end hardware.

Transparency, too, adds to the number of rays traced per image, and
correspondingly increases the render cost, particularly if the object has
a high depth complexity. For this reason, we typically reduce the num-
ber of transparency levels to a user-specified maximum (2 by default),
which can be changed interactively. All these effects can be supported
simultaneously, even for the complex time-varying data sets (see Fig-
ures 8 and 4).

With diffuse shading, supporting multiple isosurfaces in itself does not
significantly raise the cost of an image, due to the ray tracer’s implicit
occlusion culling (the 2× drop in framerate in Figure 8 is entirely due
to the 2× higher projected area of the model after adding the outer
isosurface). Adding the clip-box in Figure 8 is virtually cost-free.

8.5 Time-Varying Data Sets

With isopolygon caching disabled by default, the performance for han-
dling time-varying data depends entirely on the cost of retrieving the
BVH and geometry for the proceeding frame. When BVH and vertex
positions are precomputed for each frame, switching to a new BVH
has no measurable performance impact, as switching requires only
changing a few pointers, and models are too large to remain resident
in L2 cache anyway. On the other hand, precomputation requires a
lavish amount of main memory: for the fusion data set, storing a pre-
computed BVH and vertices for each time step currently requires a
total of 21 GB of memory. Though we believe this could be signifi-
cantly reduced, this memory footprint is still significant.

Without replicating the vertex arrays and precomputing the BVHs, all
116 time steps of the 3 million tet fusion data set can be fit into 538
MB (including one shared BVH that is refit per frame), allowing us
to render even that model on the laptop. However, refitting requires
updating the vertex array, all the BVH nodes, and some precomputed
shading data (e.g., per-tet gradients) per frame, adding a significant
per-frame cost that limits maximum performance. The update is fully
parallelized, but – unlike rendering – scales poorly due to intensive
and asymmetrical memory access on that particular workstation’s cc-
NUMA architecture.

In short, precomputation and refitting offer a classical trade-off be-
tween performance and memory consumption. For the fusion data set
shown in Figure 4 with all effects turned on, precomputation results
in 7–15 fps on the 16-core Opteron, but requires 21 GB or memory.
Refitting requires only 538 MB of memory, but is limited to 3.5 fps if
we switch to a new time step every frame.

For smaller models, interactive refitting is not an issue, and for model
sizes of 100K–250K tets even per-frame rebuilds are feasible (see Ta-
ble 1). This would even allow for applications where neither scalar
field, nor number of tets, nor mesh topology are known in advance.
For models as large as the fusion data set, this is currently not possi-
ble at interactive rates. However, as the serial BIH build is sufficiently
fast that an efficiently implemented distributed build could permit fully
dynamic rebuilding.

9 CONCLUSION

In this paper we have shown it is possible to ray trace isosurfaces of
tetrahedral scalar fields at interactive to real-time frame rates, purely
on the CPU. In doing so, we are able to correctly visualize large
unstructured volumes, interactively manipulate isovalues and shader
modalities, and handle time-varying data with hundreds of steps.

The main algorithmic contributions of this paper are the fast packet-
isotetrahedron intersection test and extension of the coherent BVH
to an implicit min-max tree over the tetrahedral volume. Our im-
plementation naturally supports multiple isosurfaces, on-the-fly clip-
ping, semi-transparent depth peeling, and shadows. Accommodation
of large data is limited only by host memory capacity, though the over-
head of the BVH must be taken into consideration. Time-varying data
can be handled by either precomputing an implicit BVH, or by build-
ing a single IBVH that is updated on the fly. In the former case, one
can jump immediately between arbitrary time steps – a feat that would
be difficult for streaming GPU methods. Overall, we present a practi-
cal tool for visualizing large tetrahedral data sets.

Our approach opens several avenues for future work. We could extend
IBVH traversal to direct volume rendering methods, such as maximum
intensity projection (MIP) or full transfer-function methods. Though
the latter suffer from high traversal complexity, the IBVH could still
be useful for space-skipping when the transfer function is sufficiently
sparse, as in [16]. Another intriguing extension would be support for
higher-order finite elements in the spirit of Nelson et al. [22] or Rössl
et al. [27]. This would require a completely different intersection rou-
tine, but the IBVH traversal would remain unchanged. Also of interest

7

would be more advanced lighting effects such as soft shadows, ambi-
ent occlusion, or global illumination, which can significantly improve
understanding of data sets [11]. Finally, investigating scalable build
algorithms could allow for rendering even complex data with arbitrary
deformations without precomputation.

Acknowledgements

This work was supported by the U.S. Department of Energy through
the Center for the Simulation of Accidental Fires and Explosions, un-
der grant W-7405-ENG-48, and by the National Science Foundation
under CISE grants number CRI-0513212, CCF-0541113, and SEII-
0513212. It was also supported by the Director, Office of Advanced
Scientific Computing Research, Office of Science, of the U.S. Depart-
ment of Energy under Contract No. DE-FC02-06ER25781 through
the Scientific Discovery through Advanced Computing (SciDAC) pro-
gram’s Visualization and Analytics Center for Enabling Technologies
(VACET). The simulation for the fusion data set was originally per-
formed by Kruger et al. [17]; the data was made available to us by
Allen Sanderson, from the SCI Institute, University of Utah.

REFERENCES

[1] F. F. Bernardon, S. P. Callahan, J. L. D. Comba, and C. T. Silva. An
adaptive framework for visualizing unstructured grids with time-varying
scalar fields. Parallel Computing, 2007. to appear.

[2] S. Boulos, I. Wald, and P. Shirley. Geometric and Arithmetic Culling
Methods for Entire Ray Packets. Technical Report UUCS-06-010, SCI
Institute, University of Utah, 2006.

[3] S. P. Callahan, L. Bavoil, V. Pascucci, and C. T. Silva. Progressive vol-
ume rendering of large unstructured grids. IEEE Transactions on Visual-
ization and Computer Graphics (Proceedings Visualization / Information
Visualization 2006), 12(5):1307–1314, Sept/Oct 2006.

[4] S. P. Callahan, J. L. D. Comba, P. Shirley, and C. T. Silva. Interactive
rendering of large unstructured grids using dynamic level-of-detail. In
IEEE Visualization ’05, pages 199–206, 2005.

[5] S. P. Callahan, M. Ikits, J. L. D. Comba, and C. T. Silva. Hardware-
assisted visibility sorting for unstructured volume rendering. IEEE Trans-
actions on Visualization and Computer Graphics, 11(3):285–295, 2005.

[6] D. DeMarle, S. Parker, M. Hartner, C. Gribble, and C. Hansen. Dis-
tributed Interactive Ray Tracing for Large Volume Visualization. In Pro-
ceedings of the IEEE PVG, pages 87–94, 2003.

[7] K. Dmitriev, V. Havran, and H.-P. Seidel. Faster Ray Tracing with SIMD
Shaft Culling. Research Report MPI-I-2004-4-006, Max-Planck-Institut
für Informatik, Saarbrücken, Germany, 2004.

[8] A. Doi and A. Koide. An efficient method of triangulating equi-valued
surfaces by using tetrahedral cells. IEICE Trans Commun. Elec. Inf. Syst,
E-74(1):213–224, 1991.

[9] M. P. Garrity. Raytracing irregular volume data. Computer Graphics
(San Diego Workshop on Volume Visualization), 24(5):35–40, November
1990.

[10] J. Goldsmith and J. Salmon. Automatic Creation of Object Hierarchies
for Ray Tracing. IEEE Computer Graphics and Applications, 7(5):14–20,
1987.

[11] C. Gribble. Interactive Methods for Effective Particle Visualization. PhD
thesis, University of Utah, 2006.

[12] V. Havran. Heuristic Ray Shooting Algorithms. PhD thesis, Faculty of
Electrical Engineering, Czech Technical University in Prague, 2001.

[13] Intel. http://www.intel.com/go/terascale/, 2006.
[14] T. Klein, S. Stegmaier, and T. Ertl. Hardware-accelerated Reconstruc-

tion of Polygonal Isosurface Representations on Unstructured Grids. In
Proceedings of Pacific Graphics ’04, pages 186–195, 2004.

[15] A. Knoll, I. Wald, S. G. Parker, and C. D. Hansen. Interactive Isosurface
Ray Tracing of Large Octree Volumes. In Proceedings of the 2006 IEEE
Symposium on Interactive Ray Tracing, pages 115–124, 2006.

[16] J. Krüger and R. Westermann. Acceleration Techniques for GPU-based
Volume Rendering. In Proceedings IEEE Visualization 2003, pages 257–
292, 2003.

[17] S. E. Kruger, D. D. Schnack, and C. R. Sovinec. Dynamics of the major
disruption of a DIII-D plasma. Physics of Plasmas, 12, 2005.

[18] C. Lauterbach, S.-E. Yoon, D. Tuft, and D. Manocha. RT-DEFORM:
Interactive Ray Tracing of Dynamic Scenes using BVHs. In Proceedings
of the 2006 IEEE Symposium on Interactive Ray Tracing, pages 39–45,
2006.

[19] Y. Livnat and C. D. Hansen. View Dependent Isosurface Extraction. In
Proceedings of IEEE Visualization ’98, pages 175–180. IEEE Computer
Society, Oct. 1998.

[20] W. E. Lorensen and H. E. Cline. Marching Cubes: A High Resolution
3D Surface Construction Algorithm. Computer Graphics (Proceedings
of ACM SIGGRAPH), 21(4):163–169, 1987.

[21] G. Marmitt and P. Slusallek. Fast Ray Traversal of Tetrahedral and Hex-
ahedral Meshes for Direct Volume Rendering. In Eurographics/IEEE-
VGTC Symposium on Visualization (EuroVIS), pages 235–242, 2006.

[22] B. Nelson and R. M. Kirby. Ray-tracing polymorphic multi-domain spec-
tral/hp elements for isosurface rendering. IEEE Transactions on Visual-
ization and Computer Graphics (Proceedings IEEE Visualization 2005),
12(1):114–125, 2005.

[23] S. Parker, P. Shirley, Y. Livnat, C. Hansen, and P.-P. Sloan. Interactive
Ray Tracing for Isosurface Rendering. In IEEE Visualization ’98, pages
233–238, October 1998.

[24] V. Pascucci. Isosurface Computation Made Simple: Hardware Accelera-
tion, Adaptive Refinement and Tetrahedral Stripping. In Eurographics -
IEE TCVG Symposium on Visualization (2004), pages 293–300, 2004.

[25] S. Pesco, P. Lindstrom, V. Pascucci, and C. T. Silva. Implicit Occluders.
In IEEE/SIGGRAPH Symposium on Volume Visualization, pages 47–54,
2004.

[26] A. Reshetov, A. Soupikov, and J. Hurley. Multi-Level Ray Tracing Al-
gorithm. ACM Transaction on Graphics, 24(3):1176–1185, 2005. (Pro-
ceedings of ACM SIGGRAPH 2005).

[27] C. Rössl, F. Zeilfelder, G. Nürnberger, and H.-P. Seidel. Reconstruction
of Volume Data with Quadratic Super Splines. IEEE Transactions on
Visualization and Computer Graphics, 10(4):397–409, 2004.

[28] C. Wächter and A. Keller. Instant Ray Tracing: The Bounding Inter-
val Hierarchy. In Rendering Techniques 2006 – Proceedings of the 17th
Eurographics Symposium on Rendering, pages 139–149, 2006.

[29] I. Wald. Realtime Ray Tracing and Interactive Global Illumination. PhD
thesis, Saarland University, 2004.

[30] I. Wald, S. Boulos, and P. Shirley. Ray Tracing Deformable Scenes using
Dynamic Bounding Volume Hierarchies. ACM Transactions on Graphics,
26(1):1–18, 2007.

[31] I. Wald, H. Friedrich, G. Marmitt, P. Slusallek, and H.-P. Seidel. Faster
Isosurface Ray Tracing using Implicit KD-Trees. IEEE Transactions on
Visualization and Computer Graphics, 11(5):562–573, 2005.

[32] I. Wald, T. Ize, A. Kensler, A. Knoll, and S. G. Parker. Ray Tracing
Animated Scenes using Coherent Grid Traversal. ACM Transactions on
Graphics, 25(3):485–493, 2006. (Proceedings of ACM SIGGRAPH).

[33] I. Wald, P. Slusallek, C. Benthin, and M. Wagner. Interactive Rendering
with Coherent Ray Tracing. Computer Graphics Forum, 20(3):153–164,
2001. (Proceedings of Eurographics).

[34] M. Weiler, M. Kraus, M. Merz, and T. Ertl. Hardware-based ray casting
for tetrahedral meshes. In VIS ’03: Proceedings of the 14th IEEE Visu-
alization 2003 (VIS’03), pages 333–340, Washington, DC, USA, 2003.
IEEE Computer Society.

[35] R. Westermann, L. Kobbelt, and T. Ertl. Real-time Exploration of Regular
Volume Data by Adaptive Reconstruction of Iso-Surfaces. The Visual
Computer, 15(2):100–111, 1999.

[36] J. Wilhelms and A. Van Gelder. Octrees for faster isosurface generation.
ACM Transactions on Graphics, 11(3):201–227, July 1992.

[37] B. Wylie, K. Moreland, L. A. Fisk, and P. Crossno. Tetrahedral Projection
using Vertex Shaders. In Proceedings of IEEE Volume Visualization and
Graphics Symposium, pages 7–12, October 2002.

[38] G. Wyvill, C. McPheeters, and B. Wyvill. Data structure for soft objects.
The Visual Computer, 2:227–234, 1986.

8

