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Abstract:

We present a practical and efficient algorithm for interactively ray tracing arbitrary implicit
surfaces. We use interval arithmetic both for reliable numerical computation and guaranteed
detection of topological features. In conjunction with ray tracing, this allows for rendering literally
any implicit surface simply from its definition. Interactive ray tracing facilitates flexible shading
and visualization techniques, and allows dynamic rendering of higher-dimensional surfaces. Our
method requires neither special hardware, nor preprocessing or storage of any data structure.
Efficiency is achieved through SIMD optimization of both the interval arithmetic computation and
coherent ray traversal algorithm, delivering interactive results even for complex implicit functions.
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ABSTRACT

We present a practical and efficient algorithm for interactively ray
tracing arbitrary implicit surfaces. We use interval arithmetic both
for reliable numerical computation and guaranteed detection of
topological features. In conjunction with ray tracing, this allows for
rendering literally any implicit surface simply from its definition.
Interactive ray tracing facilitates flexible shading and visualization
techniques, and allows dynamic rendering of higher-dimensional
surfaces. Our method requires neither special hardware, nor pre-
processing or storage of any data structure. Efficiency is achieved
through SIMD optimization of both the interval arithmetic compu-
tation and coherent ray traversal algorithm, delivering interactive
results even for complex implicit functions.

Figure 1: The SuSE Linux 1995 Cover Manual Implicit rendered
roughly interactively at 9.0 fps (6.1 fps with shadows) with a 5122

frame buffer on an Intel Core Duo 2.16 GHz, purely on the CPU.
This image used dstop = 9.

1 INTRODUCTION

Rendering implicit functions in 3D is not a new research area. In
the past two decades, numerous techniques have been developed
to ray trace arbitrary implicits robustly, with optimal convergence
and minimal artifacts. At the same time, geometry processing
methods have sought to improve surface extraction to handle non-
differentiable and non-manifold surfaces, generating meshes that
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can be rendered trivially on GPU hardware. However, ray tracing
methods have proven too slow to interactively render arbitrary im-
plicits. While topologically intelligent extraction metrics exist, they
often require numerous refinement iterations, and are impractical to
pair with dynamic, real-time rendering.

Recently, coherent traversal techniques and SIMD optimizations
have enabled interactive ray tracing. The most immediately prac-
tical applications have addressed rendering of large models and
volumes, exploiting the logarithmic complexity and scalability of
ray tracing as an alternative to out-of-core methods on the GPU.
Nonetheless, despite the limits of GPU memory and bus speed, ras-
terization techniques excel at rendering both meshes and volume
data. In contrast, unrefined implicit surfaces are geometries for
which coherent ray tracing could potentially perform better than
rasterization, in both feature-correctness and in rendering speed.

While implicits have not experienced as widespread adoption as
parametric surfaces in graphics, they are common in other fields,
such as mathematics, physics and biological modeling. These ap-
plications often do not demand the same real-time performance on
large frame buffers as games, and are more interested in accurate
representation of topological features such as singularities. How-
ever, interactivity allows better exploration of 3D shapes due to mo-
tion cues. Coherent ray tracing has not been applied to this problem
before, and conventional ray tracing methods are slow largely due
to the high computational cost of interval evaluation. By optimizing
interval arithmetic with SSE, and pairing this with a fast coherent
traversal algorithm, we find that interactive performance is possible
on current laptop hardware, within a system that accurately visual-
izes any implicit surface that can be programmed.

The contribution of our work is the combination of a SIMD in-
terval arithmetic library with a novel coherent ray tracing algorithm
for implicits that performs coherent spatial bisection without the
need for an explicit acceleration structure. Additionally, we ob-
viate the need for user-defined partial derivative gradients, requir-
ing only the implicit function and desired domain as inputs to our
system. We will demonstrate our method on various implicits that
are difficult for non-interactive or extraction-based systems, such as
singularities and time-variant 4D hyper-surfaces.

2 RELATED WORK

2.1 Mesh Extraction

Naı̈ve application of marching cubes [11, 23] on implicit func-
tions can generate meshes interactively. However, topological fea-
tures, particularly singularities, are easily lost. Paiva et al. [15] de-
tailed a robust meshing algorithm based on dual marching cubes
from an octree, using topological and geometric oracles. Other
topologically-guided mesh extraction methods exist, e.g. Schreiner
et al. [19], but have not specifically been evaluated on implicit func-
tions with known thin regions and singularities. Both methods rely
on iterative refinement of a mesh as an offline process.
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2.2 Ray Tracing

Much has been done in ray tracing of implicit functions; compar-
atively little of it is recent, and none except the piecewise GPU
methods are interactive, even after accounting for Moore’s Law.

2.2.1 Implicits

The blobby surfaces of Blinn [1] provided modeling interest in an
efficient method of rendering implicits. Kalra & Barr [7] devised
a class of L-G surfaces, which could be robustly isolated within a
bounding region given a known Lipschitz-condition bound. Stolte
& Caubet [20] applied discrete ray tracing to voxelized represen-
tations of implicits. Hart [5] proposed evaluating signed distance
functions along a ray, considering balls of diminishing radi separat-
ing the ray and a surface. Recently on the GPU, Loop & Blinn [9]
implemented an extremely fast ray caster by decomposing implic-
its into piecewise Bézier tetrahedra. Romeiro et al. [17] proposed a
hybrid GPU/CPU technique for casting rays through CSG trees of
implicits.

2.2.2 Interval Arithmetic

Without an explicit equation for ray-surface intersection, or knowl-
edge of surface gradient properties, “point sampling” evaluation of
the implicit cannot determine where a non-monotonic surface ex-
ists (Figure 2a). Mitchell [13] was the first to recognize that evalu-
ating the implicit through interval arithmetic operations guarantees
a convex hull around the function over a given domain, hence a cor-
rect method of isolating the surface when ray tracing. De Cusatis
Junior et al. [3] used affine arithmetic on parallelepiped bounds for
improved root isolation. Sanjuan-Estrada et al. [18] extended the
Mitchell implementation with additional simplifying steps to tra-
verse a disjoint set of intervals. Florez et al. [4] proposed a ray
tracer that antialiases surfaces by adaptive sampling during interval
subdivision.

2.2.3 Ray Coherence

The notion of a group of rays marching in a single direction is sim-
ple yet critical to the performance of coherent ray tracing systems.
Coherent methods have delivered real-time performance for polyg-
onal scenes [22, 16], and SIMD has been used in optimized inter-
section algorithms for trilinear voxel interpolant surfaces [12].

Our work was heavily inspired by optimized traversals for coher-
ent SIMD ray tracing, particularly the frustum grid traversal pro-
posed by Wald et al. [21], and the hierarchical extension of that
algorithm to large octree volume data by Knoll et al. [8].

3 BACKGROUND

3.1 Interval Arithmetic

Interval arithmetic (IA) reliably provides bounds for the global
range of a function over a given domain, as opposed to simply eval-
uating the interval bounds as with point sampling. Thus, it correctly
captures the behavior of a function, regardless of whether or not it
is monotonic on a domain interval (Figure 2).

Interval arithmetic was introduced by R. E. Moore [14] as an ap-
proach to putting bounds on rounding errors in mathematical com-
putation. The same way classical arithmetic operates on real num-
bers, interval arithmetic defines a set of operations on intervals. Let
X = [a, b] and Y = [c, d] be intervals. Then, if op ∈ {+,−,∗,/},
we define X op Y = {x op y where x ∈ X and y ∈ Y}. For example,

X + Y = [a, b] + [c, d] = [a + c, b + d]

X − Y = [a, b] − [c, d] = [a − d, b − c]

Figure 2: Inclusion property of interval arithmetic. (a) When a func-
tion is non-monotonic, simply evaluating the lower and upper com-
ponents of a domain interval is insufficient to guarantee a convex
hull over the range. This is not the case with interval arithmetic (b),
which, when evaluated, will encompass all minima and maxima of
the function within that interval. Thus, an IA representation F of a
function f can definitively determine if f possibly passes through v
on an interval I, by testing if v ∈ F(I). Ideally, F(I) is equal or close
to the bounds of the convex hull, CH(I).

X × Y = [min(ac,ad,bc,bd),max(ac,ad,bc,bd)]

Then, for a function f : Ω⊆R3 →R (where Ω is an open subset
of R3) and a box B = X×Y ×Z ⊆Ω, we seek an inclusion function
F : B → F(B) of f on intervals such that:

F(B)⊇ f (B) = { f (x,y,z) | (x,y,z) ∈ B}

Moore’s fundamental theorem of interval arithmetic [14] states
that for any function f defined by an arithmetical expression, the
corresponding interval evaluation function F is an inclusion func-
tion of f . Effectively, it suffices to implement a library of these IA
operators, and subsitute them for the real operators in producing an
IA expression F .

An implicit surface S is defined as the set of solutions of an equa-
tion f (x,y,z) = 0, where f : Ω ⊆ R3 → R. The strength of using
interval arithmetic for evaluating an implicit surface S is that it pro-
vides a very simple and reliable rejection test for the box B not
intersecting S,

0 /∈ F(B)⇒ 0 /∈ f (B)

This property can be used in ray tracing for skipping empty
space. The criterion proves that the box and the surface do not
intersect, but its converse doesn’t necessarily hold. Indeed, we only
have an implication and not an equivalence: we can have 0 ∈ F(B)
without B intersecting S, because of loose intervals. A well known
aspect of IA, when not adequately used, is the overestimation prob-
lem which can happen with iterative function evaluations of in-
creasingly large intervals. However, when interval domains are
subdivided, as with implicit curve approximation [10] or intersec-
tions [6], IA will guarantee convergence to the true solution. This
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is also the case for ray tracing, when world-space or ray parameter-
space is bisected. In practice, subdivision usually requires a ter-
mination criterion, which depends on the application. Moreover,
given sufficiently fine subdivision, techniques using IA will never
miss features of the true surface.

Figure 3: An example of coherent traversal using an octree as in [8],
effectively the hierarchical extension of [21]. The packet is defined by
a bounding frustum; nodes of an acceleration structure are queried
when they contain the ~U (and ~V in 3D) extents of that frustum
along an interval on ~K. Marching from one slice to the next simply
entails addition. Unlike acceleration structures, however, we do not
explicitly store any data; we instead evaluate the IA expression of
the implicit function.

3.2 Coherent Ray Tracing

The principal idea of coherent ray tracing is to perform traversal
and intersection on groups, or packets, of rays. In this way, the
costs associated with ray tracing are amortized over that group.
Aggressive coherent methods often compute traversal steps over a
bounding frustum of the packet as opposed to individual rays them-
selves, e.g. [21, 16]. While these methods can dramatically improve
cache-coherence and performance with larger frame buffers, they
can degenerate to single-ray performance or worse when the rays
are incoherent or the scene is complex [8].

More conservative methods exploit coherence on a smaller scale,
specifically when encouraged by hardware. SIMD instruction sets
such as SSE effectively perform four floating point operations in
parallel for the cost of one. By generating packets of 2x2 rays,
traversal and intersection are performed on four rays for roughly
the price of a single ray. While the potential gains are more modest,
degenerate scenes and incoherent rays generally perform at least as
well as a single-ray system, and code remains relatively simple.

In coherent acceleration structure traversal, every node touched
by any ray in the packet must be explored. To perform the fewest
number of traversal steps, rays should march in lockstep, ideally
beginning and terminating traversal at the same time. A common
device for traversing rectilinear space is choosing a major march
direction, denoted by ~K, and examining slices of the other dimen-
sions along fixed ~K intervals [21, 8]. Such traversal is effectively
a unidimensional algorithm, in which spatial marching can be ac-
complished iteratively with simple addition (Figure 3).

4 COHERENT RAY TRACING OF IMPLICITS WITH INTER-
VAL ARITHMETIC

In many ways, ray-implicit intersection with interval arithmetic
more closely resembles acceleration structure traversal than ex-

Figure 4: Interval bisection methods for root isolation. The conven-
tional Mitchell [13] single-ray method (a) recursively bisects each ray
until a surface is located to the satisfaction of a termination crite-
rion. Unfortunately, even neighboring rays may diverge spatially in
behavior, making this algorithm impractical for coherent implemen-
tation. Our spatial subdivision technique (b) remedies the problem
by marching rays along a common axis in lockstep. Both methods
are shown terminating after two subdivisions; after which the classic
method has performed one more iteration than ours, while sampling
nearly at twice the rate from one ray to another.

plicit ray-primitive intersection. This similarity is even more pro-
nounced in our coherent application, where again we seek to keep
rays marching simultaneously through a spatial region. The dif-
ference is that we store no actual structure in memory, and instead
evaluate an IA expression to determine if a region contains the im-
plicit function.

Existing IA implicit ray casters bisect rays into segments, as
originally proposed by Mitchell [13]. Although neighboring rays
are nearly identical, the fine subdivision of the interval search along
with different entry and exit points causes them to fall out of lock-
step. In coherent applications, adjacent rays using this method ex-
hibit divergent behavior after even a few steps. When combined
with packets, more traversal steps are performed than when rays
march across common spatial regions concurrently. Finally, if a
common depth is used to decide the sampling rate of our function,
some rays will sample the image far more than others (Figure 4a).

Rather than bisecting rays, we bisect a single ~X ,~Y or ~Z axis sim-
ilar to the octree grid implementation of Knoll et al. [8]. Rays then
march in the same world space region, and behave similarly with re-
gards to their respective intervals (Figure 4b). This is equivalent to
bisecting rays into equal segments from the ~Kenter to ~Kexit planes of
the domain. Rather than subdivide and march t intervals, we march
actual world space coordinates and use these as interval bounds for
F(X ,Y,Z). This way, the input function need not be reparameter-
ized, and costly IA multiplications for ray evaluation are avoided.

The process of evaluating intervals is then simple. Given an in-
terval box B, our function f and its corresponding IA evaluation F ,
we evaluate F(B) and finally check if 0 ∈ F(B). If it does, then we
bisect this space along the major march axis, and register a hit when
a maximum depth threshold is reached.

3
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5 IMPLEMENTATION

As the contribution of this paper is largely algorithmic in nature,
we include pseudocode for critical components of our implemen-
tation. We abbreviate the 4-vector packet floating point datatype
as “simd”; specific code for SSE, Altivec or GPU hardware is left
to the reader. Implicit functions were hardcoded in a header file;
we envision inputs to our program would compile implicits into a
dynamic library, as expression parsing makes for costly evaluation.
Rather than employ C++ arithmetic operators, implicits call the as-
sociated SSE and IA library function calls, for example “mul4” for
a SIMD multiplication, and “mul i4” for a SIMD interval multipli-
cation, as opposed to “*”. We maintain these conventions in this
pseudocode.

Algorithm 1 SIMD Interval Arithmetic
struct interval4 {

simd lo, hi;

};

interval4 add_i4(interval4 a, interval4 b) {

return interval4( add4(a.lo, b.lo),

add4(a.hi, b.hi) );

}

interval4 mul_i4(interval4 a, interval4 b) {

simd lolo = mul4(a.lo, b.lo);

simd lohi = mul4(a.lo, b.hi);

simd hilo = mul4(a.hi, b.lo);

simd hihi = mul4(a.hi, b.hi);

return interval4( min4(lolo, min4(lohi,

min4(hilo, hihi))),

max4(lolo, max4(lohi,

max4(hilo, hihi))) );

}

5.1 SSE Interval Arithmetic

The foundation of our implicit ray tracing system is the SSE IA
library, which allows us to quickly evaluate intervals in SIMD. Im-
plementation is straightforward; interval multiplication is particu-
larly efficient as SSE itself is relatively fast for both multiplication
and minimum/maximum operation. Transcendental functions such
as sine are somewhat tricky; these require modulus of the domain
over [0,2π], and an SSE implementation of the function. Some
pseudocode examples are given in Algorithm 1.

5.2 Ray Packet Structure

We chose conservative 2x2 packets for our implementation. Above
all, we wish to evaluate baseline performance with optimized ray
tracing. Though not as potentially fast as wide packet coherent
methods, 2x2 packets are more resistant to divergent ray behavior,
and encourage simple algorithms that can more easily be ported to
the GPU. In this ray tracing architecture, origin and direction are
stored for each ~X ,~Y ,~Z axis in SSE packed floats. We also store the
t parameter of the rays, and a mask indicating which rays have hit.
This structure is detailed in Algorithm 2. Ray generation employs
a simple pinhole camera; this optimizes our algorithm as all rays
possess a constant origin.

Algorithm 2 Ray Packet Structure
struct RayPacket {

simd org[3];

simd dir[3];

simd inv_dir[3];

simd t_hit;

simd p_hit[3];

simd normal[3];

simd hitmask;

};

5.3 Traversal

Once the user has supplied a function, a domain on R3, and a max-
imum depth dstop, we are ready to perform traversal. In our im-

plementation, dstop determines a global precision for rendering the
implicit; this is preferable in evaluating image quality and perfor-
mance at various uniform sampling rates, though view-dependent
adaptive subdivision could be desirable in the future. A crucial as-
pect of our method is that though rays traverse ~K together, they
march across independent – and thus tight – intervals. This princi-
ple is illustrated in Figure 4b, and pseudocode for traversal is de-
tailed in Appendix A.

As in coherent grid traversal [21], we first find ~K, the dominant
axis of the first ray in the packet, and denote the remaining two
axes ~U and ~V . We then perform a standard ray bounding-box test
on our domain. We store the actual texit and tenter parameters as
well as the intersections with the ~K entry and exit planes, tKenter
and tKexit . Now, we consider the total increment along ~K, tKexit −
tKenter, and compute the total ~U and ~V increments over the entire
domain. As our implementation is iterative, not recursive, we store
an array containing a traversal “stack” for each depth {0..dstop−1},
containing the t, ~K,~U and ~V increments bisected at each level.

The algorithm then simply marches from one ~K slice to the next,
incrementing the t, ~K,~U and ~V positions once per step and keep-
ing track of current and next values, orthogonally for each ray us-
ing SSE. It constructs intervals from the ~K,~U and ~V current and
next values. This enables us to iteratively increment domain in-
tervals simply with three SIMD additions, as opposed to three IA
SIMD multiplications and additions using the Mitchell t-marching
method. Branching is only used to omit intervals when t < tenter,
and exit when all rays hit successfully or have t > texit . We store
and check a flag for each depth, which indicates when both sides of
a ~K-subtree have been traversed. When this happens, we decrement
the depth, and exit traversal when depth ==−1.

At each march iteration, we evaluate the IA function expression
on this domain interval. If 0 ∈ F(x,y,z), we “recurse” by incre-
menting d and using the bisected increments one level deeper. We
register a hit on the surface when d == dstop − 1, and mask rays
that successfully hit.

5.4 Handling Division

Traversing with such naı̈ve IA evaluation will robustly handle any
implicit with adequate sampling, with the exception of functions
performing division. In theory, IA division by intervals contain-
ing zero is ill-defined, similar to division of real numbers by zero.
Fortunately, we can easily detect and handle these cases. For two
intervals A and B, when 0 ∈ B, we define A/B = [−∞,∞]. We then
approximate ∞ with a large number, such as FLT MAX/2. When
rays traverse these intervals, they will always find a surface within
and recurse to maximum depth. Thus, without modification to the
traversal, asymptotes will rendered. The final implementation de-
tail of traversal is choosing not to render asymptotes by neglecting
to register a hit when Fhi−Flo = ∞. This principle is illustrated in
Figure 5.

With division correctly handled, our IA library and renderer will
work for any function whose components are implemented in SSE.

5.5 Shading

5.5.1 Central Differences

To compute the normal at a hit position, a renderer requires the x,y,z
partial derivatives of the implicit at that point. While analytical
derivatives can be manually defined, they are not strictly necessary.
If the user fails to define partials, we employ central differences
by evaluating our function (using SSE, not SSE IA evaluation) six
times to create a central differences stencil. The results look excel-
lent in most cases, and have no appreciable impact on performance.
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Figure 5: Handling Asymptotes. For functions with division, and
intervals containing zero near an asymptote, our IA implementation
returns “infinite” F(I) intervals (bottom). As a result, these regions
are always subdivided until termination (top). Fortunately, we may
detect this infinite case within the traverser before registering a hit,
and thus choose to visualize or omit asymptotes. With division cor-
rectly handled, we can effectively render any function.

5.5.2 Shadows

In ray tracing, shadows are fairly trivial, requiring a shadow ray
cast for every primary camera ray that hits a surface. This typi-
cally entails a 20% to 50% decrease in frame rate, depending on
the coherent behavior of shadow rays. Fortunately, shadow rays re-
quire less accuracy than primary rays; in our application it suffices
to cast shadows to a coarser termination depth, such as dstop = 8,
while employing a higher depth for primary rays. As shadows are
primary useful as depth cues, this is generally acceptable. The per-
formance penalty is reduced, and loss of shadow detail is seldom
perceptible (Figures 1, 6, and 8).

Figure 6: Cut-away of a Klein bottle. We can color-code front and
opposing sides of an implicit by evaluating whether F is positive or
negative at the hit position; this aids in navigating oddly-connected
manifolds. In addition, dynamic shadows aid in depth perception.

6 RESULTS

6.1 General Performance

Figure 7 shows various implicit surfaces with their associated equa-
tions and performance. Performance is suprisingly good with this
brute-force technique; on an Intel Core Duo 2.16 GHz test machine,
our method achieves well over 20 frames per second for simple ob-
jects such as the torus, sphere and conic sections. For more com-
plex objects, such as the Mitchell or Steiner surfaces, performance
can fall below interactive speeds on the evaluation hardware, but
it still permits exploration around 1-5 fps even for the worst cases.
Complicated expressions such as the SuSE logo exhibit similar per-
formance.

As previously mentioned, we are not restricted to any particular
class of surfaces. Indeed, we are able to render any sort of im-
plicitly defined surface, including asymptotic, non-differentiable,
non-continuous, non-manifold, self-intersecting and linked implic-
its. These are shown in the bottom rows of Figure 7.

dstop 4 6 8
FPS 32.0 25.7 20.3
dstop 10 12 16
FPS 15.5 11.6 6.85

Table 1: Quality at various dstop terminarion depths, shown in order
from top left to bottom right above. As expected, performance is
linear with depth, hence logarithmic with object complexity measured
in number of interval subdivisions in the scene. At depth 8 the surface
becomes recognizable, and depth 10 generally suffices to capture
features.

6.2 Quality

We find that dstop = 8 is sufficient for capturing general topology,
and dstop = 12 achieves excellent spatial sampling at close camera
views. In practice, dstop = 10 is a good balance of performance and
feature reproduction (Table 1).

A close-up of the tear drop demonstrates how our algorithm can
reproduce fine details that mesh-based approaches often omit (Fig-
ure 8). Meshing even using topologically intelligent methods (e.g.
Paiva et al. [15]), frequently fails to capture such regions of a sur-
face, leading to misclassification of details such as asymptotes or
singularities. It is worth mentioning that such fine regions are best
reproduced at shallower dstop; at greater termination depths the sur-
face region may become narrower than the spacing between the rays
sampling it. To consistently reproduce such fine features, adaptive
sampling or antialiasing would be desirable, but our naı̈ve technique
is sufficient to identify them.
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Figure 7: Selected implicit functions, covering a wide range of different shapes and topologies. All examples are rendered at dstop = 10 at 5122

frame buffer resolution, on an Intel Core Duo 2.16 GHz. Performance is largely dependent on the number of operations required to evaluate
the implicit, the entailed cost of computing the associated IA expressions, and the spatial complexity (effectively, implicit surface area) of the

scene. SuSE95 was rendered using τ = 1+
√

5
2 .
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Figure 8: The tear drop. Though difficult even for intelligent mesh
extraction methods, ray tracing successfully reproduces fine details
and the correct connectivity of this surface. We used dstop = 10.

6.3 Dynamic Scenes

Because we neither precompute an explicit representation of the
object, nor a physical acceleration structure in memory, we have
great flexibility in manipulating and rendering implicit functions
over time. Moreover, we are not restricted to static 3D objects; im-
plicits are theoretically capable of representing N-dimensional ob-
jects. In practice, we can render 4D implicits as 3D over time, using
a f (x,y,z,w) expression. An example of a two-sheeted hyperboloid
morphing into a torus is shown in Figure 9.

Figure 9: Animated 4D implicits. As our algorithm does not compute
or store any acceleration structure, we can make arbitrary changes
to the implicit function on the fly. In this example, we interactively
morph a hyperboloid into a torus.

One of the simplest 4D implicit objects is the hyper-sphere,
f (x,y,z,w) = x2 + y2 + z2 + w2− r2, whose resulting scene would
be an animated sphere which suddenly appears, smoothly increases,
then decreases in size, and finally disappears. Despite being easily
obtained with our method, these dynamic scenes would be much
harder to achieve using topologically-guided meshing techniques.

6.4 Comparison to Existing Techniques

It is difficult to assess the performance of prior works in implicit
ray tracing. Fortunately, nearly all papers in this area evaluate per-
formance with a sphere, though at varying quality and image res-
olution. Perhaps the first rigorous benchmark, with source code
available for the IA and affine arithmetic libraries, was the work of
De Cusatis Junior et al. [3], which reported rendering the sphere at
around 1.3 fps at 64x64 on a Pentium 166. Even accounting for
Moore’s Law, we achieve between two and three orders of magni-
tude better performance. Similarly, the Sanjuan-Estrada [18] imple-
mentation on top of POV-Ray is approximately two orders of mag-
nitude slower than our method. The most recent paper by Florez et
al. [4] rendered a sphere in 40 seconds at 300x300 resolution on a
P4 2.4 GHz, albeit with adaptive anti-aliasing; our method delivers
well over two orders of magnitude better frame rate. (Figure 7).

7 CONCLUSION

We have detailed a fast coherent ray tracing technique for rendering
arbitrary implicit functions. By combining coherent acceleration
structure algorithms with a simple SSE interval arithmetic library,
we are able to render implicits on the CPU, at reasonable quality,
and more than two orders of magnitude faster than previous ray
tracers.

The original goal of this work was to provide a general, accu-
rate and reasonably interactive method of viewing implicits. A sec-
ondary motivation was to exploit two strengths of CPU ray tracing,
SSE instructions and programming flexibility, that allowed imple-
mentation of a general-purpose SSE IA library. Overall, our results
demonstrate success on both fronts. The ability to dynamically ren-
der arbitrary implicits has broad implications. One reason why im-
plicit surfaces, compared to parametrics, have been largely unpop-
ular in graphics has been their comparative difficulty in rendering.
With this obstacle reduced, the modeling community may renew
interest in experimenting with implicit forms. In ray tracing envi-
ronments, implicits could be used to model physical deformations,
perhaps replacing subdivision surfaces in certain instances. Finally,
in visualization, higher-order implicit isosurfaces can more easily
be rendered using this technique on a variety of data, from point-
based to volumetric. Logarithmic complexity allows ray tracing
to decompose complex scenes easily; with the appropriate accel-
eration structure, scenes containing many piecewise implicits may
require only modestly more computation than scenes rendering one
implicit function.

Possibilities abound for future work. Performance could poten-
tially be further improved by using larger packets and more aggres-
sive coherence-exploitation techniques, which have proven so suc-
cessful for polygonal scenes. Adaptive antialiasing (e.g. Florez
et al. [4]) might be desirable for better image quality and repro-
duction of fine features. An adaptive termination criterion in the
spirit of [8] or [2] instead of a fixed (high) subdivision depth could
also further boost performance. Moreover, our algorithm is non-
recursive and elegantly simple. Given shader programs implement-
ing both an interval arithmetic library and the desired implicits, a
GPU implementation of our traversal would be feasible and likely
fast. The Cell Broadband Architecture seems particularly attractive
for this algorithm, as its threaded SIMD hardware model is similar
to multicore CPU’s and the memory footprint of our technique is
negligible.

Of related interest would be applying these SIMD IA techniques
to rendering arbitrary parametric surfaces, which pose many of the
same challenges to ray tracers as implicits. Integrating implicits
into full featured ray tracing software might be desirable, given rel-
atively coherent applications and support for SIMD packets. The
ability to evaluate the implicit directly at shading time enables
a myriad of mathematical visualization techniques that could be
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explored further: shading topological features, rendering higher-
dimensional surfaces, constructive solid geometry methods, and
volume rendering of 3-manifolds and their features. Having an in-
teractive system for rendering complicated implicits enables future
exploration of these functions.
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A TRAVERSAL PSEUDOCODE

Algorithm 3 Ray-Implicit Traversal. We assume basic familiar-
ity with binary operations on SIMD instructions, and particularly
boolean operations such as comparisons, and the concept of mask-
ing.
template<int K, int U, int V, int DK>

void traverse(RayPacket r, Box domain,

Implicit implicit, int d_stop) {

(get t_enter, t_exit, t_kenter, t_kexit)

simd validmask = intersectBB(r, domain);

//validmask indicates rays that are active

float full_tk = tk_exit - tk_enter;

float full_u = mul4(r.dir[U], full_tk);

float full_v = mul4(r.dir[V], full_tk);

struct Stack {

simd t_incr;

simd u_incr, v_incr;

float k_incr;

char side;

};

Stack stk[maxDepth];

for(int d=0;d<maxDepth;d++){

float width = 1.f / (float)(1<<d);

stk[d].t_incr = mul4(full_tk, width);

stk[d].u_incr = mul4(full_u, width);

stk[d].v_incr = mul4(full_v, width);

stk[d].side = -1;

}

int depth = 0;

float curr_k = DK==+1 ? domain.min[K]:domain.max[k];

simd curr_t, curr_u, curr_v;

curr_t = t_kenter;

curr_u = add4(r.org[U],mul4(r.dir[U],curr_t));

curr_v = add4(r.org[V],mul4(r.dir[V],curr_t));

simd next_t, next_u, next_v;

for(;;) {

stk[depth].side++;

next_k = DK==+1 ?

curr_k + stk[depth].k_increment :

curr_k - stk[depth].k_increment;

next_u = add4(curr_u, stk[depth].u_increment);

next_v = add4(curr_v, stk[depth].v_increment);

next_t = add4(curr_t, stk[depth].t_increment);

hitmask = and4(validmask, cmp_ge4(next_t, tenter));

if (any4(simd_hitmask)) {

interval4 ibox;

(fill ibox with curr and next k,u,v)

interval4 F = implicit.evalute_interval4(ibox);

if (any4(F.contains(0))) {

if (!all4(cmp_ge4(sub4(F.hi,F.lo),INFINITY))){

if (depth == maxDepth-1){

//hit

hit(r, curr_t);

(compute normal);

if (all4(r.hitmask))

return;

} else {

//recurse

depth++;

continue;

}

}

}

}

validmask = and4(validmask, cmp_le4(next_t, texit));

if (none4(validmask))

return;

curr_k = next_k;

curr_t = next_t;

curr_u = next_u;

curr_v = next_v;

if (stk[depth].side & 1)

{

do{

if (depth-- == -1)

return; }

while(stk[depth] & 1);

continue;

}

}

}
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