
1

Coherent Multiresolution Isosurface Ray Tracing

Aaron Knoll, Charles Hansen and Ingo Wald

UUSCI-2007-001

Scientific Computing and Imaging Institute
University of Utah

Salt Lake City, UT 84112 USA

January 18, 2007

Abstract:

We implement and evaluate a fast ray tracing method for rendering large structured volumes.
Input data is compressed into an octree, enabling residency in CPU main memory. We cast
packets of coherent rays through a min/max acceleration structure within the octree, employing
a slice-based technique to amortize the higher cost of compressed data access. By employing
a multiresolution level of detail scheme in conjunction with packets, coherent ray tracing can
efficiently render inherently incoherent scenes of complex data. We achieve higher performance
with lesser footprint than previous isosurface ray tracers, and deliver large frame buffers, smooth
gradient normals and shadows at relatively lesser cost. In this context, we weigh the strengths of
coherent ray tracing against those of the conventional single-ray approach.

Scientitfic Computing and Imaging Institute, University of Utah. Technical Report No UUSCI-2007-001

Coherent Multiresolution Isosurface Ray Tracing

Aaron Knoll Charles Hansen Ingo Wald

Scientific Computing and Imaging Institute, University of Utah
{knolla|hansen|wald}@sci.utah.edu

ABSTRACT

We implement and evaluate a fast ray tracing method for ren-
dering large structured volumes. Input data is compressed
into an octree, enabling residency in CPU main memory. We
cast packets of coherent rays through a min/max acceleration
structure within the octree, employing a slice-based tech-
nique to amortize the higher cost of compressed data access.
By employing a multiresolution level of detail scheme in
conjunction with packets, coherent ray tracing can efficiently
render inherently incoherent scenes of complex data. We
achieve higher performance with lesser footprint than previ-
ous isosurface ray tracers, and deliver large frame buffers,
smooth gradient normals and shadows at relatively lesser
cost. In this context, we weigh the strengths of coherent
ray tracing against those of the conventional single-ray ap-
proach.

1 INTRODUCTION

Interactive rendering of large volumes is an ongoing problem
in visualization. Adaptive isosurface extraction techniques
are CPU-bound, and render a piecewise linear mesh that lo-
cally differs from the implicit interpolating surface on the
source data. GPU direct volume rendering delivers consis-
tently real-time frame rates for moderate-size data; but GPU
memory imposes a limit on the volume size. Although large
data access can be achieved through out-of-core techniques,
for complex scenes the direct volume rendering algorithm
has difficulty rendering a precise isosurface, given a limited
number of slices for sampling a high-resolution scalar field.

Ray tracing, though also dependent on the CPU, is not
limited to polygonal geometry, and can render implicit sur-
faces that are locally correct with respect to input data. Ray
tracing also scales well to large data, particularly when scene
complexity is high relative to the number of rays that must
be cast to fill a frame. Finally, rendering on the CPU al-
lows for access to full system memory, and greater control
over hierarchical data structures than with current GPU hard-
ware. This flexibility enables use of an adaptive-resolution
octree, which we can use as both a natively compressed data
format and an acceleration structure for rendering. Previ-
ous work ray-traced large octree volumes interactively, but
on substantial workstation hardware [1]. In this work, we
optimize isosurface ray tracing with a coherent octree traver-
sal technique, then employ a multiresolution level of detail
scheme to ensure coherence and hence performance.

2 RELATED WORK

Extraction The conventional method for isosurface
rendering has been extraction via marching cubes [2] or
some variant; paired with z-buffer rasterization of the re-
sulting mesh. Wilhelms and Van Gelder [3] proposed a
min/max octree hierarchy that allowed the extraction pro-
cess to only consider cells containing the surface. Livnat
& Hansen [4] improved this concept with a view-dependent
frustum culling technique. Westermann et al. [5] further ex-
tended it to adaptive extraction of multiresolution (though
not compressed) octree volume data. Liu et al. [6] cast rays
through an octree to determine visible “seed” cells for isosur-
face extraction. Livnat & Tricoche [7] combined extraction
with point-based rendering, allowing high-frequency regions
of voxels to be represented by splats, and delivering smooth
results without relying on adaptive LOD methods.

Direct Volume Rendering An alternative to isosur-
facing is direct volume rendering (DVR), e.g. Levoy [8],
commonly implemented on graphics hardware by composit-
ing slices of a 3D texture, e.g. Cabral et al. [9]. LaMar
et al. [10] proposed a multiresolution sampling of octree
tile blocks according to view-dependent criteria. Boada et
al. [11] proposed a coarse octree built upon uniform sub-
blocks of the volume, and a memory paging scheme. Large
data has been addressed via block-based adaptive texture
schemes (e.g. Kraus & Ertl [12]), and out-of-core processing
of an octree hierarchy of wavelet-compressed blocks (e.g.
Guthe et al. [13]).

Ray Tracing Volumes Interactive isosurfacing of large
volumes was first realized in a ray tracer by Parker et al. [14],
using a hierarchical grid of macrocells as an acceleration
structure. A single ray was tested for intersection inside a
cell of eight voxel vertices, solving a cubic polynomial to
find where the ray intersects the interpolant surface in that
local cell. Parallel ray tracing allowed for full use of main
memory on supercomputers or workstations. DeMarle et
al. [15] extended the system to clusters, allowing arbitrarily
large data to be accessed via distributed shared memory.

Recent works in coherent ray tracing [16, 17, 18] com-
bined highly-optimized coherent traversal with SIMD prim-
itive intersection to deliver up to two orders of magnitude
increase in frame rate, allowing interactive ray tracing on a
single processor. For faster isosurface ray tracing, the ray-
cell intersection test was adapted to a SIMD SSE architec-
ture by Marmitt et al. [19]. Then, using implicit kd-trees,

1

Scientitfic Computing and Imaging Institute, University of Utah. Technical Report No UUSCI-2007-001

Wald et al. [20] implemented a coherent isosurface ray trac-
ing system.

Knoll et al. [1] implemented a single-ray traversal scheme
for rendering compressed octree volume data. By employ-
ing one structure for both the min/max acceleration tree and
the voxel data itself, the authors were able to render large
volumes given limited main memory. While octree volume
traversal incurred some penalty from looking up compressed
data within the octree, it performed competitively with the
best-known techniques employing either single rays or pack-
ets.

3 COHERENT RAY TRACING OF VOLUME DATA US-
ING LEVEL OF DETAIL

The primary goal of this work is to optimize ray tracing of
octree volumes, and ideally to deliver interactivity on com-
modity CPU’s. Our main vehicle for such performance gains
is coherence. The general premise is to assemble rays into
groups, or packets, when they share common characteristics.
In the case of ray casting, a packet consists of a group of
neighboring rays with common origin. Then, rather than
computing traversal and intersection per ray, we perform
these computations per packet. High coherence occurs when
rays in a packet behave similarly, intersecting common nodes
in the efficiency structure or common cells in the volume. In
our context, this behavior depends on both dataset and cam-
era. Since our application employs constant-width packets,
coherence is a function of scene complexity.

Large Data and Incoherence Coherent ray tracing
poses a significant caveat: large volume data are more com-
plex, and thus less coherent, than small volumes. Successful
coherent systems have been optimized for relatively small
dynamic polygonal data [18, 17] in which many rays inter-
sect common primitives. For sufficiently complex scenes,
where each ray intersects a different primitive, intersection
costs at least as much as it would in the single-ray case.
Worse yet, coherent traversal may induce more intersection
tests than a single-ray traversal. In this scenario, a coher-
ent system may perform worse than a single-ray tracer. On
scenes with poor coherence, coherent isosurface ray tracing
using conservative 2x2 ray packets [20] has produced perfor-
mance generally on par with a single-ray system [1].

Coherence via Level of Detail Our solution to the
problem of poor coherence in complex scenes is a multires-
olution level of detail scheme. The premise is simple: when
data is sufficiently complex to hamper coherent ray tracing,
we render a coarser-resolution representation. This is ac-
complished by lazy enforcement of a fixed ratio of voxels
to pixels during octree traversal. The octree volume is in-
herently suited as a multiresolution LOD structure; coarser-
resolution voxel data can be stored in interior nodes at prac-
tically no extra cost. Moreover, one can build a multires-
olution volume with an embedded efficiency structure and
multiple levels of detail, all for a fraction of the footprint of

the original uncompressed data. To render a coarser level of
detail, one simply specifies a “stop depth”, or a cut, that is
less than maximum octree depth. Then, the ray tracer omits
both traversal and intersection of subtrees below this stop
depth, instead intersecting larger cells at the coarser depth.
As more rays intersect a common, wider cell, coherence, and
therefore speedup, is achieved.

The main contributions of this work involve extending a
static-resolution octree volume to multiresolution; devising
a coherent traversal technique for the octree; and leveraging
the traversal technique to reduce the cost of compressed data
access. Ultimately, we present a coherent multiresolution
traversal that delivers interactive ray tracing on a single pro-
cessor with some tradeoff in quality; provides faster render-
ing with larger frame buffers on current multicore worksta-
tion hardware; and allows for improved shading techniques
that would be expensive in a conventional non-coherent oc-
tree volume ray tracer.

Figure 1: Octree volume format illustrated, showing examples of an interior
node, a cap node, and scalar leaves. A scalar leaf is not a separate structure,
but rather a single value embedded inside its parent interior node. Similarly,
cap nodes are not leaves themselves but contain eight scalars at the maximal
depth of the octree. Thus, nodes in this structure are the parents of nodes in
the logical octree.

4 MULTIRESOLUTION OCTREE VOLUME CON-
STRUCTION

An octree volume is an adaptive hierarchical scalar field.
Scalar values are stored at leaf nodes. At maximum octree
depth, these correspond to the finest available data resolu-
tion. Scalars at less than maximum depth store coarser reso-
lutions, by factors of 8 per depth level. Interior nodes main-
tain pointers from parents to children. In our multiresolution
LOD application, they also contain coarser-resolution repre-
sentations of each of their children.

4.1 Construction Algorithm

Volume data can be natively computed and stored in the
adaptive octree format. Alternately, the octree can be built
from a scalar field in a 3D array. Such a build is detailed
by Knoll et al. [1]; this paper only discusses extensions to
the construction technique that allow for multiresolution. In
brief, construction is a bottom-up procedure in which identi-
cal or similar voxels are merged together into a single voxel

2

Scientitfic Computing and Imaging Institute, University of Utah. Technical Report No UUSCI-2007-001

within a parent node. Voxels are logically leaves of the oc-
tree. However, rather than store each voxel in a separate
memory structure, we store every voxel within its immediate
parent. This yields two distinct structures: cap nodes con-
sisting of eight voxels at the finest resolution; and interior
nodes consisting of pointers to other nodes, which can op-
tionally be single scalar leaf voxels of a coarser resolution.
This format is detailed in Fig. 1.

Extension to multiresolution In multiresolution oc-
tree volume construction, coarser-resolution consolidated
voxels are always computed and stored in interior nodes, re-
gardless of whether or not they are leaves. Theoretically,
a static-resolution octree volume could use a single array
to contain either a pointer to a child subtree or a coarser-
resolution scalar leaf. In practice however, the memory sav-
ings of this approach were too small to justify the added com-
putation. Our multiresolution system is constructed identi-
cally to the static-resolution implementation [1], with sep-
arate eight-value arrays for both child pointers and scalar
leaves. The only difference is that non-leaf scalars are ac-
tually employed in multiresolution rendering.

Min/Max tree computation The only significant dif-
ference between multiresolution and static-resolution con-
struction lies in computing the min/max tree. Static-
resolution data requires the min/max pair of a given voxel to
reflect the minimum and maximum of eight scalar vertices
constituting the cell that maps to this voxel (Fig. 2). We do
not store a min/max pair for each finest-level voxel due to the
prohibitive 3x footprint. Instead, we compute them for the
immediate parents of the finest voxels (cap nodes in Fig. 1),
as shown in Fig. 3 (top). For multiresolution data, cells may
have any power-of-two width, and we accordingly consider
forward-neighbors at each depth of the min/max tree (Fig. 3,
bottom). As a result, the min/max tree for a multiresolution
octree volume is looser than that of static-resolution data. In
practice, the impact on performance is negligible for the data
we test.

Figure 2: Voxel-cell mapping. Given a scalar-centered voxel (blue outline),
we construct a cell at that location by mapping the scalar to the lower-most
vertex, and assigning forward neighboring scalars to the remaining vertices.
This is equivalent to the dual, but spatially offset to align with the coordinate
frame of the voxel.

5 COHERENT OCTREE VOLUME RAY TRACING

Having constructed a compact octree volume with an embed-
ded min/max acceleration structure, we now turn to the task
of building a coherent ray tracing system. In general, we
seek to optimize for coherence as aggressively as possible,
namely by implementing a vertical SSE packet architecture

Figure 3: Min/max tree construction from forward neighbors. Top: Each leaf
node must compute the minimum and maximum of its cell, hence account
for the values of neighbors in the positive X and Y dimensions (left). This
yields a min/max pair for the leaf node (right). Neighbors can potentially
exist at different depths of the octree, as is the case for at the blue leaf node.
Bottom: For multiresolution data, we must include wider neighbors at coarser
resolutions into the min/max computation.

and a frustum-based octree traversal similar to the coherent
grid traversal of Wald et al. [18].

5.1 SSE Packet Architecture

A coherent ray tracer achieves its performance by operating
on groups of neighboring or similar rays in packets. Traver-
sal iself is in fact fairly orthogonal to the chosen packet struc-
ture, generally requiring only a packet bounding frustum and
a method of iterating over member rays. To exploit coher-
ence during primitive intersection, we perform computations
on SIMD groups of four rays (frequently referred to as pack-
lets) and mask differing hit results as necessary. Performing
these SIMD computations requires that we store ray informa-
tion vertically within a packet. For example, ray directions
are stored as separate arrays of X,Y,Z components, as op-
posed to a single horizontal array of 3-vectors. These vertical
arrays are 16-byte-aligned, permitting us to access a packlet
of four rays at a time in a single SSE register. Similarly, the
packet structure stores aligned SSE arrays of hit results, such
as hit position and normals. When packet traversal and inter-
section have completed, we iterate over each SIMD packlet
and shade using the deferred hit information and a given ma-
terial. Example pseudocode of a packet structure is given
below.

5.2 Coherent Traversal Background

As an efficiency structure for ray tracing, the octree affords
several different styles of traversal. With coherent ray trac-
ing, we are given the choice between depth-first traversal
similar to a kd-tree [21] or BVH [17]; or a breadth-first co-
herent grid traversal (CGT) approach [18]. We choose the
latter for several reasons. Our primitives are regular, non-

3

Scientitfic Computing and Imaging Institute, University of Utah. Technical Report No UUSCI-2007-001

Algorithm 1 Ray Packet Structure
const int NUM_PACKLETS = NUM_RAYS / 4;

struct RayPacket

{

simd orig[3][NUM_PACKLETS];

simd dir[3][NUM_PACKLETS];

simd inv_dir[3][NUM_PACKLETS];

simd hit_t[NUM_PACKLETS];

simd hit_pos[3][NUM_PACKLETS];

simd normal[3][NUM_PACKLETS];

simd hit_mask[NUM_PACKLETS];

};

overlapping cells, similar to large spherical particle data sets
for which CGT has proven effective by Gribble et al. [22].
More significantly, the breadth-first nature of the CGT algo-
rithm allows for a clever slice-based technique that amortizes
voxel look-up from the octree when reconstructing the ver-
tices of multiple cells.

Figure 4: Coherent Grid Traversal. The classic CGT algorithm traverses a
packet of rays through a grid slice by slice along a major march axis ~K, in-
crementing each subsequent slice extents by the differential of the bounding
frustum along the non-major axis ~U , as well as the third axis ~V in the 3D
case. This illustration numbers the grid cells in the order of their traversal.
Unlike the single-ray DDA grid algorithm, cells may be traversed in arbitrary
~U ,~V order; however the ~K order is invariably front to back.

Coherent Grid Traversal Algorithm The original
CGT algorithm departs from single-ray grid traversal in that
it considers full slices of cells contained within a ray packet’s
bounding frustum, as opposed to marching across individ-
ual cells. The algorithm first determines the dominant X,Y,Z
axis component of the first ray in each packet. This is de-
noted ~K, and the remaining axes are denoted ~U and~V . Then,
we consider the minimum and maximum u and v coordinates
at the k = 0 slice, and note that the increment du,dv for a sin-
gle unit along the march axis ~K is constant. We store this
increment in a single SSE packed floating point unit, duv =
[dumin,dvmin,dumax,dvmax]. Next, we determine the first and
last k slice where the packet frustum intersects the volume.
We begin at the u,v extents, euv = [umin,vmin,umax,vmax], the
minimum and maximum of enter and exit points on that slice

of cells. To intersect primitives, we truncate these values to
integers and iterate over all cells in that given ~U ,~V range. To
march to the next slice, we add the constant increment. Thus,
a non-hierarchical grid march is accomplished with a single
SIMD addition and a SIMD float-to-integer truncation. The
2D analog of this algorithm is illustrated in Fig. 4.

Macrocell Hierarchical CGT The original CGT pa-
per [18] implemented a two-level hierarchy, with a single
layer of macrocells each corresponding to 6 grid cells. For
small polygonal data, this was generally sufficient. As the
smallest volume we test is 3023, a more robust hierarchy
could be desirable for our application. We extended the CGT
algorithm to arbitrary number of macrocell layers similarly
to Parker et al. [23], and found that a recursive 23 macrocell
hierarchy – equivalent to a full octree – consistently yielded
the best performance for volumes larger than 2563. The
macrocell traversal employs an array stack structure to avoid
recursive function calls: this stores the u,v slice and incre-
ment for all macrocell levels, the current slice within the cur-
rent macrocell level, and the next slice at which to return to
parent macrocell traversal. When all rays in a packet have in-
tersected or the packet exits the root macrocell level, traver-
sal terminates. The approach is that of a recursive grid shar-
ing common coordinate space on the given volume dimen-
sions, in which each macrocell block is a multiple M of its
children. Thus, child coordinates are always an M-multiple
of parent macrocell coordinates. Child macrocells, or the
volume cells themselves, are traversed when any macrocell
in a given slice is non-empty – specifically, when our desired
isovalue is within that macrocell’s min, max range. Then, the
packet frustum traverses full slices of that macrocell level’s
children. This algorithm is illustrated in Fig. 5.

Figure 5: Coherent Octree Traversal via Implicit Macrocells. Our hierarchical
grid employs recursively superimposed macrocell blocks, with each parent con-
taining 23 children, for alignment with the octree volume. We depict a 3-deep
hierarchy, with blue, yellow and green extents corresponding to macrocell lay-
ers from coarsest to finest. Macrocells are only traversed when they contain
our desired isovalue, as illustrated by the “surface” at the dotted line. With
an octree, macrocells are implicit, and their min/max pairs are retrieved from
the octree volume via hashing.

4

Scientitfic Computing and Imaging Institute, University of Utah. Technical Report No UUSCI-2007-001

5.3 Implicit Macrocell Grid Traversal of Octree Vol-
umes.

Our octree volume traversal is effectively coherent grid
traversal of an implicit macrocell hierarchy, in which
min/max pairs are retrieved from octree interior nodes in-
stead of macrocells. Rather than repeatedly multiplying grid
coordinates by the macrocell width M, octree nodes at all
depths share a common coordinate space [0,2dmax], where
dmax is the maximum depth of the tree. Some macrocell
traversal computation can be optimized for the binary subdi-
vision of the octree. When recursing from a parent to travers-
ing children, the macrocell grid multiplies the k-slice by the
macrocell width M; in the octree M = 2, a bitwise left-shift.
Computing the next macrocell slice requires a simple +2 ad-
dition. Figs. 5, 6, and 7 illustrate traversal; refer to Algo-
rithm 3 in the Appendix for pseudocode.

Mapping Macrocells to Octree Nodes Traversing
implicit macrocells over an octree requires particular atten-
tion, as a single coarse scalar leaf node in the octree may may
cover multiple finer-level implicit macrocells. Given an im-
plicit macrocell coordinate, we seek the deepest octree child
that maps to it. We then use the min/max pair in the parent
node, corresponding to that child, to perform the isovalue
culling test. As lookup is costly, we store the path from the
octree root to the current node along the u,v-minimal ray of
the frustum. We then use neighbor-finding as detailed in [1]
to inexpensively traverse from one node to the next. Hier-
archically recursing from a parent node to a child requires a
single lookup step in the octree.

Default Slice-Based Traversal At shallow levels of
the octree, the packet frustum typically traverses a single
common macrocell. At deeper levels, the u,v extents encom-
pass multiple macrocells, so we must neighbor-find numer-
ous octree nodes. By default, macrocell CGT stops iterating
over a slice when any node is non-empty, and proceeds to
traverse slices of children nodes. This ensures that traver-
sal is performed purely based on the packet frustum as op-
posed to individual rays, and preserves the breadth-first co-
herent nature of the algorithm. Unchecked, it also causes
numerous unnecessary octree lookups and ray-cell intersec-
tion tests. To mitigate this, we implement the two following
optimizations.

Clipping the Cap-Level Macrocell Slice To avoid
unnecessary intersections and octree hashing, we clip the u,v
slice corresponding to the deepest-level macrocells, one level
above actual cell primitives. To do this, we iterate over the
min/max pairs corresponding to the finest available octree
depth. When traversing at maximum resolution, the deep-
est macrocells correspond to cap nodes (Fig. 1). Within this
iteration, if a macrocell contains our isovalue, we compute
new slice extents based on the minimum and maximum u,v
coordinates. If the macrocell is empty, we omit it from ex-
tent computation. The effect is to clamp the u,v slice so that it

Figure 6: Slice extent clipping optimizations. Top: We first clip slices of
deepest macrocells, corresponding to cap nodes of the octree at depth dmax−1.
We narrow the u,v slice extents by omitting macrocells with ranges outside our
value; only the shaded cells containing our isovalue are considered. Bottom:
Having done this, we intersect individual rays in the packet with the bounding
box of each finest-level slice of cells. “Inactive” rays that have already hit the
surface are omitted. This allows us to further constrict the u,v slice extents
before intersecting a ~K-slice of cells.

more tightly encloses nodes with the desired isovalue (Fig. 6,
top).

Clipping the Cell Slice to Active Rays To further
reduce the number of cell primitives in a slice, we intersect
individual rays with the world-space bounding box formed
by the current u,v slice. When rays have already successfully
hit a cell, they are “inactive” and can be safely ignored even
if they intersect the slice bounding box. This enables us to
considerably shrink the u,v extents, simply by computing the
minimum and maximum of the enter and exit hit coordinates
of active rays (Fig. 6, bottom).

5.4 Cell Reconstruction from Cached Voxel Slices

Having clipped the primitive-level slice to as small a u,v ex-
tent as possible, we are ready to perform ray-cell intersec-
tion. Our ray-tracing primitive is a cell with eight scalar val-
ues; one at each vertex. However, the data primitives in our
octree volume are voxels. Using the same duality employed
by min/max tree construction, we map octree voxels to the
lower-most vertex of each cell (Fig. 2). Our task now is to
reconstruct cells efficiently from the octree, exploiting co-
herence whenever possible.

U,V Voxel Slice Filling In single-ray and depth-
first traversals, cells are constructed independently, given a
lower-most voxel from traversal, and using neighbor-finding
to look up the remaining seven voxels. However, adjacent

5

Scientitfic Computing and Imaging Institute, University of Utah. Technical Report No UUSCI-2007-001

Figure 7: Slice-based cell reconstruction algorithm. To find the eight vertices
of each cell, rather than neighbor-find seven forward-neighbors per voxel, we
exploit our slice-based traversal to look up and cache ~K-slices of voxels. Thus
we exploit coherence to reduce the overall cost of data access. Above, we
illustrate five successive slices, with like colors representing where voxel-caching
can be used to avoid repeat neighbor-finding. As evident from lighter-colored
voxels at the upper right of each slice, we require the voxels at the umax +
1,vmax + 1 extents to reconstruct a cell. Similarly, we can re-use the previous
cell’s k +1 slice to at least partially construct the subsequent ~K-slice.

cells share vertices – much neighbor-finding effort is dupli-
cated. With our octree CGT, we can iterate over an entire
slice of adjacent u,v cells, access each voxel once, and store
the results in a 2D array buffer. We add 1 to the maximal
u,v slice extent to account for forward cell vertices in those
directions. Then, we iterate over the u and v components of
the slice, performing neighbor-finding from one coordinate
to the next. By iterating in a scanline, the neighbor-finding
algorithm need only find a common ancestor along one axis,
and is slightly cheaper. We store the voxel results for this
slice in a 2D array buffer, and look up values from this buffer
to reconstruct four vertices of each cell in the slice. The re-
maining four vertices can be reconstructed in the same fash-
ion by filling in a second buffer for the k+1 slice (Fig. 7).

Copying the Previous-Step ~K-Slice In cell recon-
struction, we also exploit voxel coherence along the ~K axis.
For this, we note that vertices on either the front (k) or back
(k+1) slice of each cell are shared from one traversal step to
the next, depending on whether the ~K march direction is pos-
itive or negative. In either case, we can copy an advancing
slice buffer from the previous traversal step into a posterior
buffer of the current traversal step (Fig. 7). We must ac-
count for the traversal offset in the minimum u,v coordinates
between the two buffers; and perform neighbor-finding for
voxels not buffered from the previous step, due either to that
offset or different maximal u,v extents.

5.5 Intersection

With our cached slice buffers, we can iterate over cell prim-
itives and reconstruct cell vertices. To compute the ray-
isosurface intersection, we iterate over all SIMD packlets,
discarding packlets that are inactive (have already inter-
sected) according to the per-packlet hit mask. For each pack-
let, we first check that each at least one actually intersects

the bounding box of the cell in question, and then proceed to
compute the ray intersection with the implicit isosurface.

For ray-cell intersection, we seek a surface inside a three-
dimensional cell with given corner values (Fig. 2), such that
trilinear interpolation of the corners yields our desired iso-
value. This entails solving a cubic polynomial for each
ray; the hit position is given at the first positive root. Our
implementation uses the Neubauer iterative root finder pro-
posed by Marmitt et al. [19]. Computation is performed per-
packlet. If any ray in the packet intersects successfully, we
compute the gradient normals for that packlet. We do not
defer normal computation due to the prohibitive cost of re-
constructing cell vertices twice.

6 MULTIRESOLUTION LEVEL OF DETAIL SYSTEM

Our optimized coherent traversal algorithm significantly out-
performs single-ray traversal on simple scenes; and due to
the lower data lookup cost even exhibits a factor-of-two
speedup moderately incoherent scenes, where more than one
ray in packlet seldome intersects the same cell (Tab. 2).
However, coherence breaks down on highly complex scenes,
where rays are separated by multiple cells that are never in-
tersected. This pathological case is common with far views
of large data sets. (Tab. 3). This behavior is detailed more
fully in Section VIII. The purpose of the multiresolution sys-
tem is to manage pathological cases posed by large data, and
preserve coherence while sacrificing quality as little as pos-
sible.

6.1 Resolution Heuristic

Stop depth The general vehicle for the multiresolution
scheme is determining an effective depth at which to stop
traversing children, and instead reconstruct cells to intersect.
Coarser-resolution voxels are explicitly stored in the scalar
leaf fields of interior nodes, regardless of whether a finer-
resolution subtree exists. When the traversal algorithm stops,
cell reconstruction proceeds exactly as it would at the finest
resolution, except given a stop depth dstop it increments the
u,v coordinates by 2dstop instead of simply 1 at the finest reso-
lution. Moreover, the octree hash scheme operates on canon-
ical octree space [0,2dmax], regardless of resolution level.

Pixel-to-voxel width ratio A more difficult problem
in formulating the multiresolution scheme is determining
which parts of the scene should be rendered at which reso-
lution. Generally, we note that when multiple voxels project
to the same pixel, a coarser level of resolution is desirable.
LOD techniques for volume rendering often use a view-
dependent heuristic to perform some projection of voxels
to screen-space pixels, and identify distinct regions of dif-
fering resolutions [10]. In the case of ray-casting with a
pinhole camera, the number of voxels that project to one
pixel varies quadratically with the distance from the cam-
era. As aspect ratio is constant, we may simply consider the

6

Scientitfic Computing and Imaging Institute, University of Utah. Technical Report No UUSCI-2007-001

linear relation along one axis ~U , namely the increment be-
tween each primary ray along ~U , du. Then, we can render
the coarser resolution at dstop when du = Qstop ∗ dV , where
dV is the ~U-width of a voxel, and Qstop is some constant
threshold. As the ~U-width of a single pixel, dP, is sim-
ply a multiple of du, we can simply reformulate our con-
stant as a ratio of pixel width to voxel width dP/dV , where
Qstop = (du/dP)∗ (dP/dV).

Packet extents metric Ideally, our LOD metric
should be evaluated per packet. An obvious choice would be
the du width of the packet, given by the aforementioned u,v
slice extents. One could render a coarser resolution when-
ever the number of cells in a slice at the current resolution
surpassed some threshold. Unfortunately, at the same k-slice,
the dupacket could vary between packets, causing neighbor-
ing rays to intersect different-resolution cells, hence result-
ing in seams. We desire a similar scheme that allows us to
perform transitions consistently between packets.

Figure 8: Multiresolution transition slices. We determine transition slices along
the major march axis ~K, transitioning from finer to coarser resolution as slices
progress from the camera origin. For the transitions, we determine the last
k-slice where each resolution level corresponds to a fixed voxel-to-pixel ratio.

LOD Mapping via ~K Transition Slices To ensure
consistent transitions from one resolution to the next, we
compute a view-dependent map from resolution levels to
world-space regions along the major traversal axis ~K. We
note that the width of a pixel corresponds to the distance be-
tween primary rays along the ~U and ~V axes, which increases
with greater t, as we move farther from the camera origin.
If we consider a major march direction ~K, we can find the
exact k slice coordinate where any given number of voxels
corresponds to exactly one pixel. This is similar to the per-
ray metric approach, except it solves where du = Qstop ∗dV
at a discrete ~K-slice, k. As packets traverse the octree one
~K-slice at a time, we have a constant world-space LOD map
that can be computed on a per-packet basis.

We multiply the ratio of pixel width to voxel width,
dP/dV , by the power-of-two unit width corresponding to
each depth d of the octree. Then, we solve for the t parameter
where this voxel width is equal to the distance between view-
ing rays, ducamera. Finally, we evaluate ~K-component of the

direction ray to compute the ~K-slice where our fixed dP/dV
ratio occurs, ktransition[d]. These mark the transition slices
from each resolution to its coarser parent. The array is com-
puted once per frame, as in Algorithm 2. The dP/dV con-
stant is thus our base quality metric; Fig. 12 shows the same
scene rendered using multiresolution and varying dP/dV .

Algorithm 2 Transition Array Computation
Require: Pixel-width to voxel-width ratio, dP/dV

Per-ray camera offset along ~U axis, ducamera
Ensure: Array of ~K-transition slices, ktransition[]

for all octree depths d ∈ {0..dmax−1} do
voxelWidth[d]⇐ 2dmax−d ∗dP/dV
ttransition[d]⇐ voxelWidth[d] / ducamera
ktransition[d]⇐ korigin + ttransitionkdirection

end for

6.2 Multiresolution Traversal

Rather than determining the major march axis ~K per packet,
we decide it once per frame based on the direction vector of
the camera. While this causes some packets to perform CGT
on a non-dominant axis, in practice there is no appreciable
loss in performance with a typical 60-degree field of view.

The traversal algorithm determines the initial transition
slice when it computes the first k-slice of a packet, by finding
the first ktransition[d] < k. Then, before recursively travers-
ing a child slice at the current resolution depth, we check if
kchild >= kd−1, the slice corresponding to transition to the
next coarser resolution. When that occurs, we omit traver-
sal of the child and perform cell reconstruction. The cur-
rent resolution depth is then decremented, and the traversal
algorithm seeks the subsequent coarser-resolution transition
slice.

Figure 9: Color-coded multiresolution. Left: transitions between isosurfaces
are smoothed by substituting coarser-detail voxel values into finer-detail cell
vertices at the transition slice. Right: three transitions along the ~K axis, from
finer to coarser levels of detail, on the Richtmyer-Meshkov data.

6.3 Smooth Transitions

Isosurfaces are piecewise patches over their respective cells,
and can vary both topologically and locally from one reso-
lution to the next. As such, discontinuities arise at transition
slices between finer and coarser isosurfaces. While these dis-
continuous surfaces are technically “correct” with respect to

7

Scientitfic Computing and Imaging Institute, University of Utah. Technical Report No UUSCI-2007-001

each resolution, it is frequently desirable to mask the mul-
tiresolution transition and render a single smooth surface.
To accomplish this, our slice-based reconstruction algorithm
checks if each ~K-slice is equal to the next kd transition slice.
If it is, we look up voxel data from the octree at coarser depth
d− 1 as opposed to the current default depth d. This guar-
antees identical voxel values on either side of the transition,
and thus continuous surfaces (Fig. 9, left). Exceptions may
occur in cases of gross disparity between each resolution of
the scalar field, where topological differences cause a surface
to exist at one resolution but not the other This is common
in highly entropic regions of the Richtmyer-Meshkov data.
In these cases, it is desirable to omit smooth transitions and
expose levels of detail via color-coding (Fig. 9, right).

7 SHADING

Our technique affords better flexibility in shading the isosur-
face. One limitation of the octree volume is that data access
for cell reconstruction is expensive, discouraging techniques
such as central-differences gradients that require additional
neighbor-finding. With slice-based coherent traversal, we
are able to amortize the cost of cell reconstruction as shown
previously. Multiresolution allows us to simplify the casting
of shadow rays and illustrate depth cues with less perfor-
mance sacrifice.

Figure 10: Gradient normals, computed on a forward differences stencil yielding
5.5 FPS (left), and a central differences stencil at 4.7 FPS (right) on an Intel
Core Duo 2.16 GHz with a 5122 frame buffer. The lookup overhead of a 43

neighborhood of voxels makes central differences extremely costly in a single-
ray or depth-first system. The slice-based coherent scheme delivers smooth
normals with a far lesser penalty.

7.1 Smooth Gradient Normals

By default, normals are computed using the forward-
differences gradient at the intersection point within the given
cell. The disadvantage of this method is that such gradients
are continuous only within each cell. The isosurface itself is
formed from piecewise trilinear patches with C0 continuity
at cell edges. For a more continuous normal vector field, and
better visual quality, we can compute gradients on a central
differences stencil to ensure C1 continuity along cell edges.

To compute the central differences gradient, we use a sten-
cil of three cells along each axis; thus 64 cell vertices (vox-
els) must be found during reconstruction. In a non-coherent

ray tracer this entails eight times the lookup cost of forward
differences, causing worse than half the forward-differences
performance. In our coherent system, we return to the slice-
based cell reconstruction technique to amortize that cost of
neighbor-finding. We simply retrieve two additional rows
and columns of voxels, corresponding to umin − 1,vmin − 1
and umin +2,vmin +2 coordinates. In addition to our existing
2D array buffers for the k and k + 1 slices, we store two ad-
ditional buffers corresponding to the k− 1 and k + 2 slices.
We then use this four-wide kernel with a central-differences
stencil to compute the gradient: 1

2 (VX−1,Y,Z) −V(X+1,Y,Z))
along the X axis, and similarly for the Y and Z axes. Perfor-
mance with central differences is typically 15%-30% slower
than with forward differences. Given the improvement in
visual quality, smooth normals are arguably worth the trade
(Fig. 10).

Figure 11: Shadows. By coherently casting shadow rays through a coarser-
resolution version of our data, we achieve higher performance while providing
similar spatial depth cues as shadows cast on the full-resolution volume. With
centrally-differenced gradient normals, the above shadowed scene renders at
3.9 FPS on an Intel Core Duo 2.16 GHz with a 5122 framebuffer; only slightly
slower than without shadows at 5.1 FPS.

7.2 Shadows

An oft-cited advantage of ray tracing is that shadows can be
computed trivially without adding geometric complexity or
implementing sophisticated multi-pass texturing techniques.
In practice, tracing shadows doubles the cost of casting each
ray that successfully hits an object. Computing shadow rays
in a coherent packet system is more complicated than for
a single-ray tracer, as individual rays must be masked and
shadow packets generated based on the hit results of the
primary rays. Fortunately, point-light shadows may be cast
from the light to the primary hit point, thus they share a com-
mon origin and benefit from coherent optimizations. Our
primary goal being interactivity, we are interested in hard
shadows that may not appear photorealistic, but adequately
provide depth cues to the viewer. As such, we can exploit
the level of detail system to cast faster coherent shadow rays
through a coarser-resolution representation of our volume –
for example, using a shadow ray dP/dV of twice the viewing

8

Scientitfic Computing and Imaging Institute, University of Utah. Technical Report No UUSCI-2007-001

ray dP/dV. As shown in Fig. 11, this often yields framerates
only 20%-30% slower with shadows than without.

8 RESULTS

We first note the impact of octree volumes on compression
and render-time memory footprint. We then evaluate per-
formance of our system by first considering coherent octree
traversal alone, and then analyzing the performance of the
multiresolution system.

8.1 Octree Construction Results

Octree volumes are remarkable not in the overall compres-
sion ratios they achieve, but in their ability to provide re-
spectable lossless compression, spatial hashing, and effec-
tive ray traversal in a single structure. Tab. 1 shows com-
pression achieved for various structured data. Generally,
a factor of 4:1 is common with lossless consolidation, but
actual compression depends enormously on the overall en-
tropy of the volume. Fluid dynamics simulations such as the
Richtmyer-Meshkov and heptane compress well, but noisy
medical data can actually occupy more space in an octree.
Segmentation allows us to meet memory constraints, and iso-
late data ranges of interest.

DATA ISO- TIME SIZE %
RANGE STEP original octree

heptane full 70 27.5M 3.96M 14
full 152 27.5M 9.5M 33
full 0-152 4.11G 678M 16

RM full 50 8.0G 687M 8.5
full 150 8.0G 1.89G 25
full 270 8.0G 2.48G 30

64-127 270 8.0G 1.81G 22
CThead full 14.8M 12.4M 84
femur full 162M 163M 101

100-163 162M 9.0M 5.5

Table 1: Compression achieved for various structured data when converted to
octree volumes. The second column represents iso-ranges. Clamping all values
outside a given range delivers additional octree compression, and preserves
lossless compression for values within that range. “Full” indicates the full 0-
255 range for 8-bit quantized scalars. Data sizes are in bytes, and include all
features of the octree, including overhead of the embedded min/max tree.

Further Compression Generally, our goal is simply to
compress a single data timestep into a manageable footprint
for limited main memory. Sometimes losslessly compressed
data will be slightly too large to meet this constraint. One op-
tion is lossy compression via a non-zero variance threshold,
which behaves similarly to quantization.

A more attractive method, for our purposes, is segment-
ing data into interesting ranges of isovalues, and clamping
scalars outside those values to the minimum and maximum
of the range. This allows for lossless-quality rendering of
isovalues within that range. For example, compressing only

the 64-127 value range of timestep 270 of the Richtmyer-
Meshkov data allows us to render that range on a machine
with 2 GB RAM (Tab. 1). This method is even better suited
for medical data such as the visible female femur, when the
user is specifically interested in bone or skin ranges. The full
original CT scan has highly-variant, homogeneous data for
soft tissue isovalues from 0-100, causing the octree volume
to actually exceed the original data in footprint. However,
considering only the bone isovalues 100-163, we achieve
nearly 20:1 compression (Tab. 1). Not coincidentally, such
“solid” data segments are best suited for visualization via
isosurfacing (Fig. 14).

Construction Performance and Filtering The
bottom-up octree build algorithm is O(N) with regard to
the total number of voxels; nonetheless N can be quite
large. Building a single timestep of the 3023 heptane vol-
ume requires a mere 8 seconds; whereas a timestep of the
Richtmyer-Meshkov data takes 45 minutes. The build it-
self creates an expanded full octree structure that occupies
a footprint of four times the raw volume size. Thus, building
octree volumes from large data requires a 64-bit worksta-
tion. Although an offline process, parallelizing and optimiz-
ing the build would be both desirable and feasible as future
work. In addition, the current construction algorithm effec-
tively samples coarser resolutions via recursive clustered av-
eraging. Superior quality could be achieved with bilinear or
higher-order filtering.

Memory Footprint Comparison Octrees generally
occupy 20%-30% the memory footprint of the uncompressed
grid data, including both the multiresolution LOD structure
and min/max acceleration tree. Conversely, storing a full 3D
array for each power-of-two LOD volume would approach
twice the footprint of the original uncompressed volume.
Other ray-tracing efficiency structures such as implicit kd-
trees [20] could require up to twice the full data footprint,
often with an additional overhead of around 15% for cache-
efficient bricking [23]. Thus, octrees compare quite favor-
ably to competing volume ray tracing structures.

8.2 Coherent Traversal Results

The main purpose of our slice-based algorithmic enhance-
ments, and indeed of traversal itself, is to minimize the num-
ber of cells that must be intersected. By employing packets
and the breadth-first CGT frustum algorithm, we are able
to dramatically reduce both the computational and mem-
ory access costs of traversal. Finally, when multiple rays
in a SSE packlet intersect the same object, we may ef-
fectively perform up to four intersections for the price of
one. For these reasons, we are able to achieve significant
speedups on highly coherent simple scenes. Even with mod-
erately complex scenes where a pixel seldom contains more
than one voxel, and SIMD intersection yields little speedup,
slice-based reconstruction effectively doubles performance
(Tab. 2). Moreover, rendering time is strongly correlated

9

Scientitfic Computing and Imaging Institute, University of Utah. Technical Report No UUSCI-2007-001

with the number of ray-cell intersections. Code profiling re-
veals that traversal occupies a mere 5%-15% of CPU time,
compared to well over 70% spent in cell reconstruction and
intersection.

TRAV. LOOKUPS ISECS L/RAY I/RAY FPS
single 314707 166719 1.2 0.64 2.3
packet 1187798 469560 4.5 1.8 0.78
+slice 1187798 469560 4.5 1.8 2.2
+mcell 561889 124221 2.14 0.47 3.9
+cell 270123 120514 1.0 0.47 4.6
+multires 98055 44419 0.37 0.17 7.6

Table 2: Results from clipping optimizations when ray-casting a moderately
complex scene with low primitive-level coherence, from the heptane fire dataset
(HEP302, Tab. 3). We compare single-ray traversal and 8x8 octree-CGT
packet traversal with and without optimizations. +slice: use slice-based cell
reconstruction. +mcell: clip the deepest macrocell slice extents to discard
nodes not containing the isovalue. +cell: clip the cell slice extents to the set
of active rays. +multires: multiresolution scheme, with dP/dV = 1. Tests at
5122 using one core of an Intel Core Duo 2.16 GHz.

Packet size For performance reasons, our implemen-
tation chooses a static packet size for traversal. This is ap-
propriate for our application, as we seek to render isosurfaces
with constant complexity. Later, we enforce this via the pixel
to voxel width ratio in the LOD scheme. Empirically, we find
that packets of 8x8 work best for scenes where one to 4 rays
intersect a common cell. 16x16 packets yield little benefit
even for simple data, and perform poorly on complex scenes
of large data (Tab. 3).

SCENE HEP64 HEP302 RM
I/RAY FPS I/RAY FPS I/RAY FPS

single 0.70 1.9 0.64 2.3 3.58 0.57
coherent
2x2 0.26 4.3 0.5 2.84 5.65 0.38
4x4 0.11 9.7 0.45 4.54 7.94 0.33
8x8 0.058 14.4 0.47 4.6 12.4 0.22
16x16 0.041 14.5 0.50 2.81 20.5 0.08

Table 3: Results with coherence, showing the net number of intersections per
ray and frames per second with a single-ray tracer, and our coherent system
with varying packet sizes. We examine three scenes of increasing complexity.
The leftmost (HEP64) is the 643 downsampled heptane data, and has high co-
herence at the primitive level. (HEP302) is the same as in Tab. 2: a moderate
case in which few gains are made from intersection-level coherence, but coher-
ent traversal is beneficial. (RM) is a pathological case for packet traversal, in
which neighboring rays in a packet are separated by numerous cells. Allowing
large data such as this to benefit from coherence requires a multiresolution
scheme. Tests run on a single core of an Intel Core Duo 2.16 GHz, with a 5122

frame buffer and multiresolution disabled.

Incoherent behavior without multiresolution Com-
plex scenes reveal the shortcoming of coherent traversal. Be-
cause traversal is not computed on a per-ray basis, but solely

from the packet frustum corners, it frequently looks up cells
that would have been correctly ignored by a more expensive
single-ray traverser. Our clipping optimizations (Fig. 6) no-
ticeably alleviate this, as we can see in Tab. 2. However,
for complex scenes such as far views of large data, ren-
dering cost is totally bound by intersection (Tab. 3). Ulti-
mately, frustum-based traversal causes large numbers of cells
to be looked up, though no rays in the packet actually in-
tersect them. This in turn causes many unnecessary inter-
section tests to be performed. Successful intersection tests
are no less expensive, as packlet-cell intersection degener-
ates to single-ray performance without primitive-level coher-
ence. These higher costs eventually overwhelm any gains
made by the less expensive traversal, and cause the coherent
ray tracer, without multiresolution, to perform worse than
a conventional single-ray algorithm on sufficiently complex
scenes.

Figure 12: Qualitative impact of multiresolution on the Richtmyer-Meshkov
data at t=270, isovalue 20. Top left to bottom right: single-ray, then coherent
multiresolution with dP/dV of 1,2 and 4. On an Intel Core Duo 2.16 GHz with
a 5122 frame buffer, these render at 0.92, 1.0, 1.9, and 3.6 FPS respectively.
To illustrate LOD transitions, like colors indicate the same resolution.

8.3 Multiresolution Results

The combination of multiresolution level of detail and coher-
ence enables frame rates up to an order of magnitude faster
for coherent scenes. With large volume data and small frame
buffers, coherence is less common; but in general it is possi-
ble to decrease dP/dV to achieve interactive frame rates and
interesting, albeit coarser-quality, representations of the data.
For highly entropic large volume data, this behavior is fre-
quently useful as coarser LODs inherently possess less vari-
ance, thus manifest less aliasing. Fig. 12 illustrates behavior
of the RM data with our LOD system with varying dP/dV.

10

Scientitfic Computing and Imaging Institute, University of Utah. Technical Report No UUSCI-2007-001

In best-case scenarios, our system significantly outper-
forms the single-ray tracer. With close camera views of the
RM data and dP/dV = 1, we see order-of-magnitude im-
provement (Tab. 4). The coherent technique usually yields
modest improvements even for scenes with generally poor
coherence. For sufficiently far camera angles viewing com-
plex data, the single-ray system may actually outperform the
coherent method, when using a LOD dP/dV = 1. For these
pathological cases, we recommend relaxing dP/dV for ex-
ploration, or resorting to single-ray traversal for quality.

Coherent traversal handles a difficult scenario for the
single-ray system: a close-up scene deep within the volume,
with an isovalue for which the min/max tree is particularly
loose. Such is the case in the last example of Tab. 4. While
single-ray suffers from data access demand, coherent traver-
sal largely amortizes these costs and performs comparably to
other scenes with similar complexity.

Another substantial advantage of coherence is that large
frame buffers can be rendered relatively faster. Doubling the
frame buffer dimensions generally causes a factor of four
slowdown in a single-ray tracer; by comparison the packet
system frequently experiences a factor of two or better per-
formance decrease, particularly when higher resolution leads
to improved intersection-level coherence as in Fig. 14.

SCENE C.DUO,5122 NUMA,5122 NUMA,10242

single 8x8 single 8x8 single 8x8
50, far 2.5 3.5 17.9 25.1 4.9 7.1
150, far 1.9 2.5 13.6 17.9 3.7 5.8
270, far 1.1 1.1 8.1 7.8 2.4 3.5
50, close 2.0 6.9 14.3 48.5 4.0 16.1
150, close 1.7 8.1 14.2 57.5 4.0 16.7
270, close 0.2 4.7 1.48 33.6 0.5 10.5

Table 4: Frame rates of various time steps of the Richtmyer Meshkov data,
on an Intel Core Duo 2.16 GHz laptop (2 GB RAM) and a 16-core NUMA 2.4
GHz Opteron workstation (64 GB RAM). Refer to Fig. 13 for images.

Figure 13: Richtmyer-Meshkov results. From left to right, timesteps 50, 150
(isovalue 20), and 270 (isovalue 160). Top: various close-up camera views,
illustrating highly coherent scenes. We use dP/dV = 1. Bottom: far views
with the same camera position, exhibiting generally poor coherence.

8.4 Comparison to Existing Systems

Tab. 4 demonstrates performance results on the Richtmyer
Meshkov dataset in comparison to our single-ray implemen-
tation [1]. In the best-case scenario we achieve a factor of 23
faster than single-ray performance, and even in worst cases
the coherent implementation does not exhibit substantially
inferior performance. These numbers compare favorably to
other implementatations. For similar camera positions, we
achieve the same 2 FPS RM data performance on an two-
core Intel Core Duo as DeMarle et al. [15] report on a 64-
processor cluster with a distributed shared memory layer. We
are competitive with Wald et al. [20] for far views, and per-
haps faster for close-up scenes, while generally requiring an
order of magnitude lesser memory footprint.

Figure 14: The visible female femur. The original, full 617x512x512 volume
occupies more space as an octree than uncompressed, due to the entropic
nature of soft tissues. Bone, which is more appropriately visualized as an
isosurface, can be represented by 100-163 isovalue segments, and compressed
into an octree volume with a 20:1 ratio, including the multiresolution data and
min/max acceleration structure. For this scene, coherent ray tracing scales
well to large frame buffers. The image renders at 6.0 FPS at 5122, versus 3.1
FPS at 10242 on an Intel Core Duo 2.16 GHz, with central differences and
shadows.

9 CONCLUSIONS

We have presented a method for coherent ray tracing of large
octree volume data using a multiresolution level of detail
scheme to improve performance. Octree volume ray tracing
allows for interactive exploration of large structured data on
multicore computers using a fraction of the original mem-
ory footprint. While other spatial structures might deliver
greater compression or faster traversal, the octree strikes a
particularly good balance of these goals. With multiresolu-
tion and coherent traversal, we are able to trade quality for
performance and render at interactive rates. Coherent traver-

11

Scientitfic Computing and Imaging Institute, University of Utah. Technical Report No UUSCI-2007-001

sal amortizes the cost of cell lookup, which allows for faster
intersection and improved shading techniques.

Octree ray tracing is not ideal for all volume rendering
applications. For smaller volume data with uniformly high
isovalue variance, an octree can actually occupy more space
than a 3D array, and explicit macrocell-grid or kd-tree traver-
sal might perform slightly better. However, for small data
with simple shading models a GPU volume renderer would
generally be preferable to an interactive ray tracing solution.
Thus, our method is primarily useful for large volumes, or
medium volumes with numerous timesteps. As large data is
the impetus for ray tracing in the first place, the octree is well
suited to this particular application.

On current dual-core computers, single-ray octree volume
ray tracing [1] performs sub-interactively, albeit at multiple
frames per second. The main goal of this work was to de-
vise a system that would consistently allow for interactiv-
ity. Overall, we accomplish that: it is always possible to
relax the pixel to voxel width ratio to the point where per-
formance is interactive. However, doing so often requires
visualizing coarser resolutions than would be ideal. We find
a better application of coherent techniques to be high-quality
rendering of large frame buffers on multicore workstations.
This exploits coherent traversal without resorting to overly
aggressive coarse LODs, and will be interactive on commod-
ity hardware in the near future. Future improvements to our
system could explore this path. Implementing super-sampled
filtering, and intersecting higher-order implicit primitives de-
fined on wider cell kernels, could result in extremely high-
quality isosurfaces of large data, for applications where local
detail and feature correctness are critical.

An overarching concern is that level of detail may not be
an ideal solution for such high-quality rendering, and ul-
timately performance gains from improved coherence may
not justify the loss in quality. One of the major advantages
of ray tracing, when compared to rasterization, is that ren-
dering is less bound by geometric complexity. Effectively,
complex scene geometry can be rendered linearly with re-
spect to the number of rays cast, as opposed to the num-
ber of objects in the scene. As shown by Knoll et al. [1],
a single-ray tracer renders both simple and complex data at
roughly equal, though slow, frame rates. Coherent multires-
olution essentially forfeits this advantage; it instead opts to
improve best-case performance of simple scenes, while at-
tempting to simplify complex scenes to mitigate worst-case
performance. Thus, coherence depends on level of detail.
Without it, complex scenes can easily perform worse than
under a naive single-ray traversal.

The problem of applying coherent techniques to incoher-
ent, complex scenes is a major obstacle for rendering large
data with packet architectures, and for ray tracing in gen-
eral. While the primary focus of our work was a visualiza-
tion system, we have sought to at least identify this issue,
if not address it. Multiresolution volumes make an effec-
tive testbed for this problem, as complexity can be easily

measured in number of voxels, and surface geometry retains
similar features between levels of detail. Future work in ray
tracing should improve the behavior of coherent traversal on
inherently incoherent scenes. While difficult, this would be
possible if the overall cost of primitive intersection were sub-
stantially reduced.

REFERENCES

[1] A. Knoll, I. Wald, S. Parker, and C. Hansen, “Interactive Isosurface Ray Tracing
of Large Octree Volumes,” in Proceedings of the IEEE Symposium on Interactive
Ray Tracing, 2006.

[2] W. E. Lorensen and H. E. Cline, “Marching Cubes: A High Resolution 3D Sur-
face Construction Algorithm,” Computer Graphics (Proceedings of ACM SIG-
GRAPH), vol. 21, no. 4, pp. 163–169, 1987.

[3] J. Wilhelms and A. V. Gelder, “Octrees For Faster Isosurface Generation,” ACM
Transactions on Graphics, vol. 11, no. 3, pp. 201–227, July 1992.

[4] Y. Livnat and C. D. Hansen, “View Dependent Isosurface Extraction,” in Pro-
ceedings of IEEE Visualization ’98. IEEE Computer Society, Oct. 1998, pp.
175–180.

[5] R. Westermann, L. Kobbelt, and T. Ertl, “Real-time Exploration of Regular Vol-
ume Data by Adaptive Reconstruction of Iso-Surfaces,” The Visual Computer,
vol. 15, no. 2, pp. 100–111, 1999.

[6] Z. Liu, A. Finkelstein, and K. Li, “Improving Progressive View-Dependent Iso-
surface Propagation,” Computers & Graphics, vol. 26, no. 2, pp. 209–218, 2002.

[7] Y. Livnat and X. Tricoche, “Interactive Point-based Isosurface Extraction,” in
Proceedings of IEEE Visualization 2004, 2004, pp. 457–464.

[8] M. Levoy, “Efficient Ray Tracing for Volume Data,” ACM Transactions on
Graphics, vol. 9, no. 3, pp. 245–261, July 1990.

[9] B. Cabral, N. Cam, and J. Foran, “Accelerated volume rendering and tomo-
graphic reconstruction using texture mapping hardware,” in VVS ’94: Proceed-
ings of the 1994 symposium on Volume visualization. New York, NY, USA:
ACM Press, 1994, pp. 91–98.

[10] E. LaMar, B. Hamann, and K. I. Joy, “Multiresolution Techniques for Interactive
Texture-based VolumeVisualization,” in Proceedings IEEE Visualization 1999,
1999.

[11] I. Boada, I. Navazo, and R. Scopigno, “Multiresolution Volume Visualization
with a Texture-Based Octree,” The Visual Computer, vol. 17, no. 3, 2001.

[12] M. Kraus and T. Ertl, “Adaptive Texture Maps,” Proceedings of ACM SIG-
GRAPH/Eurographics Workshop on Graphics Hardware, 2002.

[13] S. Guthe, M. Wand, J. Gonser, and W. Straßer, “Interactive Rendering of Large
Volume Data Sets,” in Proceedings of the conference on Visualization ’02. IEEE
Computer Society, 2002, pp. 53–60.

[14] S. Parker, P. Shirley, Y. Livnat, C. Hansen, and P.-P. Sloan, “Interactive Ray Trac-
ing for Isosurface Rendering,” in IEEE Visualization, October 1998, pp. 233–
238.

[15] D. E. DeMarle, S. Parker, M. Hartner, C. Gribble, and C. Hansen, “Distributed
Interactive Ray Tracing for Large Volume Visualization,” in Proceedings of
the IEEE Symposium on Parallel and Large-Data Visualization and Graphics
(PVG), 2003, pp. 87–94.

[16] A. Reshetov, A. Soupikov, and J. Hurley, “Multi-Level Ray Tracing Algorithm,”
ACM Transaction of Graphics, vol. 24, no. 3, pp. 1176–1185, 2005, (Proceedings
of ACM SIGGRAPH).

[17] I. Wald, S. Boulos, and P. Shirley, “Ray tracing deformable scenes using dynamic
bounding volume hierarchices,” SCI Institute, University of Utah (conditionally
accepted at ACM Transactions on Graphics, 2006), Tech. Rep. UUSCI-2006-
023, 2006.

[18] I. Wald, T. Ize, A. Kensler, A. Knoll, and S. Parker, “Ray tracing animated scenes
using coherent grid traversal,” in Proceedings of ACM SIGGRAPH 2006), 2006.

[19] G. Marmitt, H. Friedrich, A. Kleer, I. Wald, and P. Slusallek, “Fast and Accurate
Ray-Voxel Intersection Techniques for Iso-Surface Ray Tracing,” in Proceedings
of Vision, Modeling, and Visualization (VMV), 2004, pp. 429–435.

[20] I. Wald, H. Friedrich, G. Marmitt, P. Slusallek, and H.-P. Seidel, “Faster Isosur-
face Ray Tracing using Implicit KD-Trees,” IEEE Transactions on Visualization
and Computer Graphics, vol. 11, no. 5, pp. 562–573, 2005.

[21] I. Wald, P. Slusallek, C. Benthin, and M. Wagner, “Interactive Rendering with
Coherent Ray Tracing,” Computer Graphics Forum, vol. 20, no. 3, pp. 153–164,
2001, (Proceedings of Eurographics).

[22] C. Gribble, T. Ize, A. Kensler, I. Wald, and S. G. Parker, “A coherent grid traver-
sal approach to visualizing particle-based simulation data,” SCI Institute, Univer-
sity of Utah (conditionally accepted at ACM Transactions on Graphics, 2006),
Tech. Rep. UUSCI-2006-024, 2006.

[23] S. Parker, M. Parker, Y. Livnat, P.-P. Sloan, C. Hansen, and P. Shirley, “Inter-
active Ray Tracing for Volume Visualization,” IEEE Transactions on Computer
Graphics and Visualization, vol. 5, no. 3, pp. 238–250, 1999.

12

Scientitfic Computing and Imaging Institute, University of Utah. Technical Report No UUSCI-2007-001

We provide abbreviated pseudocode for coherent grid
traversal of an octree volume. In our implementation, duv
and euv are SSE datatypes, and k is an integer. Cap depth is
given as dcap = dmax−1. For multiresolution, the algorithm
is similar except we may intersect slices at lesser stop depth
than dmax. Also refer to Figs. 5, 6, and 7 for illustration of
this algorithm.

Algorithm 3 Octree CGT algorithm

Require: axes ~K,~U ,~V ; packet P; octree volume OV ; isovalue
Ensure: compute P intersection with OV

for all depths i ∈ {0..dmax} do
duv[i]⇐ [dumin,dvmin,dumax,dvmax] / 2dmax−i

k0[i]⇐ (P enters OV)~K / 2dmax−i

k1[i]⇐ (P exits OV)~K / 2dmax−i

euv[i]⇐ [umin,vmin,umax,vmax] at k0[i],k1[i]
k[i]⇐ k0[i]
knextMC[i]⇐ k[i]+2

end for
d ⇐ 0
while k[d]≤ k1[d] do

if k[d] = knextMC[d] then
d ⇐ d−1
continue

end if
traverseChild ⇐ f alse;
for all u ∈ [umin,umax],v ∈ [vmin,vmax] of euv do

node ⇐ OV.lookup(vec3(k,u,v),d)
if isovalue ∈ [node.min,node.max] then

traverseChild ⇐ true
break

end if
end for
if d = dcap then

clip euv to non-empty cap-level macrocells
end if
if traverseChild = true then

if d = dmax then
clip cell slice euv to active rays
intersect P with slice k[dcap] at euv[dcap]
if all rays in P hit then

return
end if

else
euv[d]⇐ euv[d]+duv[d]
knew[d +1]⇐ 2∗ k[d]
k[d +1]⇐ knew[d +1]
knextMC[d +1]⇐ k[d +1]+2
d ⇐ d +1
continue

end if
end if
euv[dcap]⇐ euv[dcap]+duv[dcap]

end while

13

