
1

Adaptive Polynomial Interpolation on Evenly Spaced

Meshes

Martin Berzins

UUSCI-2006-033

Scientific Computing and Imaging Institute
University of Utah

Salt Lake City, UT 84112 USA

November 1, 2006

Abstract:

The problem of oscillatory polynomial interpolants arising from equally spaced mesh points is
considered. It is shown that by making use of adaptive approaches that the oscillations may be
contained and that the resulting polynomials are data bounded and monotone on each interval.
This is achieved at the cost of using a different polynomial on each sub-interval. Computational
results for a number of challenging functions including a number of problems similar to Runge’s
function with as many as 511 points per interval are shown.
keywords Adaptive polynomial interpolation, data bounded polynomials, Runge’s function
This report is to appear in SIAM Review 2007.



ADAPTIVE POLYNOMIAL INTERPOLATION ON EVENLY SPACED MESHES

M. BERZINS ‡

Abstract. The problem of oscillatory polynomial interpolants arising from equally spaced mesh points is con-
sidered. It is shown that by making use of adaptive approaches that the oscillations may be contained and that the
resulting polynomials are data bounded and monotone on each interval. This is achieved at the cost of using a dif-
ferent polynomial on each sub-interval. Computational results for a number of challenging functions including a
number of problems similar to Runge’s function with as many as 511 points per interval are shown.
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1. Introduction. Two central themes in scientific computing are the inadequacy of poly-
nomial interpolation using evenly spaced meshes and the development of numerous algo-
rithms to model the solution of ordinary and partial differential equations on the very same
meshes, often in the case of hyperbolic equations using techniques to suppress oscillations.
The resolution of these different points occurs mostly through the use of relatively low order
polynomials in many differential equations algorithms based on evenly spaced meshes. At the
same time the natural trend in the development of new algorithms for differential equations is
towards the use of higher order methods. Good examples of this trend are ENO and WENO
schemes, [2, 18] and spectral methods [17]. One way of resolving the issue of potentially
poor properties of equally spaced meshes is to use spectral methods based on Chebyshev or
Legendre polynomials and associated meshes. Nevertheless there are many situations where
it is desirable to use equally spaced meshes because of algorithmic, code or data constraints.
There are also many situations in which it is important to use an interpolant that preserves
the positivity of the data. Chemical concentrations, for example, must be positive; but there
are many other cases. This in turn suggests that it is worth revisiting the properties of inter-
polation on equally spaced grids with an eye to the developments in nonlinear interpolation
methods so successfully used to control oscillations in the solution of hyperbolic equations.

This paper follows earlier work of Berzins [5–7] which is concerned with the develop-
ment of positivity preserving finite element methods for the solution of hyperbolic equations
in one space variable. This paper extends the approach of Berzins by exploring the approx-
imation properties of an adaptive bounded polynomial approximation method. This will be
achieved by building on key ideas of Harten [19] and of ENO methods [18]. The use of
polynomials whose higher divided differences may be written as bounded multiples of lower
divided differences will be seen to be important in deriving schemes with positivity preserv-
ing properties. The algorithm used will limit the signs and growth of divided difference terms
to arrive at bounded monotone polynomial approximations of possibly arbitrarily high degree
within an interval. While this limiting process may be used with any divided difference poly-
nomial, its use in conjunction with ENO schemes is natural in that both approaches seek to
control the size of the differences used in divide difference polynomial schemes. The price
that will be paid for this is that the resulting polynomials will only be C 0 continuous at data
points.

2. Divided Difference Polynomial Interpolation. The approximation space used here
is polynomials on [a,b]. The divided difference form of polynomial interpolation is used here
as it enables the unified treatment of polynomial approximations based on any set of spatial
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points.
Consider the case in which we have an approximating polynomial U L(x) based on a set

of nodal values U(xi) which may be evenly spaced when a = −1 and b = 1:

xi = −1+ 2i/N, i = 0, ...,N(2.1)

Interpolation using these values may be performed using a number of techniques such as
Lagrange interpolation as defined by

UL(x) =
N

∑
i=0

li(x)U(xi)(2.2)

where li(x) is the polynomial of degree N with li(x j) = δi j, and where δi j is the Kronecker
delta. An alternative is to use Newton divided difference interpolation. The pros and cons of
these approaches are discussed by [3]. In this paper we will use divided differences as defined
by the usual notation where U [xi] = U(xi) and

U [xi,xi+1] =
U [xi+1]−U [xi]

xi+1 − xi
,(2.3)

and subsequent differences are defined recursively

U [xi,xi+1, ...,xi+k] =
U [xi+1,xi+2...,xi+k]−U [xi,xi+1, ...,xi+k−1]

xi+k − xi
.(2.4)

Suppose that a set of mesh points are given by xi,xi+1,xi+2,xi+3,xi+4...xi+N with associated
solution values U [xi], ...,U [xi+N ], then the standard Newton divided difference form of the
interpolating polynomial U L(x)is given by

UL(x) = U [xi]+ π1,i(x) U [xi,xi+1]+ π2,i(x) U [xi,xi+1,xi+2]
+π3,i(x) U [xi,xi+1,xi+2,xi+3]+ ....++πN,i(x) U [xi, ...,xi+N ],(2.5)

where

π1,i(x) = (x− xi), π2,i(x) = (x− xi)(x− xi+1),
π3,i(x) = (x− xi)(x− xi+1)(x− xi+2), etc(2.6)

In this case each additional term in the series makes use of the next mesh point and associated
solution value to the right of the previous ones. An alternative polynomial could have been
constructed by starting at the point x j, j > 0 and then adding successive points to the left or
right of x j, [20]. As the divided difference, U [xi,xi+1, ...,xi+k], is invariant under permutations
of the points xi,xi+1, ...,xi+k, the convention adopted here is that the points will be ordered as
an increasing sequence when the difference is evaluated. The denominator in equation (2.4)
will also then be the width of the stencil of points used to evaluate the difference.

For example suppose that i > 1 then one valid quadratic polynomial for interpolation on
the interval [xi,xi+1] is given by the first three terms of the sum on the right side of equation
(2.5) which uses the three data points U(xi),U(xi+1) and U(xi+2). An alternative polynomial
using the points U(xi),U(xi+1) and U(xi−1) is given by

UL(x) = U [xi]+ π1,i(x) U [xi,xi+1]+ π2,i(x) U [xi−1,xi,xi+1](2.7)
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with the same values of the functions π1,i(x) and π2,i(x): The central idea in ENO methods
[18] is to pick the polynomial with the smallest divided differences in order to potentially
reduce oscillations. In the above case if

|U [xi−1,xi,xi+1]| < |U [xi,xi+1,xi+2]|(2.8)

then the polynomial defined by equation (2.7) is used rather than the polynomial defined by
the first three terms on the right side of equation (2.5). As an illustration, it is now straight-
forward to illustrate how polynomials such as these may be modified so that the value of a
polynomial on the interval [xi,xi+1] is bounded by u[xi] and u[xi+1] the polynomial defined by
the first three terms on the right side of equation (2.5) may be written as

UL(x) = U [xi]+U [xi,xi+1](x− xi)(1+
[

U [xi+1,xi+2]
U [xi,xi+1]

−1

]
(x− xi+1)
(xi+2 − xi)

)(2.9)

which, assuming that the mesh is evenly spaced i.e. xi+2 − xi+1 = xi+1 − xi, may be rewritten
as

UL(x) = U [xi]+ (U [xi+1]−U [xi])(s+[r−1]
s(s−1)

2
)(2.10)

where r = U[xi+1 ,xi+2]
U[xi ,xi+1] and 0 ≤ s = (x−xi)

(xi+1−xi)
≤ 1. For the interpolant to be bounded on the

interval by U [xi+1] and U [xi] hence requires that

0 ≤ (s+[r−1]
s(s−1)

2
) ≤ 1(2.11)

It is straightforward to show that this holds for |r − 1| ≤ 2. A common procedure in finite
volume methods for hyperbolic p.d.e.s is to limit the solution by replacing r by a function
Φ(r) which is known as a limiter function as it is designed to meet any required limits on r.

The polynomial defined by equation (2.7) may, in a similar way as above, be rewritten as

UL(x) = U [xi]+ (U [xi+1]−U [xi)](s+[1− r]
s(s−1)

2
)(2.12)

where now r = U[xi−1 ,xi]
U[xi ,xi+1] and for the interpolant to be bounded on the interval by U [x i+1] and

U [xi] requires that

0 ≤ (s+[1− r]
s(s−1)

2
) ≤ 1,(2.13)

which leads to the same requirement on the modified ratio r that |r−1| ≤ 2.
The above examples illustrates the general process that is taken for arbitrary degree poly-

nomials, once the underlying interpolation theory is discussed in the remainder of this section.
Sections 3 and 4 describe the ENO type approach in general. A recursive formulation of the
general polynomial similar to that in equation (2.10) is given in Section 5 and written in full in
Section 6. A number of numerical experiments are described in Section 7 and the theoretical
properties analyzed in Section 8.

2.1. Limitations of Evenly Spaced Data Interpolation. Numerous texts in Numerical
Analysis show that evenly spaced mesh polynomial interpolation with evenly spaced meshes
breaks down on Runge’s function when the function U(x) is defined by

U(x) =
1

1+ 25x2(2.14)
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as oscillations in the solution become increasingly large with increasing polynomial degree.
Figure (2.1) shows these oscillations for polynomials of order 4,7,10 and 13.

There is a large body of approximation theory regarding the properties of interpolation
based on equally spaced points; Revers provides an excellent summary, [26]. Many authors
such as de Boor [11,29] show that polynomial approximation based on the expanded Cheby-
shev points as defined by

xi = −cos((2i+ 1)π/(2N+ 2))/cos(π/(2N + 2)), i = 0, ...,N(2.15)

is ”nearly optimal” in that the error is close to that of an optimal polynomial. A key factor in
this argument is the Lebesgue constants, ΛN , as defined by:

ΛN = ||
N

∑
i=0

li(x)||∞.(2.16)

where || f (x)||∞ = max| f (x)| for a ≤ x ≤ b. It is worth remarking, see [29], that for evenly
spaced nodes ΛN has the asymptotic behavior that

ΛN ∼ 2N+1

e N log(N)
as N → ∞,(2.17)

whereas for the expanded Chebyshev points de Boor, [11], quotes Brutman’s result that

2
π

log(N + 1)+ 0.5≤ ΛN ≤ 2
π

log(N + 1)+ 0.73 .(2.18)

The importance of these results is that the Lebesgue constant occurs in the inequality

||U −UL||∞ ≤ (1+ ΛN)||U −U∗||∞,(2.19)

where U ∗(x) is the polynomial of best approximation to U(x) on [a,b], see Trefethen and
Weideman [29], who state that U L(x) may fail to converge to U(x) if ΛN grows too quickly.
The issues related to the convergence of polynomials are best described by complex plane
analysis e.g. see [13, 30]. As well as analyzing the complex case Epperson, [13], points out
that the derivative term must grow quite rapidly to force divergence, where, in this context
derivative refers to the N + 1th order derivative U (N+1), and proves that if

lim
N → ∞

[
||U (N+1)||√

N + 1

(
e(b−a)
N + 1

)N+1
]

= 0(2.20)

then the interpolant U L(x) based upon N + 1 uniformly spaced nodes in the interval [a,b]
converges to U(x) uniformly. The significance of this is that if the higher derivatives are
sufficiently well-bounded then it may be possible, but possibly far from optimal, to use poly-
nomial interpolation based upon evenly spaced data values. Indeed this is in some sense
the strategy used by the ENO methods, [18], described in Sections 3 and 4, although these
methods do not attempt to construct global polynomial approximations.

2.2. Interpreting the Theory. The above theoretical results require interpreting with
some care. For example, with reference to the result (2.18) Epperson [13] (p337) states The
above discussion also appears to contradict the oft-read dictum ”divergence of interpolation
polynomials is due to the growth of the li(x) functions” While the importance of the li(x)
should not be understated, equation (10) clearly indicates that interpolation will converge for
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FIG. 2.1. Runge’s Function 1/(1 + 25x2)denoted by Runge, Data Points denoted by Data and Even Mesh
Polynomial Interpolation using these Data Points denoted by Poly

functions whose derivatives behave moderately well as N → ∞. Equation (10) in this quote is
an intermediate result leading to equation (2.19) above. Of course polynomial interpolation
using equally spaced points may still be ill-conditioned. Epperson goes on to give examples
of Runge-type functions for which evenly spaced interpolation does converge on smaller sub-
intervals.

It is straightforward to construct examples which illustrate some of these issues. For
example if one half of Runge’s function, say on [−1,0], is approximated by polynomials using
evenly-spaced points the minimum L∞ error of about 8×10−8 occurs when a polynomial of
degree 44 is used. The norm here is approximately calculated by 2049 equally spaced sample
points in the interval [0,1]. The error using the Chebyshev points spacing of equation (2.15)
is considerably smaller however, 8× 10−19 and occurs with a polynomial degree of 100. In
both cases polynomials of degree close to 44 or 100 respectively give very similar results.

The task then is to find the algorithms to enable equally spaced points to be used in
interpolation without spurious oscillations resulting. In this respect this paper will show that
adaptive methods and the use of ENO type piecewise polynomial approximations have an
important role to play.

2.3. Solutions to the Problem of Oscillations. There are a number of important ways
of addressing the problem of oscillating solutions to non-oscillatory data. Gottlieb and Shu
[16] describe approaches involving Gegenbauer polynomials for the case of Gibbs oscillations
in Fourier series and reference an important series of their papers on this topic. Recent work
in this area confirms the great promise of this approach [15, 28] but also indicates that there
are outstanding issues, [9].

The polynomial filtering methods of Gottlieb and Shu [16] [17] modify the polynomial
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coefficients so as to improve accuracy in the presence of discontinuities. There are some
similarities with the approach to be discussed here, see [6].

An alternative solution is to make use of the many successful shape preserving con-
strained spline approximations such as PCHIP which is a C1 cubic spline method [14] in
which a system of equations is solved as part of the process to construct the interpolation
function. Other approaches are the methods in [23, 25]. A general description of the oscil-
latory nature of many interpolants is given by Jerri, [21]. The approach developed here may
be viewed as one type of such a spline approximation, the major differences being that C 1

smoothness is not imposed and that the polynomial order may be arbitrarily high here.
Part of the motivation for this study is that many calculations in fluid mechanics make use

of evenly spaced meshes, mostly with low order methods but increasingly with higher order,
[2], for systems of conservation laws for which we expect the solution to remain positive and
stay bounded [8]. It is thus important to consider how we can devise interpolants on evenly
spaced meshes that are bounded by the values at the ends of the interval. In keeping with
the definition used by Berzins, [4] such interpolants are referred to as data-bounded. In this
context a polynomial U l(x) is said to be data-bounded if

Ul(xi) = U(xi)
Ul(xi+1) = U(xi+1)
min(U(xi),U(xi+1)) ≤Ul(x) ≤ max(U(xi),U(xi+1)), x ∈ [xi,xi+1].(2.21)

If possible we would also like the values produced by the interpolant to be monotone increas-
ing or decreasing as appropriate within an interval.

In this paper three ideas from algorithms in the numerical solution of advection-type
equations will be applied to ensure that the values of the polynomial interpolant are bounded
by the data values used.

• Adapt the stencil so as to use the smallest divided differences at any stage as is done
in ENO methods to reduce oscillations, [18].

• Alter the degree of polynomial approximation so that any discontinuities in higher
derivatives are removed, [19].

• Alter the polynomial degree and/or terms so that successive differences in the series
do not change dramatically, [5, 6].

The combined effect of these steps will be shown to eliminate oscillations by ensuring that
values generated in an interval are bounded by the data point values at either end and are
monotone.

3. ENO Schemes - Picking the Smallest Divided Difference . In the remainder of this
paper it is convenient to modify the description of the mesh used so that an evenly spaced
mesh is used and the mesh points, xi, are defined around a point x0 by adding or subtracting
integer multiples of an even mesh spacing as denoted by h

xi = x0 + ih.(3.1)

and that the mesh is defined by

a = x−J < x−J+1 < ... < x−1 < x0 < x1 < ...xK = b(3.2)

for non-negative integers J and K, where this may be viewed as a generalization of equation
(2.1), with N = K and J = 0 in that case. On this mesh we will seek to interpolate the
function U(x) for x ∈ [x0,x1] On such a mesh a systematic way of choosing the direction of
a difference stencil is given by the widely-used Essentially Non-Oscillatory Schemes, [18].
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Consider having formed the divided difference defined by equation (2.4) above. The next
divided difference could be obtained by extending the stencil to x i−1 to get

U [xi−1,xi,xi+1, ...,xi+k] =
U [xi,xi+1,xi+2...,xi+k]−U [xi−1,xi,xi+1, ...,xi+k−1]

xi+k − xi−1
,(3.3)

or could be obtained by extending the stencil to x i+k+1 to get

U [xi,xi+1, ...,xi+k,xi+k+1] =
U [xi+1,xi+2...,xi+k+1]−U [xi,xi+1, ...,xi+k−1,xi+k]

xi+k+1 − xi
,(3.4)

The central idea behind ENO methods is to attempt to reduce oscillations by choosing be-
tween these alternatives, for instance, by choosing the smallest of the absolute values of the
two differences and so to adaptively vary the stencil used to define the polynomial. There
is no guarantee, but much experimental evidence, that oscillations are either eliminated or
reduced by using this method with polynomials of arbitrary degree. In Section 8 we will
show that it is possible to prove that this is indeed the case. An extension of ENO methods is
the WENO schemes in which a weighted combination of the possible different interpolation
polynomials is used [2].

4. Removing Sign Changes in Differences using Harten’s Approach. Although ENO
schemes allow us to choose the smallest divided differences at any stage they do not control
the growth in those differences within the interpolating sequence. In this respect a significant
observation (and one consistent with [13]) was made by Harten [19] (see also Arandiga et
al. [1], p.9) that the lack of smoothness (or even an approximate lack of smoothness) may
effect the quality of the approximation. For example when a steep gradient is found close to
areas of zero gradient and may then appear like a discontinuity. Consider the second divided
difference

U [xi−1,xi,xi+1] =
U [xi,xi+1]−U [xi−1,xi]

(xi+1 − xi−1)
(4.1)

and suppose that U [xi−1,xi] = O(ε)U [xi,xi+1]. It then follows that

U [xi−1,xi,xi+1] = (1−O(ε))
U [xi,xi+1]

(xi+1− xi−1)
(4.2)

and since it is possible that (xi+1 − xi−1) < 1 the factor (1−O(ε))
(xi+1−xi−1)

is an amplification factor
and the second divided difference is larger than the first.

In the case when neighboring divided differences have different signs, for example when
U [xi−1,xi] = −μU [xi,xi+1] for μ > 0), it follows that

U [xi−1,xi,xi+1] = (1+ μ)
U [xi,xi+1]

(xi+1− xi−1)
(4.3)

and again the second divided difference is larger than the first. In both these cases the error
may increase by using second or higher differences.

4.1. An Example using Runge’s function. For example consider Runge’s function as
defined by equation (2.14) interpolated at x = −0.83 with polynomials of order 7 defined
using data at evenly spaced points and at x = −0.91 using the extended Chebyshev points.
Table 4.1 shows the terms that make up the divided difference form of the interpolating poly-
nomial. The divided differences in italics are computed as results of sign changes in lower
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TABLE 4.1
Components of Polynomial Approximations

u(xi) Mesh j=1 j=2 j=3 j=4 j=5 j=6
Evenly π j,i(x) 0.17 -0.028 0.014 -0.012 0.014 -0.020

0.038 Divided
Spaced Differences 0.013e 0.62 1.9 -8.2 13.0 -13.0
Cheby π j,i(x) 0.095 -0.0098 0.0045 -0.0041 0.0055 -0.0094

0.038 Divided
Spaced Differences 0.1 0.37 1.6 -4.5 5.9 -5.9

derivatives. For this example both evenly spaced and Chebyshev polynomials at this order
oscillate markedly. One obvious step is to form a polynomial interpolant for each spatial
interval and then to eliminate any divided differences produced as a result of sign changes in
the divided differences used to form them. In other words with respect to equation (3.3)

U [xi−1,xi,xi+1, ...,xi+k] = 0 i f
U [xi,xi+1,xi+2...,xi+k]

U [xi−1,xi,xi+1, ...,xi+k−1]
< 0(4.4)

or in the case of equation (3.4)

U [xi,xi+1, ...,xi+k,xi+k+1] = 0 i f
U [xi+1,xi+2...,xi+k+1]

U [xi,xi+1, ...,xi+k−1,xi+k]
< 0.(4.5)

This leads to a substantial improvement in the polynomial approximation as is shown in Fig-
ure (4.1), which shows the effect of doing this on Runge’s function with polynomials of
degree 6 in both the evenly spaced and Chebyshev cases. In both cases the new method is
designated by Limited and provides a bounded monotone interpolant. Eliminating divided
differences generated by sign changes in lower differences is not enough to guarantee bound-
edness or monotonicity in general however. The disadvantage of course is that a different
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FIG. 4.1. Eliminating Differences Generated by Sign Changes for Runge’s Function

polynomial is used in each interval and so the composite polynomial is only continuous at the
data points and so may be viewed as a C0 piecewise polynomial spline approximation.

5. Recursive Formulation of Difference Schemes. A key step in constructing a prov-
ably data-bounded interpolant is to write the divided difference interpolation scheme in recur-
sive form. This is important as it enables techniques used in in the finite volume solution of
hyperbolic equations to generate data-bounded low-order polynomials to be extended to high
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order polynomials. In order to do this it is helpful to define the ratios of divided differences,
for example, by

r[i,i+1]
[i−1,i] =

U [xi,xi+1]
U [xi−1,xi]

,(5.1)

with obvious extensions to higher differences and other indices. As an example by using this
notation, when a divided difference approximation incorporates a new point from the right
xi+k we get

U [xi−1,xi,xi+1, ...,xi+k] =

(
r
[xi,...,xi+k]
[xi−1,...,xi+k−1]−1

)
xi+k − xi−1

U [xi−1,xi, ...,xi+k−1](5.2)

or an equivalent form when a divided difference approximation incorporates a new point from
the left xi−1 is

U [xi−1,xi, ...,xi+k,xi+k] =

(
1− r[xi−1,...,xi+k−1]

[xi,...,xi+k]

)
xi+k − xi−1

U [xi,xi+1, ...,xi+k].(5.3)

An alternative divided difference form computed from U [x i,xi+1, ...,xi+k] is

U [xi,xi+1,xi+2, ...,xi+k+1] =

(
r
[xi+1,...,xi+k+1]
[xi ,...,xi+k]

−1
)

xi+k+1 − xi
U [xi,xi+1, ...,xi+k].(5.4)

In this case the ENO scheme picks the next difference to be U [x i−1,xi+1, ...,xi+k,xi+k] if(
|1− r

[xi−1,...,xi+k−1]
[xi,...,xi+k]

|
)

|xi+k − xi−1| <

(
|r[xi+1,...,xi+k+1]

[xi ,...,xi+k]
−1|

)
|xi+k+1 − xi| ,(5.5)

or picks U [xi,xi+1,xi+2, ...,xi+k+1] otherwise. In order to write the divided difference inter-
polating function in recursive form if equation (5.5) holds we define

λk+1 =
(

1− r
[xi−1,...,xi+k−1]
[xi,...,xi+k]

)
(5.6)

Alternatively if equation (5.5) does not hold let

λk+1 =
(

r
[xi+1,...,xi+k+1]
[xi,...,xi+k]

−1
)

.(5.7)

Using the notation of equations (5.6) and (5.7) the polynomial defined by equation (2.5), for
a set of points x0 < x1 < ... < xn may be rewritten as

UI(x) = U [x0]+ (x− x0)U [x0,x1](1+
(x− x1)
(x2 − x0)

(λ2 ×

(1+
(x− x2)
(x3 − x0)

λ3 (1+
(x− x3)
(x4 − x0)

λ4 × ....

×(1+
(x− xn−1)
(xn − x0)

λn)...),

(5.8)
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where the final set of dots indicate n− 3 right brackets. Providing that the values of r [...]
[...]

satisfy the restriction

0 ≤ r[...]
[...] ≤ 1(5.9)

then in the case of equation (5.7) it follows that

−1 ≤ λk ≤ 0(5.10)

and in the case of equation (5.6) it follows that

0 ≤ λk ≤ 1(5.11)

and that all the subsequent divided differences are bounded by early differences multiplied
by the values of λk.

5.1. Example. As an example consider the function

U(x) = xP,P > 0(5.12)

on the interval [0,1]. In this case as the function is monotone increasing it is straightforward
to calculate that

r[i,i+1]
[i−1,i] > 1(5.13)

but

r[i−1,i]
[i,i+1] < 1(5.14)

and similarly for other values of of r [...]
[...] . Hence in interpolating values on the interval [x i,xi+1]

the ENO interpolant will choose a stencil from points including and to the left of this interval,
i.e. [xi+1,xi,xi−1,xi−2,xi−3...].

5.2. Error for ENO Type Approximations. The use of ENO type approximations is
subject to standard polynomial error results namely that if a polynomial of degree N is used
then the error between the exact and interpolated polynomial satisfies, [20],

U(x)−UL(x) = (x− x0)(x− x1)...(x− xN)
U (N+1)(ξ )
(N + 1)!

(5.15)

where ξ ∈ [x0,xN ]. The different choices of points possible with ENO schemes lead to dif-
ferent forms of this expression as well as different bounds for U N+1(ξ ). In the case of the
example in Section 5.1 the ENO stencil may well lead to a smaller derivative bound than if
the stencil [xi,xi+1,xi+2,xi+3,xi+4...] is used.

6. Applying Limiters to Divided Differences. Although it will be possible to chose
the smallest divided differences at some point the ratios such as those defined by equation
(5.1) will be larger than one. In this case one possible step in reducing oscillations is to limit
the size of the divided difference terms by making use of limiting function denoted by Φ(r)
as defined, for example, by Φ(r) = r+|r|

1+max(1,|r|) which is the modified form of the van Leer
harmonic limiter used by Berzins and Ware [7]. The importance of the modified form of the
limiter is that for 0 ≤ r ≤ 1 the underlying function is not altered.
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This limiter function is applied to divided difference terms to define bounded divided
differences denoted by [....]B. The bounded differences are defined in terms of the original
differences by expressions such as:

U [xi−1,xi,xi+1]B =

(
Φ(r[i,i+1]

[i−1,i])−1
)

(xi+1 − xi−1)
U [xi−1,xi],(6.1)

which may be written as

U [xi−1,xi,xi+1]B =
S[i−i,i]

[i−1,i,i+1]

(xi+1 − xi−1)
U [xi−1,xi],(6.2)

where

S[i−1,i]
[i−1,i,i+1] =

(
Φ(r[i,i+1]

[i−1,i])−1
)

,(6.3)

and following the approach of Section 4

S[i−1,i]
[i−1,i,i+1] = 0 i f r[i,i+1]

[i−1,i] < 0.(6.4)

Furthermore

S[i,i+1]
[i−1,i,i+1] =

(
1−Φ(r[i−1,i−1]

[i,i+1] )
)

.(6.5)

and so from the definition of Φ(r) it follows that

S[i,i+1]
[i−1,i,i+1] = S[i−1,i]

[i−1,i,i+1](6.6)

and

U [xi−1,xi,xi+1]B =
S[i,i+1]

[i−1,i,i+1]

(xi+1 − xi−1)
U [xi,xi+1].(6.7)

The extensions to higher divided differences follow in a similar way. The bounded form of

the function Φ(r) makes it straightforward to bound the functions S [....]
[....] by

−1 ≤ S[....]
[...] ≤ 1.(6.8)

6.1. Additional Error in Limiting Differences. Consider the illustrative example of
second divided differences and define the error in these differences from limiting by

e[xi−1,xi,xi+1] = U [xi−1,xi,xi+1]−U [xi−1,xi,xi+1]B(6.9)

From equations (6.1) and (6.5) this may be written as

e[xi−1,xi,xi+1] =

(
r[i,i+1]
[i−1,i] −Φ(r[i,i+1]

[i−1,i])
)

(xi+1 − xi−1)
U [xi−1,xi],(6.10)

which is zero if 0 ≤ r[i,i+1]
[i−1,i] ≤ 1. In the alternative case

e[xi−1,xi,xi+1] =

(
r[i−1,i]
[i,i+1] −Φ(r[i−1,i]

[i,i+1])
)

(xi+1 − xi−1)
U [xi−1,xi],(6.11)

which again is zero if 0 ≤ r [i−1,i]
[i,i+1] ≤ 1. The extension of this idea to higher order differences

is straightforward. Once the limiter is applied to a difference term then it is clear in a formal
sense that it is not worth adding subsequent higher divided difference terms as the formal
order of accuracy will be dominated by the error introduced by the limiter in the lower term.
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6.2. Form of the Limited ENO Polynomial. The form of the polynomial in which the
points are chosen so that all successive ratios of derivatives lie between zero and one except
for the last n+1th term of the series which is then limited may now be written down. Before
doing this it is helpful to write down notation to describe the left and right edges of the stencil
of points in use as this considerably simplifies the description of the ENO polynomial.

An evenly spaced mesh is used as in equation (3.1) and the mesh points, x i, are defined
around a point x0 by adding or subtracting integer multiples of an even mesh spacing so that
the mesh points chosen by the ENO approach of Sections 3,4, and 5 at each stage are denoted
by xe

i as defined by

xe
i = x0 + eih, i ≥ 1(6.12)

for some integer ei and where e1 = 1. At the ith stage of the ENO process let the leftmost and
right most parts of the stencil in use obviously depend on the choice made with regard to x e

i
and may be defined as

xl
i = min(xe

i ,x
l
i−1), xl

0 = x0,(6.13)

xr
i = max(xe

i ,x
r
i−1), xr

0 = x0.(6.14)

At the ith stage of the ENO process let the leftmost and right most parts of the stencil in use
be defined by xl

i and xr
i . Using these definitions allows the limited form of the general ENO

polynomial, as defined by equation (5.8), to be written in the form:

UI(x) = U [x0]+ (x− x0)U [x0,x1](1+
(x− x1)
(xr

1 − xl
1)

λ2 ×

(1+
(x− xe

2)
(xr

2 − xl
2)

λ3 (1+
(x− xe

3)
(xr

3 − xl
3)

λ4 × ....

...(1+
(x− xe

N−1)
(xr

N−1 − xl
N−1)

S[ j,...,k]
[p,...,q]),

(6.15)

where the value of S [ j,...,k]
[p,...,q] is defined by the stencil being used, as in equations (6.3) to (6.5).

The particular values of p,q, j and k being defined as follows:

j = (xl
N−1 − x0)/h

k = (xr
N−1 − x0)/h

p = (xl
N − x0)/h

q = (xr
N − x0)/h

(6.16)

with respect to the mesh defined in equation (3.2) and where (x r
N − xl

N) defines the final
width of the stencil as described in Section 2. As with the simple example in Section 2, this
expression may be simplified by defining

s =
x− x0

x1 − x0
(6.17)
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and rewrite the polynomial series of equation (6.15) as

Ul(x) = U [x0]+ s[U(x1)−U(x0)](1+
(s−1)

2
λ2 ×

(1+
(s− e2)

3
λ3 (1+

(s− e3)
4

λ4 × ....

...1+
(s− eN−1)

N
(S[ j,...,k]

[p,...,q])).

(6.18)

or as

Ul(x) = U [x0]+ [U(x1)−U(x0)](s+ s
(s−1)

2!
λ̄2 +

s(s−1)(s− e2)
3!

λ̄3 +
s(s−1)(s− e2)(s− e3)

4!
λ̄4 + ....

...+
s(s−1)(s− e2)...(s− eN−1)

N!
λ̄N)

(6.19)

where

λ̄2 = λ2, λ̄3 = λ2 λ3, λ̄4 = λ2 λ3 λ4

and λ̄N = λ2 λ3...λN−1 S[ j,...,k]
[p,...,q].

(6.20)

This form of the polynomial makes it straightforward to define the form of the additional
error introduced by limiting as

λ̄ error
n−1 = λ2 λ3...λn−1

[
λn −S[ j,...,k]

[p,...,q]

]
.(6.21)

and then to write the error introduced by limiting as the difference between the polynomials
as

UL(x) = Ul(x)+ [U(x1)−U(x0)]
s(s−1)(s− e2)...(s− en−1)

n!
λ̄ error

n−1(6.22)

where U L(x) denotes the original form of the divided difference polynomial as defined by
equation (2.5). The overall error is given by combining this error with the error due to the
ENO form of the divided difference approximation as described in Section(5.2).

This form of the polynomial will be used to investigate the range of possible worst cases
in Section 8.

7. Computational Algorithm and Experiments. In this section the computational al-
gorithm employed is described as well as a number of experiments on Runge’s function and
a number of more or equally challenging examples. In the description of the algorithms the
label Chb will refer to the interpolant using the extended Chebyshev points defined by equa-
tion (2.15). The label PCH will refer to the Pchip algorithm [14] as implemented in Matlab.
The label Lim will refer to the new computational algorithm as given by by the four stage
process:

1. Form divided differences of order used (up to 511).
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2. Pick ENO Interpolants based on using the smallest divided difference possible.
3. For each interval ensure that the ratios are non-negative and if they are greater than

one then limit the divided differences. Once the limiter is applied then the polyno-
mial series is truncated.

4. Calculate the required values by evaluating the (usually) different polynomial order
on each interval.

This new algorithm is used with evenly spaced points to illustrate its properties in this case. It
is interesting to note that using the algorithm with a Chebyshev mesh spacing produced very
similar, but in no case superior, results on the test problems described below. The L 2 and L∞
norms are approximated by sampling at 2049 evenly spaced points, with the trapezoidal rule
being used to estimate the L2 norm as defined on the interval [a,b] by:

|| f ||2 =

√
1

b−a

∫ b

a
f 2(x)dx.(7.1)

The L∞ norm is defined as in equation (2.16).

7.1. Runge-type problems. The results are given for four test problems all defined on
[−1,1]. For each case, and purely to assess the effect of reducing the mesh spacing by one
half, polynomial interpolants using 15,31,63, 127, 255 and 511 points were created. These
points were chosen solely to reflect the effect of doubling the number of points.

7.1.1. Problem A. This is the problem used by de Boor, [11], to illustrate poor conver-
gence of polynomial interpolation. The function is defined by U(x) =

√|x|. The computa-
tional results in Table 7.1 show better accuracy for the new evenly spaced interpolant than for
the other two methods. Table 7.2 shows the order used varies between 1 (the minimum for
all problems and cases) and the stated maximum of 52. In every case the new interpolant is
data-bounded over each interval and also monotone.

7.1.2. Problem B. This is Runge’s function as defined by U(x) = 1/(1+ 25x 2). Table
7.1 shows that the best accuracy comes from the Chebyshev polynomial approximation. For
low numbers of points (≤ 30) better accuracy is obtained by the new evenly spaced interpolant
and PCHIP. The encouraging result is that the new method (despite using polynomials of
degree only as high as 12) is still converging when as many as 511 points are used. In every
case the new interpolant is data-bounded and also monotone over each interval.

7.1.3. Problem C. This is a modified form of Runge’s Function suggested as a chal-
lenging example by Karniadakis and Kirby [22] as given by U(x) = ε/(ε + 25x 2), where
ε = 10−15. The computational results in Table 7.1 show better accuracy for the new evenly
spaced interpolant than for the other two methods. Table 7.2 shows the order used varies
between 1 (the minimum for all problems and cases) and the stated maximum of 63. In every
case the new interpolant is data bounded over each interval and also monotone. The solution
to this problem and the various approximations in the region of the spike is shown in Figure
7.1.

7.1.4. Problem D. This example is used by Gelb and Tanner [15] in the context of
filtering type methods for Fourier series type approximations. The function has two distinct
parts and is given by U(x) = (2e(2π∗(x+1))−1−e(π))/(e(π)−1) for x <−0.5 and for x≥−0.5
it is given
by U(x) = −sin((2πx)/3.0 + π/3). The computational results in Table 7.1 show similar
levels of accuracy for the new evenly spaced interpolant and for PCHIP and that this acuracy
is a little better than that of the Chebyshev method. Table 7.2 shows the order used varies



Adaptive polynomial 15

TABLE 7.1
Accuracy Results for Problems A, B, C and D

Problem A Problem B Problem C Problem D
N Meth L2 L∞ L2 L∞ L2 L∞ L2 L∞

Chb 1.5e-3 1.9e-1 5.0e-4 4.7e-2 7.1e-3 1.0e-0 2.4e-3 9.0e-1
15 Lim 2.7e-4 5.7e-2 3.9e-4 6.0e-2 3.4e-3 9.8e-1 2.3e-1 9.5e-1

PCH 7.4e-4 1.4e-1 1.3e-4 1.7e-2 5.0e-3 1.0e-0 2.1e-3 8.9e-1
Chb 7.5e-4 1.3e-1 2.3e-5 2.1e-3 4.9e-3 1.0e-0 2.1e-1 9.5e-1

31 Lim 1.0e-4 3.4e-2 8.3e-5 1.9e-2 2.1e-3 9.5e-1 1.4e-3 8.1e-1
PCH 5.9e-4 9.6e-2 5.5e-5 5.4e-3 5.4e-3 1.0e-0 1.8e-3 6.4e-1
Chb 3.7e-4 9.3e-2 3.9e-8 3.7e-6 3.4e-3 1.0e-0 1.1e-3 5.2e-1

63 Lim 4.0e-5 2.2e-2 1.8e-5 4.4e-3 1.3e-3 8.8e-1 9.2e-4 7.2e-1
PCH 1.8e-4 6.6e-2 6.0e-6 1.8e-3 2.4e-3 9.8e-1 7.2e-4 5.5e-1
Chb 1.8e-4 6.5e-2 1.2e-13 1.1e-11 3.4e-3 9.8e-1 1.1e-3 8.4e-1

127 Lim 1.7e-5 1.4e-2 3.2e-6 1.2e-6 7.6e-4 7.5e-1 6.8e-4 6.4e-1
PCH 8.7e-5 4.6e-2 1.1e-6 4.6e-4 1.4e-3 9.3e-1 4.8e-4 4.6e-1
Chb 9.2e-4 4.6e-2 7.5e-19 2.2e-16 1.7e-3 9.8e-1 5.3e-4 4.7e-1

255 Lim 8.9e-6 9.3e-3 8.6e-7 2.4e-4 4.3e-4 5.3e-1 4.0e-4 5.7e-1
PCH 4.3e-5 3.2e-2 1.9e-7 1.1e-4 1.1e-3 7.6e-1 3.4e-4 4.7e-1
Chb 4.6e-5 3.2e-2 8.5e-19 2.2e-16 1.1e-3 9.5e-1 4.7e-4 6.7e-1

511 Lim 2.9e-6 4.0e-3 3.0e-7 7.2e-5 2.0e-4 2.9e-1 2.5e-4 4.0e-1
PCH 2.1e-5 1.2e-2 3.4e-8 2.8e-5 6.9e-4 3.0e-1 2.6e-4 4.9e-1

TABLE 7.2
Polynomial Points Used Per Interval For Problems A,B, C and D (minimum=2)

N Order Problem A Problem B Prob C Problem D
15 Average 5 4 5 2

Maximum 7 6 7 3
31 Average 9 5 9 3

Maximum 15 9 15 7
63 Average 17 6 17 4

Maximum 31 11 31 15
127 Average 15 6 20 4

Maximum 53 13 63 14
255 Average 13 6 14 4

Maximum 44 12 87 11
511 Average 10 6 10 4

Maximum 53 10 66 10

between 1 (the minimum for all problems and cases) and the stated maximum of 14. In every
case the new interpolant is data bounded over each interval and also monotone. The results
for N < 64 are competitive against the Gegenbauer approach of Gelb and Tanner [15] but
thereafter the Gegenbauer basis converges much more more rapidly, see Table 7.3. Part of
the reason for this is that there is a steep front in the solution which looks like a shock wave.
Figure 7.2 shows the limited even mesh polynomial and the original Chebyshev polynomial
with N = 31,127i and 511, and the errors. As pointed out by the author, [6], the order used by
the limited methods is constrained by the number of mesh points contained inside the steep
front. For this reason the limited polynomial still only uses a cubic polynomial and so has a
much larger error in that interval.

a: Command not found.

7.2. Monotone Interpolants. The method as described was tested on all the test prob-
lems described in the survey of Kocic and Milovanovic [23]. In all cases the new approach
produced monotone approximations to the data. The values used for Example 2.4 of [23] are
shown below in Table 7.3. The approximations produced by a standard polynomial approx-
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FIG. 7.1. Even Mesh: Modified Runge’s Function 10−15/(10−15 +25x2)

TABLE 7.3
Gelb and Tanner Results for Problem D

N 32 64 128 256 512
L∞ 6.0e-1 5.7e-1 1.3e-4 1.5e-6 2.2e-9

imation, by the new method and by the PCHIP method are shown in Figure 7.3. The figure
shows both the oscillations of the standard polynomial approximation and also how close the
new approach and PCHIP are visually.

8. Theoretical Properties. In this section the theoretical properties of the new limit-
ing approach will be considered by proving three theorems that will demonstrate the data-
bounded nature of the interpolant in two ”worst case” scenarios. These scenarios are derived
by noting that in the case of an evenly spaced mesh with mesh spacing h the values of the
functions π1,i(x) defined in Section 2 are at their largest for interpolation at x in the interval
[xi,xi+1] when a stencil based upon points as far away from x as possible is used as then the
absolute value of the multiplier (x− x j) is as large as is possible. This will be important in
Theorem 2 as it is the straight forward to establish the worst case bounding sum for the mag-
nitude of polynomials of a given degree when the ratios of divided differences are limited.
Theorem 1: The difference table corresponding to Harten’s method as described in Sections
3 and 4 is composed of successive levels of divided differences all having the same sign at
each level.
Proof: The highest order divided difference is, by definition, composed by subtracting two
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FIG. 7.2. Problem D Detail of Approximation and Error Distribution

TABLE 7.4
Values used for Example 2.4 Kocic and Milovanovic

x(i) 0 2 3 5 6 8 9 11 12 14 15
y(i) 10 10 10 10 10 10 10.5 15 50 60 85

differences each of which, as it was selected on the basis of the algorithm in Section 5, has
the same sign. Similarly each of these differences is in turn composed by the subtraction of
one difference from another. Again by construction using the algorithm in Section 5, each of
these pairs of differences must have the same sign. Both pairs must also have the same sign
as they have one difference in common. For example suppose

U [xi−1,xi, ...,xi+2] =
U [xi,xi+1,xi+2]−U [xi−1,xi,xi+1]

xi+2 − xi−1
,(8.1)

is calculated using values U [xi,xi+1,xi+2] and U [xi−1,xi,xi+1] which have the same sign. It
then follows that as

U [xi,xi+1,xi+2] =
U [xi+1,xi+2]−U [xi,xi+1]

xi+2 − xi
,(8.2)

the values U [xi,xi+1] and U [xi+1,xi+2] have the same sign. Similarly as

U [xi−1,xi,xi+1] =
U [xi,xi+1]−U [xi−1,xi]

xi+1 − xi−1
,(8.3)

the values U [xi,xi+1] and U [xi−1,xi] have the same sign. From this it follows that all the values
U [xi−1,xi], U [xi,xi+1] and U [xi+1,xi+2] must have the same sign and so the values U(xi−1),
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FIG. 7.3. Monotone Interpolation Problem 2.4 of [23]

U(xi),U(xi+1), U(xi+2) are either all non-increasing or non-decreasing. The argument ex-
tends recursively from higher differences down to lower ones. The polynomial interpolant is
thus locally weakly k monotone in the sense of Kopotun [24].

Theorem 2: The interpolating function constructed on an evenly spaced mesh using
steps (i), (ii), (iii) and (iv). in Section (7) is data bounded in that

Min(U(xi),U(xi+1)) ≤Ul(x) ≤ Max(U(xi),U(xi+1))(8.4)

Proof: The approach taken is to consider the worst possible cases within the constraints of
the algorithm. This means considering the divided difference series used to form U l(x) and
identifying the bounding cases for the polynomials defined by the algorithm in Section (7).
In the case of the evenly spaced mesh the polynomial is given by equation (6.18) and require-
ment for data boundedness is that

0 ≤ SN(s) ≤ 1(8.5)

where

SN(s) = s+ s
(s−1)

2
λ̄2 +

s(s−1)(s− e2)
3!

λ̄3 +
s(s−1)(s− e2)(s− e3)

4!
λ̄4

...+
s(s−1)(s− e2)...(s− eN−1)

N!
λ̄N(8.6)

where s is defined by equation (6.16). In a worst case analysis it follows that the values of
the terms in equation (8.6) must either all be positive and as large as possible, or every term
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except the first must be negative and as large as possible. From equation (6.12) it follows that
for an evenly spaced mesh that

ei > 1 or ei < −1.(8.7)

Assuming that the points selected by the ENO algorithm are as far away as possible from the
interval on which interpolation is taking place. Hence the points used to define the polynomial
are given by:

ei = i, or ei = −(i−1), i > 1.(8.8)

The justification for looking at these cases is that as

s(s−1)(s+ 1)...(s+(N−1))≤ s(s−1)(s− e2)...(s− eN−1)λ̄N−1 and

s(s−1)(s− e2)...(s− eN−1)λ̄N−1 ≤ (−1)N−1s(s−1)(s−2)...(s− (N−1))
(8.9)

then any terms in the series of the form of equation (8.6) are bounded above and below by the
terms in the two series consisting of the terms in the previous equation. The multiplicative

factor S[...]
[...] does not change this situation thanks to equation (6.8). In the same vein the values

of λk are ±1 e.g. see equations (5.10) and (5.11). With regard to the two cases of interest
mentioned above. In the first case the values of λ k are chosen so that all the terms in equation
(8.6) are positive and so that λ̄k = (−1)k+1 Then the stencil is purely composed of values
further right of the starting point and the limiting polynomial is given by

SN
R (s) = s− s(s−1)

2!
+

s(s−1)(s−2)
3!

− s(s−1)(s−2)(s−3)
4!

+ ...

+(−1)N+1 s(s−1)(s−2)(s−3)...(s− (N−1))
N!

(8.10)

where 0≤ s ≤ 1. The second worst case occurs when the stencil is purely composed of values
all to the left of the initial interval and that λk = 1. The limiting polynomial is then defined
by

SN
L (s) = s+

s(s−1)
2!

+
s(s−1)(s+ 1)

3!
+

s(s−1)(s+ 1)(s+ 2)
4!

+ ...

+
s(s−1)(s+ 1)(s+ 2)...(s+(N−2))

N!
(8.11)

where 0 ≤ s ≤ 1. Let s̄ = 1− s then the above equation may be rewritten by noting that:

(s+ j) = (−1)(s̄− ( j + 1))(8.12)

and that

s(s−1) = s̄(s̄−1)(8.13)

and then rewriting equation (8.11) in terms of s̄ to get:

SN
L (s) = 1− s̄+

s̄(s̄−1)
2!

− s̄(s̄−1)(s̄−2)
3!

+
s̄(s̄−1)(s̄−2)(s̄−3)

4!
− ...

+(−1)N+1 s̄(s̄−1)(s̄−2)(s̄−3)...(s̄− (N −1))
N!

(8.14)
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and hence that

SN
L (s) = 1−SN

R(s̄).(8.15)

The series form of SN
R (s) may be written as a truncated binomial expansion

SN
R (s) = 1−

N

∑
k=0

(
s
k

)
(−1)k.(8.16)

It is worth mentioning that similar expansions are used by [29]. As all the terms in S N
R (s) are

then positive it then follows that

SN
R (s) ≤ 1−

∞

∑
k=0

(
s
k

)
(−1)k.(8.17)

From Raabe’s test [12] the binomial expansion for zero given by

(1+(−1))s =
∞

∑
k=0

(
s
k

)
(−1)k(8.18)

is absolutely convergent, see Sokolnikoff [27] pp.303-304, as

lim
k → ∞

(
k

(
s
k

)
(−1)

(
s
k + 1

)−1

−1

)
= 1+ s, 0 ≤ s ≤ 1.

Hence, after treating the cases s = 1 and s = 0 separately it follows that

0 ≤ SN
L (s) ≤ SN(s) ≤ SN

R (s) ≤ 1(8.19)

and the limited polynomial expansion is data bounded. The bounding series S N
R (s) and SN

L (s)
are shown in Figure (8.1) for N = 1024. For larger values of N the graphs of S N

R (s) and SN
L (s)

steepen and move even closer to x = 0 and x = 1 respectively.
Theorem 3: The interpolating function constructed on an evenly spaced mesh using

steps (i), (ii), (iii) and (iv) in Section (7) is monotone in that

Ul(x)
dx

= (U(xi+1)−U(xi)) f (x)(8.20)

where f (x) ≥ 0 for x ∈ [xi,xi+1].
Proof: The approach taken is to consider the worst possible cases within the constraints of
the algorithm. This means considering the divided difference series used to form U l(x) and
identifying the bounding cases for the polynomials defined by the algorithm in Section (7).
In the case of the evenly spaced mesh the polynomial is given by equation (6.18) and require-
ment for monotonicity is that

dSN(s)
ds

≥ 0(8.21)

where SN(x) is defined by equation (8.6) and so

dSN(s)
ds

= 1+
(2s−1)

2
λ̄2 +

N

∑
i=2

[s(s−1)pi(s)+ (2s−1)]) qi(s)
λ̄i+1

i!

(8.22)
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FIG. 8.1. Upper and Lower Bounds for the Limited polynomials

and where

pi(s) =
i

∑
j=2

1
(s− e j)

and qi(s) =
i

∏
j=2

(s− e j).

From a worst case analysis it follows that the most negative values of dSN(s)
ds − 1 as defined

by the righthand side of equation (8.22) are given by the case when the values (s− e i) are all
positive and also that pi(s), qi(s) and λi are also positive and λi = 1. It immediately follows
from equation (8.11) that the function that is defined in this way is

SN(s) = SN
L (s)(8.23)

and from equation (8.15) that

SN(s) = 1−SN
R(s̄).(8.24)

Furthermore for values of 0 ≤ s ≤ 0.5 it follows that as all the terms in the summation on the
right side of equation (8.22) are negative apart from the first term then

dSN(s)
ds

≥ 1+
(2s−1)

2
λ̄2 +

∞

∑
i=2

[s(s−1)pi(s)+ (2s−1)]) qi(s)
λ̄i+1

i!
.

(8.25)

From equations (8.16) and (8.17) it follows that this equation may be written as

dSN(s)
ds

≥ d
ds

(1+ α)1−s,α = −1.

(8.26)
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The right side of this is non-negative as required.
In the case when 0.5 < s ≤ 1 then the most negative case is defined differently by

(λ̄i pi(s) qi(s)) > 0. (λ̄i qi(s)) < 0 and λ̄1 < 0. In this case from equation (8.10)

SN(s) = SN
R (s)(8.27)

and

dSN(s)
ds

≥ 1+
(2s−1)

2
λ̄2 +

∞

∑
i=2

[s(s−1)pi(s)+ (2s−1)]) qi(s)
λ̄i+1

i!
.

(8.28)

From equation (8.17) and (8.18) it follows that

dSN(s)
ds

≥− d
ds

(1+ α)s,α = −1.

(8.29)

The right side of this is non-negative as required.

9. Summary. In this paper a novel approach has been explored for preserving positiv-
ity for variable-order polynomial interpolation methods based on evenly spaced data points.
The approach relies on limiting the divided differences used and employing an adaptive ENO
stencil. There are clearly many possible extensions to this work such as the analysis of the
Chebyshev cases and non-uniform meshes.
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