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Abstract:

This paper outlines the basic steps in the design and implementation of an intensity based au-
tomated Transmission Electron Microscopy (TEM) image mosaicing application, and highlights
some of the implementation details, such as the tile matching, mosaic layout, and tile distortion
correction.



Implementation of an automati image registration toolPavel A. Koshevoy, Tolga Tasdizen, Ross T. WhitakerMay 2, 2006AbstratThis paper outlines the basi steps in the design and implementation of an intensity based automatedTransmission Eletron Mirosopy (TEM) image mosaiking appliation, and highlights some of theimplementation details, suh as the tile mathing, mosai layout, and tile distortion orretion.1 MotivationThe goal of this projet is to provide a fully automati tool for image registration and mosaiking of severalhundred high-resolution images. This tool is primarily aimed at researhers working with TransmissionEletron Mirosopy images. A mirosope rarely has a large enough �eld of view to over the area ofinterest to the sientist with reasonable detail. Therefore, the area of interest has to be imaged as a sequeneof tiles, following some overlapping tile pattern. The original area of interest is later reonstruted by layingout the image tiles into a mosai. One problem partiular to the mirosopy images arises from the fatthat the imaging proess introdues distortion into the images. Thus, even if the exat layout is known forthe image tiles, the tiles may not math perfetly in the overlap region. When the number of tiles is morethan just a few, the task of laying out the mosai quikly beomes daunting, and is a prime andidate forautomation.2 Problem statementGiven a large number of tiles spei�ed in no partiular order, a mosai must be onstruted and individualtiles must be orreted for distortion. This is the global problem that an be split up into slightly moremanageable sub-problems:
• Find pairs of mathing tiles.
• Build a rough estimate of the mosai without distortion orretion.
• Iteratively re�ne the mosai by un-warping and adjusting the position of eah tile simultaneously.3 Desription of the mathematis and algorithms3.1 Mathing pairs of tilesFinding mathing tiles amounts to �nding tiles with highest ross-orrelation. The method for �ndingmathing tiles implemented in this appliation is based on a tehnique desribed by Girod and Kuo[1℄. Thetehnique is very straight forward, but it has an important prerequisite - it requires that the width andheight of the two tiles must math. If that is not the ase, one or both of the tiles must be padded onthe bottom and on the right side with zeros until both of the tiles have mathing dimensions as follows:given unpadded tiles U0 and U1, padded tiles S0 and S1 are generated suh that width (S0) = width (S1) =

max (width (U0) , width (U1)) and height (S0) = height (S1) = max (height (U0) , height (U1)).Having satis�ed the prerequisite by padding the tiles, the tiles are transformed into the frequeny domainby Disrete Fourier Transform F0 = F {So} and F1 = F {S1}. The Disrete Fourier Transform funtionality1



is provided by the FFTW[4℄ library. One the tiles have been transformed, the ross-orrelation Φ10 between
S1 and S0 is alulated as

Φ10 = F1 × F ∗

0where F ∗

0 is the omplex onjugate of F0. The auto-orrelation terms Φ00 = F0 ×F ∗

0 and Φ11 = F1 ×F ∗

1 areused to enhane the ross-orrelation term as follows
P =

Φ10√
Φ00 × Φ11 + ǫwhere ǫ is a small number greater than zero added to avoid division by zero. The Girod and Kuo paperaddresses a slightly di�erent problem than the one targeted by our appliation. The tehnique desribedin the paper is intended for traking a moving objet. One of the di�ulties of the traking problem isthat the bakground behind the objet hanges. The mosaiking problem typially does not su�er from thisobstale. During early experimentation we attempted to use the auto-orrelation diretly as P = Φ10. Thiswas found to be unaeptable, therefore the urrent implementation of the mosaiking appliation followsexatly the tehnique desribed by Girod and Kuo. The omparison of the enhaned auto-orrelation andplain auto-orrelation an be seen in �gure 1.Figure 1: enhaned auto-orrelation vs. plain auto-orrelation

enhaned auto-orrelation plain auto-orrelationThe inverse Fourier transform of the ross-orrelation
PDF (x, y) = ℜ

(

F−1 {P}
)orresponds to the probability density funtion (PDF ) that tile S1 mathes with tile S0 displaed by vetor

[x y]T . We will refer to this funtion as the displaement PDF . Thus, in order to �nd the displaementvetor it is neessary to �nd the oordinates [xmax ymax]
T of the global maximum of this funtion.2



Finding the maximum of the displaement PDF is non-trivial. This is due to the fat that for mosteletron mirosopy images the PDF is usually very noisy. Also, the PDF of two mismathed images mayontain several maxima, or none at all. The tehnique desribed in the Girod and Kuo paper mentions asimple thresholding method used to suppress the negative and insigni�antly small values of the PDF . Themethod urrently implemented in the mosaiking appliation is similar, but has several important featuresthat are worth pointing out.Early experimentation with the PDF has shown that identifying the maxima beomes signi�antly easierafter blurring the PDF to remove the high-frequeny noise. The blurring is arried out in the Fourier domain,where it orresponds to a multipliation by a low-pass �lter
PDF (x, y) = ℜ

(

F−1 {P × Filter (r, s)}
)where r ∈

[

0,
√

2
] and s ∈ [0, r]. When s = 0 the �lter behaves exatly like the ideal low-pass �lter, passinguna�eted frequenies in the range [0, r] and attenuating ompletely frequenies in the range (r,∞). When

s > 0 the �lter passes frequenies in the range [0, r − s] ompletely una�eted, frequenies in the range
(r + s,∞) are ompletely attenuated, and frequenies in the range (r − s, r + s] are attenuated aording tothe funtion

attenuation (f) =
1 + cos

(

π
f−(r−s)

2s

)

2whih provides a smooth transition from zero attenuation at f = r− s to full attenuation at f = r + s. Thislow-pass �lter results in zero total power loss in the frequeny range [0, r], beause the attenuation inurredin range [r − s, r] is aneled out by the power leakage from range [r, r + s] due to aliasing.More experimentation has shown that blurring the tiles prior to alulating their orresponding PDFredues the number of false maxima in the PDF . The tiles are blurred in the Fourier domain as follows
F0 = F {S0} × Filter (r, s)

F1 = F {S1} × Filter (r, s)and the rest of the alulations are arried out as desribed above. The parameters r and s used for blurringthe tiles and the PDF an be tuned. In the urrent implementation the values r = 0.5 and s = 0.1 are usedfor the tiles, and r = 0.4 and s = 0.1 for the PDF .Having blurred the PDF , it is neessary to selet a good threshold value in order to isolate a set ofpixels orresponding to the global PDF maximum. We assume that the number of pixels belonging to themaximum is approximately 1% of the total number of PDF pixels, but it may not be less than 5 pixels orgreater than 64 pixels. The lower bound restrition is imposed in order to avoid thresholding values whereonly one maximum pixel is left. One pixel does not arry enough information about the rest of the strutureof the PDF . When 5 pixels are grouped together, it is fairly obvious that there is only one strong maximumin the PDF . If the pixels are sattered aross the PDF , it is likely the PDF does not have a strongmaximum. The lower bound on the number of pixels belonging to the PDF maximum is neessary in orderto deliver the information regarding the distribution of these pixels within the PDF . One or two pixels donot arry enough information. The upper bound on the number of pixels applies to larger images. If toomany pixels are alloated to the PDF maxima, the omputational burden involved in the lassi�ation ofthe lusters inreases. The upper limit of 64 pixels guarantees that no PDF ould ever ontain more than
64 maxima. Thus

pixelsmaxima = min

(

64, max

(

5,
area (PDF )

100

))where area (PDF ) orresponds to the total number of pixels in the PDF image.To �nd the threshold value that would provide this number of pixels, it is neessary to build a umulativehistogram of the PDF pixel values. The urrent implementation uses 1024 histogram bins. Although theimportane of this parameter has not been explored in the ontext of our appliation, we an assume thatmore bins will give us a more aurate estimate of the threshold value. The umulative histogram is searhedfor the bin ontaining at least
area (PDF ) − pixelsmaxima3



number of pixels. The minimum pixel value assoiated with that bin is the optimal threshold value that weneed.One the PDF is thresholded, a small fration of the pixels belonging to the maxima are isolated intoone or more lusters. Next, pixels are lassi�ed into lusters based on an 8-onneted neighborhood stenil.One all of the lusters have been identi�ed, the lusters that are broken up aross the PDF boundary aremerged together. This step is required beause the Disrete Fourier Transform assumes that the signal isperiodi; therefore, the PDF is also periodi. After all of the pixel lusters are identi�ed, the oordinatesof the PDF maxima are alulated as the enters of mass of the orresponding lusters. The value of eahmaximum is alulated as the total mass of the luster divided by the number of pixels in that luster.This proess results in a list of several maxima with varying oordinates and values. The list is sorted indesending order, so that the highest maximum is at the head of the list.Given a list of maxima points present in a partiular PDF , a simple heuristi is applied to deide whetherthe tiles that produed this PDF in fat math. Mathing tiles would ideally produe only one maximum.However, due to the inauray in the seletion of the thresholding value, it is very likely that there will beseveral maxima. This is also the ase when the tiles being mathed have undergone a distortion. Duringexperimentation an important observation was made that mismathing tiles produe a PDF with severalmaxima points at roughly the same value, while the PDF of two mathing tiles produes one maximumsigni�antly higher than the rest. This result suggests a very simple algorithm to deide whether the PDForresponds to two mathing tiles. The dissimilarity of the PDF maxima with respet to the best PDFmaximum is alulated as
dissimilarity =

maxbest (PDF )

maxi (PDF )
− 1The dissimilarity of two perfetly similar maxima is equal to 0. Whenever dissimilarity exeeds a giventhreshold the orresponding maximum is removed from the list. In urrent implementation, the dissimilaritythreshold is set to 1; thus, maxima whih are more than 2 times smaller than the highest maxima in thelist are disarded. If the list ontains only one maximum, we assume that the tiles math and proeed toalulate the orresponding displaement vetor. If there is more than one maximum left in the list after this�ltering, it is very likely that the tiles do not math, or one of the tiles is self-similar and may math the othertile in several plaes. Due to distortion, it is possible that no mathing tiles will be found with exatly onemaximum. In that ase the math with the fewest number of maxima is onsidered. Signi�antly radiallydistorted tiles typially have 2 to 4 valid maxima orresponding to small shifts from the true displaementvetor. The urrent implementation of the mosaiking appliation onsiders at most 3 maxima per math.In order to �nd the displaement vetor, it is not enough to simply �nd the maximum of the displaement

PDF . The oordinates [xmax ymax]
T are always positive, yet the displaement vetor may very well havenegative oordinates. As mentioned earlier, the Disrete Fourier Transform assumes that the signal isperiodi, therefore the ross-orrelation between the tiles orresponds to ross-orrelation of two perioditiles. One the oordinates of the maximum [xmax ymax]

T are known, there are four possible permutationsof the displaement vetor that ould produe the orresponding high ross-orrelation between the tiles.The permutations are
T00 =

[

xmax

ymax

]

T10 =

[

xmax − width (S0)
ymax

]

T01 =

[

xmax

ymax − height (S0)

]

T11 =

[

xmax − width (S0)
ymax − height (S0)

]The urrent implementation of the appliation hooses the best permutation based on the normalizedsquared image di�erenes metri. This metri is alulated as the sum of squared pixel di�erenes withinthe overlap region, divided by the area of the overlap region. The best permutation orresponds to thelowest metri value (the least mismath between the tiles). The metri is evaluated against unpadded tiles4



U0 and U1, yet the displaement permutations are based on the dimensions of the padded tiles S0 and S1,whih means that some of the permutations may not overlap the unpadded tiles at all. In onsequene,permutations an be disarded early based on the amount of overlap between the tiles. The amount ofoverlap is omputed as the ratio of the area of the overlap region to the area of the smaller of the two tiles.Thus, when one tile overlaps another entirely, the overlap is equal to 1. Displaement vetors resulting inless than 5% of overlap are disarded without further onsideration. This deision is based on the fat thattypial tiles will have 20% to 30% of overlap along the edges of the tile, and approximately 10% to 5% ofoverlap at the orners.3.2 Initial mosai layoutPrior to deduing the tile ordering it is neessary to �nd pairs of mathing tiles. The runtime omplexityof the urrent algorithm for �nding the mathing tiles is O
(

n2
). The performane of this algorithm may beimproved, but not without sari�ing some robustness in �nding the orret tile mathes and rejeting themismathes. Why this is the ase will beome more lear after the urrent algorithm is explained in greaterdetail.The algorithm tries to �nd the best possible mapping from the image spae of one tile into any othertile. This is aomplished by asading the mappings via intermediate tiles. For example, there may exista mapping U0 : U1 between tiles U0 and U1, and another mapping U1 : U4 between tiles U1 and U4. Amapping U0 : U1 : U4 between tiles U0 and U4 an be reated via the intermediate tile U1. The numberof intermediate steps in a mapping from one tile to another will be referred to as the asade length fromnow on. Given n tiles, there may be at most n − 2 intermediate steps in a mapping between any 2 tiles. Ofourse, this is only the upper bound on the asade length. There are no guarantees that a mapping with agiven asade length exists between any 2 tiles. However, the fat that there may be redundant mappingsbetween any 2 tiles presents a great opportunity to selet the best mapping possible.The algorithm proeeds as follows. First, pairs of mathing tiles are found. Finding just one math forevery tile is not enough, beause that does not provide any redundant mappings between the tiles. This isthe reason why the algorithm has O

(

n2
) run time omplexity. One way to speed up the algorithm is to limitthe number of redundant mappings to some �xed maximum number per tile. Allowing a maximum of just

2 mappings per tile may introdue enough redundany to orret for mismathes while also speeding up themathing proess.The mappings between the tiles are stored as onnetions in a graph of tiles. Eah mapping (onnetion)is weighed aording to the normalized squared image di�erenes metri mentioned earlier. Next, redundantmappings with asade length 1 to n − 2 are found. There may be more than one suh mapping, thereforeit is useful if the proess is explained with an example. Assume there exists a funtion
C (Ui : Uj) = costthat evaluates the ost of a mapping between tiles Ui and Uj . Given the following sample mappings

C (U0 : U1) = 278

C (U0 : U2) = 311

C (U1 : U4) = 160

C (U2 : U4) = 121

C (U0 : U4) = 3419it is most likely that the mapping U0 : U4 is mismathed. There are 2 possible alternative mapping from tile
U0 to U4. The ost is set to the maximum ost of the intermediate mapping osts. In the ontext of thisexample, this means that

C (U0 : U1 : U4) = max (C (U0 : U1) , C (U1 : U4)) = 278

C (U0 : U2 : U4) = max (C (U0 : U2) , C (U2 : U4)) = 311The mapping with the least ost (in this ase U0 : U1 : U4) is preferred even when it has greater asadelength. 5



In order to generate the mosai, it is neessary to selet the target tile into whih every other tile will bemapped. This is done by onsidering the total ost of the target tile andidates. The total ost is alulatedas the umulative ost of the mapping from the target tile to every other tile in the mosai. The andidatewith the lowest total ost beomes the target tile.3.3 Distortion orretionIn order to orret for distortion eah tile has to be un-warped. During the various stages of the developmentof this appliation, several transform types have been explored. The transform that is urrently used is abivariate ubi Legendre polynomial, de�ned as follows
x (u, v) = Xmax ×

N
∑

i=0

i
∑

j=0

aj,i−j × Pj

(

u − uc

Xmax

)

× Pi−j

(

v − vc

Ymax

)

y (u, v) = Ymax ×
N

∑

i=0

i
∑

j=0

bj,i−j × Pj

(

u − uc

Xmax

)

× Pi−j

(

v − vc

Ymax

)where [uc vc]
T is the enter of distortion. The transform is parameterized by oordinates uc vc, normalizationonstantsXmax and Ymax and polynomial oe�ients ai,i−j and bi,i−j . In order to simplify the omputationalburden, it is assumed that Xmax and Ymax orrespond to the half-width and half-height of the tile. Theloation of the enter of distortion [uc vc]

T is unknown, therefore it is assumed to be at the enter of the tile.The gross tile displaement [Tx Ty]
T estimated from the tile mathing is inorporated in [uc vc]

T as follows
uc =

width (Ui)

2
− Tx

vc =
height (Ui)

2
− TyThe polynomial oe�ients are found iteratively by the ITK[3℄ optimization framework. The standardITK image registration framework onsists of the following omponents

• Two images that must be mathed (�xed image and moving image).
• A metri that quanti�es the quality of the math between the images.
• A transform.
• An optimizer.This framework is not diretly appliable to simultaneous registration of more than 2 images, therefore analternative method had to be developed. Sine more than one tile may overlap the same pixel, the averageintensity variane within overlapping regions was hosen as the tile mismath metri, shown below

V =
1

A

W−1
∑

u=0

H−1
∑

v=0





1

N (u, v)

N(u,v)−1
∑

i=0

Pi (xi (u, v, ai;0,0, ...) , yi (u, v, bi;0,0, ...)) − µ (u, v)



where V is the average variane. A is the area (pixel ount) of the overlapping regions. W and H are thedimensions of the mosai. N (u, v) is the number of tiles overlapping a pixel at the given mosai oordinates
[u, v]T . xi (u, v, ai;0,0, ...) and yi (u, v, bi;0,0, ...) ompute the tile oordinates given mosai oordinates [u, v]Tand transform parameters ai;0,0, ..., bi;0,0, ... for tile Ui. Pi (x, y) is the intensity value for tile Ui at theomputed tile oordinates, and µ (u, v) is the mean intensity value at the spei�ed mosai oordinates

µ (u, v) =
1

N (u, v)

N(u,v)−1
∑

j=0

Pj (x (u, v, a0,0, ...) , y (u, v, b0,0, ...))6



Thus, a transform that maps from the mosai spae into the tile spae is omputed for eah image. Inorder to estimate the bounding box of the mosai, a transform from the tile spae to the mosai spae mustbe used. Sine the orresponding transform is unavailable, the inverse mapping is alulated numerially viathe Newton's method[2℄.Within the ITK image optimization framework, the optimizer manipulates the parameters of the trans-form for eah tile in order to minimize the average variane within the overlapping regions of the mosai.Currently, we use a modi�ed version of the itk::RegularStepGradientDesentOptimizer, where the relaxationriteria has been altered to be independent of the derivative diretion to rely solely on the funtion value.The original ITK implementation of itk::RegularStepGradientDesentOptimizer diverged near the minima ofthe metri funtion.The optimization proeeds in 2 stages. First, we assume that all of the tiles have been warped similarly,therefore optimize all transform parameters of (exept the �xed parameters uc, vc, Xmax, Ymax) of one tileand share the hanges with all other tile transforms. This ompensates for large sale radial distortionommon to all tiles. Next, we assume that the remaining variane in the mosai is due to unique distortionspresent in eah tile. Therefore, we restart the optimization with the shared parameters. This time weoptimize eah tiles transform without sharing the parameters with other tiles. This produes the uniquetransform parameters for eah tile.The variane minimization iterates until it onverges or exeeds the maximum number of iterations(spei�ed by the user). The resulting transform parameters de�ne the un-distortion transforms whih bestmath the neighboring tiles.4 Demonstration of the orretness of implementationThe tile mathing and tile ordering examples were omputed using an earlier version of the un-warpingtransform de�ned as follows
x (u, v) = uc + (u − uc) × S (u, v)

y (u, v) = vc + (v − vc) × S (u, v)

S (u, v) =

N−1
∑

n=0

kn ×
(

R (u, v)

Rmax

)2n

R (u, v) =

√

(u − uc)
2 + (v − vc)

2where [uc vc]
T is the enter of radial distortion. The transform is normalized by Rmax. Thus, the radialdistortion transform is parameterized by oordinates uc vc, normalization onstant Rmax and polynomialoe�ients k0...kN−1. In order to simplify the omputational burden, it is assumed that Rmax orrespondsto the maximum distane from the enter of distortion to the orners of the tile. The loation of the enterof distortion is unknown, therefore it is assumed to be at the enter of the tile. Additionally, the number ofpolynomial oe�ients is limited to N = 2. Thus, only k0 and k1 are needed to de�ne the transform.4.1 Tile mathingFigure 2 on the next page shows two mathing image tiles. These tiles have undergone a mild radial distortionwith parameters k0 = 0.95 and k1 = 0.05. The overlap area between these tiles is roughly 8%. Figure 3 showsthe displaement PDF orresponding to these two tiles, as well as the isolated pixel lusters orrespondingto the PDF maxima. There are a total of 19 maxima isolated in the PDF. Filtering the maxima leaves onlyone eligible maximum for onsideration, whih indiates that the tiles are well mathed.
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Figure 2: mathing tiles

tile 0 tile 4 mosai 0:4Figure 3: displaement PDF for mathing tiles

PDF 0:4 maxima lusters PDF maximaFigure 4 on the following page shows two mismathed tiles. Figure 5 shows the orresponding displae-ment PDF and PDF maxima. There are 30 maxima isolated in this PDF. After �ltering there are still 5maxima left. Ideally there would be only one maximum left, therefore this PDF indiates that the tiles donot math.
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Figure 4: mismathed tiles

tile 6 tile 8Figure 5: displaement PDF for mismathed tiles

PDF 6:8 maxima lusters PDF maxima4.2 Tile orderingFigure 6 on the next page illustrates the order in whih the tiles are added to the mosai. As an be seen, thealgorithm lays out the red tiles suh that they have signi�ant overlap with previous tiles (shown in blue).
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Figure 6: tile ordering

4.3 Distortion orretionTo verify the un-warping apabilities of the appliation a set of 9 arti�ially warped tiles was generated.Eah tile was warped by a radial distortion transform with parameters k0 = 0.95 ± 0.05 × drand() and
k1 = 0.05± 0.05× drand(). This ensures that eah tile has been uniquely warped. Figure 7 on the followingpage shows the result of displaement estimation for eah tile, as well as the variane within the overlappingregions of the mosai. 10



Figure 7: initial mosai

This �gure illustrates the tiling of the mosai and initial variane within the overlapping regions of themosai. Here, the maximum variane is 7750, and the mean variane is 144.The initial mosai is �rst un-warped using shared transform parameters aross all transforms. This ismeant to ompensate for any ommon global distortion present in all tiles. This stage of un-warping reduesthe average variane from 144 to 112, as illustrated in �gure 8 on the next page. The image on the bottomdemonstrates variane within the overlapping regions of the mosai.
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Figure 8: shared parameters optimization results

The result of shared transform parameters optimization. Here, the maximum variane is 4940, and the meanvariane is 112.Following the optimization using the shared transform parameters, the proess is repeated with uniquetransform parameters for eah tile. This stage of un-warping redues the average variane from 112 to 2.71,as illustrated in Figure 9 on the following page .
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Figure 9: unique parameters optimization results

The result of unique transform parameters optimization. Here, the maximum variane is 80.7, and the meanvariane is 2.71.5 ResultsFigure 10 on the next page shows 12 tiles of one mosai. These tiles were mathed to eah other resultingin initial mean variane of 100. Following the shared transform parameters optimization, the mean varianewas redued down to 52.8. The unique transform parameters optimization redued the mean variane downto 43. The remaining variane may be due to higher order distortion, or di�erenes in tile illuminationinherent in eah tile or ontributed by the Contrast Limited Adaptive Histogram Equalization (CLAHE)preproessing that was applied to eah tile. A lose up demonstration of the ahieved variane redutionan be seen in �gure 11 on page 15.
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Figure 10: sample eletron mirosopy tiles

These are the sample Transmission Eletron Mirosopy tiles from one slie of a rabbit retina tissue. Eahtile has been enhaned with Contrast Limited Adaptive Histogram Equalization (CLAHE) algorithm. Thetag at the lower left orner of eah tile disrupts the initial tile mathing in the frequeny domain, thereforea bottom portion of the image ontaining the tag has to be ropped out prior to transforming the image viaFFT. During variane minimization the tag is masked out, leaving the rest of the image in tat. The e�etof masking out the tag an be seen in the mosais shown in �gures 7, 8 and 9.
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Figure 11: variane redution

These images illustrate the variane redution due to tile un-warping within the overlap regions of the mosai.The images on the left are from the initial mosai prior to un-warping, while the images on the right arefrom the �nal mosai where eah tile has been un-warped with unique transform parameters.15
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