S4B

INSTITUTE

SOl INSTITUTE
TEGHNICAL REPORT

Using Provenance to Streamline Data Exploration
through Visualization

S.P. Callahan, J. Freire, E. Santos, C.E. Scheidegger, C.T. Silva, and H.T. Vo

UUSCI-2006-016

Scientific Computing and Imaging Institute
University of Utah
Salt Lake City, UT 84112 USA

April 5, 2006

Abstract:

Scientists are faced with increasingly larger volumes of data to analyze. To analyze and validate
various hypotheses, they need to create insightful visual representations of both observed data and
simulated processes. Often, insight comes from comparing multiple visualizations. But data explo-
ration through visualization requires scientists to assemble complex workflowspipelines consisting of
sequences of operations that transform the data into appropriate visual representationsand today,
this process contains many error-prone and time-consuming tasks.

We show how a new action-based model for capturing and maintaining detailed provenance of the
visualization process can be used to streamline the data exploration process and reduce the time
to insight. This model enables the flexible re-use of workflows, a scalable mechanism for creating
a large number of visualizations, and collaboration in a distributed setting. A novel feature of this
model is that it uniformly captures provenance information for both visualization data products
and workflows used to generate these products. By also tracking the evolution of workflows, it
not only ensures reproducibility, but also allows scientists to easily navigate through the space of
workflows and parameter settings used in a given exploration task. We describe the implementation
of this data exploration infrastructure in the VisTrails system, and present two case studies which
show how it greatly simplifies the scientific discovery process.

THEU

UNIVERSITY
OFUTAH

Using Provenance to Streamline
Data Exploration through Visualization

Steven P. Callahan
Carlos E. Scheidegger

Juliana Freire Emanuele Santos
Claudio T. Silva Huy T. Vo

SCI Institute and School of Computing — University of Utah

ABSTRACT

Scientists are faced with increasingly larger volumes of data to an-
alyze. To analyze and validate various hypotheses, they need to
create insightful visual representations of both observed data and
simulated processes. Often, insight comes from comparing multi-
ple visualizations. But data exploration through visualization re-
quires scientists to assemble complex workflows—pipelines con-
sisting of sequences of operations that transform the data into ap-
propriate visual representations—and today, this process contains
many error-prone and time-consuming tasks.

We show how a new action-based model for capturing and main-
taining detailed provenance of the visualization process can be used
to streamline the data exploration process and reduce the time to in-
sight. This model enables the flexible re-use of workflows, a scal-
able mechanism for creating a large number of visualizations, and
collaboration in a distributed setting. A novel feature of this model
is that it uniformly captures provenance information for both visu-
alization data products and workflows used to generate these prod-
ucts. By also tracking the evolution of workflows, it not only en-
sures reproducibility, but also allows scientists to easily navigate
through the space of workflows and parameter settings used in a
given exploration task. We describe the implementation of this data
exploration infrastructure in the VisTrails system, and present two
case studies which show how it greatly simplifies the scientific dis-
COVery process.

1. INTRODUCTION

Computing is an enormous accelerator to science and it has led to
an information explosion in many different fields. Future advances
in science depend on the ability to comprehend these vast amounts
of data being produced and acquired. Visualization is a key en-
abling technology in this endeavor [15]—it helps people explore
and explain data through software systems that provide a static or
interactive visual representation. A basic premise of visualization
is that visual information can be processed at a much higher rate
than raw numbers and text.

Despite the promise that visualization can serve as an effective
enabler of advances in other disciplines, the application of visu-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

alization technology is non-trivial. The design of effective visual-
izations is a complex process that requires deep understanding of
existing techniques, and how they relate to human cognition. Al-
though there have been enormous advances in the area, the use of
advanced visualization techniques is still limited. A key barrier
to the effective use of visualization is the lack of appropriate data
management techniques needed for scalable data exploration and
hypothesis testing. In this paper, we propose a novel infrastruc-
ture whose goal is to simplify and streamline the process of data
exploration through visualization.

Data Exploration Through Visualization. To successfully ana-
lyze and validate various hypotheses, it is necessary to pose sev-
eral queries, correlate disparate data, and create insightful visual-
izations of both the simulated processes and observed phenomena.
However, data exploration through visualization requires scientists
to go through several steps. As illustrated in Figure 1, they need
to assemble and execute complex workflows that consist of data
set selection, specification of series of operations that need to be
applied to the data, and the creation of appropriate visual represen-
tations, before they can finally view and analyze the results. Often,
insight comes from comparing the results of multiple visualizations
created during the exploration process. For example, by applying
a given visualization process to multiple datasets generated in dif-
ferent simulations; by varying the values of certain visualization
parameters; or by applying different variations of a given process
(e.g., which use different visualization algorithms) to a dataset. Un-
fortunately, today this exploratory process contains many manual,
error-prone, and time-consuming tasks. As a result, scientists spend
much of their time managing the data rather than using their time
effectively for scientific investigation and discovery.

Because this process is complex, and requires deep understand-
ing of both visualization techniques and a particular scientific do-
main, it requires close collaboration among domain scientists and
visualization experts [15]. Thus, adequate support for collaboration
is key to fully explore the benefits of visualization.

Visualization Systems: The State of the Art. Visualization sys-
tems such as Paraview [16] and SCIRun [24] allow the interactive
creation and manipulation of complex visualizations. These sys-
tems are based on the notion of dataflows [19], and they provide vi-
sual interfaces to produce visualizations by assembling pipelines’
out of modules connected in a network. Although these systems
allow the creation of complex visualizations, they have important
limitations which hamper their ability to support the data explo-
ration process at a large scale. In particular, they lack scalable
mechanisms for the exploration of parameter spaces. In addition,

In the remainder of this paper, we use the terms pipeline and
dataflow interchangeably.

. - Perception &
Data ‘{Vlsuallzatlon} Image ——'[Cognition j‘ Knowledge
Specification <—

Data Visualization User

Figure 1: The visualization discovery process. Scientists first select
the data to visualize, and then specify the algorithms and visualiza-
tion techniques to visualize the data. This specification is adjusted in
an interactive process, as the scientist generates, explores and evaluate
hypotheses about the information under study. This figure is adapted
from [15,36].

whereas they manage and simplify the process of creating visual-
izations, they lack infrastructure to manage the data involved in the
process—input data, metadata, and derived data products. Conse-
quently, they do not provide adequate support for the creation and
exploration of a large number of visualizations—a key requirement
in the exploration of scientific data. Last, but not least, they provide
no support for collaborative creation and manipulation of visualiza-
tions.

Many of these limitations stem from the fact that these systems
do not distinguish between the definition of a dataflow and its in-
stances. In order to execute a given dataflow with different parame-
ters (e.g., different input files), users need to manually set these pa-
rameters through a GUI. Clearly, this process does not scale to more
than a few visualizations. Additionally, modifications to param-
eters or to the definition of a dataflow are destructive—no change
history is maintained. This places the burden on the scientist to first
construct the visualization and then to remember the input data sets,
parameter values, and the exact dataflow configuration that led to a
particular image. Finally, they do not exploit optimization oppor-
tunities during pipeline execution. For example, SCIRun not only
materializes all intermediate results, but it may also repeatedly re-
compute the same results over and over again if so defined in the
visualization pipeline. As a result, the creation, maintenance, and
exploration of visualization data products are major bottlenecks in
the scientific process, limiting the scientists’ ability to fully exploit
their data.

The VisTrails System. In VisTrails [3, 6, 7], we address the prob-
lem of visualization from a data management perspective: VisTrails
manages both the visualization process and the metadata associated
with visualization products. It provides infrastructure that enables
interactive multiple-view visualizations by simplifying the creation
and maintenance of visualization pipelines, and by optimizing their
execution.

In a nutshell, VisTrails consists of a scientific workflow middle-
ware which can be combined with existing visualization systems
and libraries (e.g., SCIRun [24] and Kitware’s VTK [17,28]). A key
component of VisTrails is a parameterized dataflow specification—
a formal specification of a pipeline. Unlike existing dataflow-based
visualization systems, in VisTrails there is a clear separation be-
tween the specification of a pipeline and its execution instances.
This separation enables powerful scripting capabilities and pro-
vides a scalable mechanism for generating a large number of vi-
sualizations. A pipeline definition can be used as a template, and
instantiated with different sets of parameters to generate several
visualizations in a scalable fashion. In addition, by representing

the pipeline specification in a structured way (using XML [37]),
the system allows the visualization provenance to be queried and
mined.

VisTrails also leverages the dataflow specification to identify and
avoid redundant operations in a transparent fashion. This optimiza-
tion is especially useful while exploring multiple visualizations.
When variations of the same pipeline need to be executed, sub-
stantial speedups can be obtained by caching the results of over-
lapping subsequences of the pipelines. The high-level architecture
of VisTrails, its caching mechanism, and its support for multi-view
visualizations are described in [3].

Action-Based Provenance and Data Exploration. In this paper
we describe a new action-based provenance model we designed
for VisTrails. Unlike visualization systems [16, 24] and scientific
workflow systems [1,23,33,34], VisTrails captures detailed prove-
nance of the exploratory process. It unobtrusively records all user
interactions with the system. And because the unit of provenance is
a user action, this model uniformly captures changes to parameter
values and to workflow definitions. The stored provenance ensures
reproducibility of the visualizations, and it also allows scientists to
easily navigate through the space of dataflows created for a given
exploration task. In particular, giving them the ability to return to
previous versions of a dataflow and/or different parameter settings
and comparatively visualize their results. We also describe how the
action-based model can be used to streamline the data exploration
process and reduce the time to insight by enabling the flexible re-
use of workflows, a scalable mechanism for creating a large number
of visualizations, and collaboration in a distributed setting.

Outline and Contributions. This paper provides the first detailed
description of the VisTrails provenance and data exploration infras-
tructure. In Section 2, we use real application scenarios to illustrate
the complexities involved in exploring data through visualization
and how they greatly hinder the scientific discovery process. A
brief overview of VisTrails is given in Section 3. In Section 4 we
present our action-based provenance mechanism, and in the two
sections following that, we show how useful data exploration op-
erations can be implemented within this framework. In Section 5
we describe general mechanisms for enabling pipeline re-use, and
scalable and simplified generation of visualizations. A scheme that
enables VisTrails to be used as a collaborative platform for data ex-
ploration is presented in Section 6. We discuss in Section 7 how
the VisTrails data exploration infrastructure positively impacts and
simplifies the visualization tasks in two application domains: envi-
ronmental sciences and radiation oncology treatment planning.

2. MOTIVATING EXAMPLES

Below, we describe two applications that motivated us to develop
VisTrails. The examples illustrate some of the problems faced by
our collaborators in exploring data through visualization. Although
the scenarios described are in the areas of Environmental Sciences
and Medical Diagnosis and Treatment Planning, these problems are
common in many other domains of science.

2.1 Using Visualization to Understand the
Columbia River

Understanding ecosystems by modeling environmental processes
is an important area of research that brings many benefits to science
and society [2]. Paradigms for modeling and visualization of com-
plex ecosystems are changing quickly, creating enormous oppor-
tunities for those studying them. Environmental Observation and
Forecasting Systems (EOFS) integrate real-time sensor networks,
data management systems, and advanced numerical models to pro-

Salinity

60.0

Time Step 1 Time Step 60

Figure 2: An example of a visualization of forecasts in the Lower
Columbia River for different time steps.

vide objective insights about the environment in a timely manner.
However, due to the volume of measured and forecast data, EOFS
modelers are given the overwhelming task of managing a large
number of visualizations.

As an example, the CORIE2 project was established to study
the spatial and temporal variability of the Lower Columbia River.
Figure 2 shows an example of the results of multiple visualization
techniques applied to a time steps of a forecast generated by the
CORIE project.

Under the direction of Professor Anténio Baptista, the CORIE
project involves many staff members from diverse backgrounds in-
cluding oceanography, database management, and computational
science. The project produces and publishes thousands visualiza-
tions on a daily basis. Currently, the process of generating a visual-
ization product is performed by a member of the staff by running a
series of custom scripts and VTK [28] pipelines generated for pre-
vious forecasts. For example, to produce a composite visualization
for a presentation, multiple staff members are needed to generate
new scripts or modifying existing ones until suitable visualizations
are found. This process is often repeated for similar and com-
plementary simulation runs. The resulting visualizations are then
composited into a single image using copy and paste functionality
within PowerPoint. Usually, the figure caption and legends are the
only metadata available for the composite vizualization—making it
hard, and sometimes impossible, to reproduce the visualization.

The process followed by Baptista’s staff is both time consuming
and error prone. The process of creating and maintaining these
scripts is done completely manually since there is no infrastructure
for managing the scripts and associated data. Often, finding and
running the scripts are tasks that can only be performed by their
creators. Even for their creators, managing the scripts and data in
an ad-hoc manner can be difficult because the data provenance and
relationships among different scripts are not captured in a persistent
way.

2.2 Using Visualization for Radiation
Oncology Treatment Planning

Visualization has been used by physicians for many years to pro-
vide diagnosis as well as treatment planning in patients. The advent
of medical imaging devices such as Magnetic Resonance Imaging
(MRI) scanners have enabled doctors to distinguish pathologic tis-
sue (such as a tumor) from normal tissue. Typically, a clinician nav-
igates through a series of 2D slices to find problematic areas. Many
of the state-of-the-art visualization techniques that have been devel-
oped to visualize and explore the data in 3D have not been approved
for clinical use. However, some research radiologists are using the

Zhttp://www.ccalmr.ogi.edu/CORIE

Figure 3: An example of visualization of radiation oncology in a
breathing cycle of a lung. The visualizations focus on normal tissue
(left) and pathological tissue (right).

advanced techniques to quickly explore the data and assist in the
location of tumors using clinically approved methods [21,25].

Dr. George Chen is the director of the Radiation Physics Divi-
sion of the Department of Radiation Oncology at the Massachusetts
General Hospital. Radiation oncologists in his division have been
using advanced visualization techniques on MRI data to locate tu-
mors within the body in preparation for radiation therapy treat-
ments. Because the results of the MRI are different for every pa-
tient, the process of creating a suitable visualization cannot be uni-
formly applied to every MRI data set. Instead, an iterative routine
is performed between the doctor and a visualization specialist un-
til a suitable visualization is found. First, the data is given to the
visualization specialist, an initial dataflow is created, and multi-
ple images are generated with varying parameters (i.e., focusing
on specific tissue or bone and using different time steps). In al-
most every case, this initial set of visualizations is not acceptable
to the clinicians and oncologists receiving them. After receiving
feedback from the the doctors, the visualization specialist adjusts
parameters and changes the dataflow to increase the quality of the
visualization and presents the results to the clinicians for review.
This process continues until a final dataflow is established. Due
to the high sensitivity of the process, very accurate and detailed
records of the data manipulation are required. This documentation
process produces hundreds of saved files and many detailed pages
of handwritten notes. Figure 3 shows an example of a time step
of an animation showing both pathological and normal tissue in a
lung breathing cycle.

Visualization tools such as SCIRun [24] and Paraview [16] pro-
vide an interface to create visualization pipelines such as those used
for visualizing radiation oncology, but fail to capture the process of
creating a visualization. Thus, vast amounts of data are manually
managed (through file saves and handwritten notes) to record the
changes that take place from one visualization to another.

3. VISTRAILS: OVERVIEW

As illustrated in the examples above, our motivation for develop-
ing VisTrails came from the realization that visualization systems
lack adequate support for large-scale data exploration. VisTrails is
a visualization management system that manages both the process
and metadata associated with visualizations. With VisTrails, we
aim to give scientists a dramatically improved and simplified pro-
cess to analyze and visualize large ensembles of simulations and
observed phenomena.

3.1 System Architecture

The high-level architecture of the system is shown in Figure 4.

Users create and edit dataflows using the Vistrail Builder user in-
terface. The dataflow specifications are saved in the Vistrail Repos-
itory. Users may also interact with saved dataflows by invoking
them through the Vistrail Server (e.g., through a Web-based in-
terface) or by importing them into the Visualization Spreadsheet.
Each cell in the spreadsheet represents a view that corresponds to a
dataflow instance; users can modify the parameters of a dataflow as
well as synchronize parameters across different cells. Dataflow ex-
ecution is controlled by the Vistrail Cache Manager, which keeps
track of invoked operations and their respective parameters. Only
new combinations of operations and parameters are requested from
the Vistrail Player, which executes the operations by invoking the
appropriate functions from the Visualization and Script APIs. The
Player also interacts with the Optimizer module, which analyzes
and optimizes the dataflow specifications. A log of dataflow exe-
cutions is kept in the Vistrail Log. The different components of the
system are briefly described in below. A more detailed description
of an earlier version of our system is given in [3].

Dataflow Specifications. A key feature that distinguishes Vis-
Trails from previous visualization systems is that it separates the
notion of a dataflow specification from its instances. A dataflow
instance consists of a sequence of operations used to generate a
visualization. This information serves both as a log of the steps
followed to generate a visualization—a record of the visualization
provenance—and as a recipe to automatically re-generate the vi-
sualization at a later time. The steps can be replayed exactly as
they were first executed, and they can also be used as templates—
they can be parameterized. For example, the visualization spread-
sheet in Figure 5(b) illustrates a multi-view visualization of a sin-
gle dataflow specification varying the time step parameter. Oper-
ations in a vistrail dataflow include visualization operations (e.g.,
VTK calls); application-specific steps (e.g., invoking a simulation
script); and general file manipulation functions (e.g., transferring
files between servers). To handle the variability in the structure
of different kinds of operations, and to easily support the addition
of new operations, we defined a flexible XML schema [5] to repre-
sent the dataflows. The schema captures all information required to
re-execute a given dataflow. The schema stores information about
individual modules in the dataflow (e.g., the function executed by
the module, input and output parameters) and their connections—
how outputs of a given module are connected to the input ports
of another module. The XML representation for vistrail dataflows
allows the reuse of standard XML tools and technologies. An im-
portant benefit of using an open, self-describing specification is the
ability to share (and publish) dataflows. This allows a scientist to
publish an image along with its associated dataflow so that others
can easily reproduce the results.

Another benefit of using XML is that the dataflow specifica-
tion can be queried using standard XML query languages such as
XPath [38] and XQuery [4]. For example, an XQuery query could
be posed by Professor Baptista to find a dataflow that provides a
3D visualization of the salinity at the Columbia River estuary (as
in Figure 5) from a database of published dataflows. Once the
dataflow is found, he could then apply the same dataflow to more
current simulation results, or modify the dataflow to test an alterna-
tive hypothesis. With VisTrails, he has the ability to steer his own
simulations.

Caching, Analysis and Optimization. Having a high-level speci-
fication allows the system to analyze and optimize dataflows. Exe-
cuting a dataflow can take a long time, especially if large data sets
and complex visualization operations are used. It is thus important
to be able to analyze the specification and identify optimization op-

Vistrail
Builder

Visualization
Spreadsheet

Vistrail
Server

Cache
Manager

Vistrail
Repositor

Vistrail
Log

Visualization Scripts
API API

Figure 4: VisTrails Architecture.

portunities. Possible optimizations include, for example, factoring
out common subexpressions that produce the same value; removing
no-ops; identifying steps that can be executed in parallel; and iden-
tifying intermediate results that should be cached to minimize ex-
ecution time. Although most of these optimization techniques are
widely used in other areas, they have yet to be applied in dataflow-
based visualization systems.

In our current VisTrails prototype, we have implemented memo-
ization (caching). VisTrails leverages the dataflow specification to
identify and avoid redundant operations. The algorithms and im-
plementation of the Vistrail Cache Manager (VCM) are described
in [3]. Caching is especially useful while exploring multiple visu-
alizations. When variations of the same dataflow need to be exe-
cuted, substantial speedups can be obtained by caching the results
of overlapping subsequences of the dataflows.

Playing a Dataflow. The Vistrail Player (VP) receives as input an
XML file for a dataflow instance and executes it using the under-
lying Visualization or Script APIs. The semantics of each partic-
ular execution are defined by the underlying API. Currently, the
VP supports VTK classes and external scripts. It is a very simple
interpreter. For the more complex case of VTK, the VP directly
translates the dataflow modules into VTK classes and sets their
connections. Then, it sets the correct parameters for the modules
according to the parameter values in the dataflow instance. Finally,
the resulting network is executed by calling update methods on the
sink nodes. The VP needs the ability to create and execute arbi-
trary VTK modules from a dataflow. This requires mapping VTK
descriptions, such as class and method names, to the appropriate
module elements in the dataflow schema. The wrapping mech-
anism is library-specific, and in our first version [3], we exploited
VTK automatic wrapping mechanism to generate all required bind-
ings directly from the VTK library headers. Our new implementa-
tion uses Python to further simplify the process of wrapping exter-
nal libraries, and to enable easy extensions to the system.

Note that the VP is unaware of caching. To accommodate caching
in the player, we use a class that behaves essentially like a proxy.
To the rest of the dataflow, it looks perfectly like a filter, but instead
of performing any computations, it simply looks up the result in
the cache. The VCM is responsible for replacing a complex sub-
network that has been previously executed with an appropriate in-
stance of the caching class. After the (partial) dataflow is executed,
its outputs are stored in new cache entries.

Information pertinent to the execution of a particular dataflow
instance is kept in the Vistrail Log (see Figure 4). There are many
benefits from keeping this information, including: the ability to de-
bug the application—e.g., it is possible to check the results of a
dataflow using simulation data against sensor data; reduced cost of
failures—if a visualization process fails, it can be restarted from the

@ VisTraits - Vistrail Builder

BE[X]

(BEX]

@ VisTraits Spreadsheet

Fie vew teb

Fie ol

Send o Spreadsheet

][

Buk

coie_jsasmi- noname

Visualzation Name: Time Step 1

Search

| VK Classes | Modde Methods | Paremetrs Esplrstion

Signature

Methad

veidoat)

. i)
it
)
)

E
vtkLookupTable

vtkContourFilter VikTextProperty _

=
vtkDataSetMapper
oo
rl

i)

)

vikElcircUnstructuredGridReader
!

VikTextProperty
FrrrD
vtkScalarBarActor [

i)

CBEEERARRRRARARR

Charge

2 & &

Salinity
60.0

Salinity
60.0

sosurace: 7.0

Updste I Updste and Send

|

Ews]
vtkTextActor
=

n
g

[EENEEEL e
vtkRenderer
e
VikRendertindow |

Isosurtace: 140 sosurace:21.0

Sheet1 A Shest2]

(a)

(b)

Figure 5: The Vistrail Builder (a) and Vistrail Spreadsheet (b) showing the dataflow and visualization products of the CORIE data.

failure point. The latter is especially useful for long running pro-
cesses, as it may be very expensive and time-consuming to execute
the whole process from scratch. Logging all the information asso-
ciated with all dataflows may not be feasible. VisTrails provides
an interface that lets users select which and how much information
should be saved.

Creating and Interacting with Vistrails. The Vistrail Builder
(VB) allows users to create and edit dataflows (see Figure 5(a)).
It writes (and also reads) dataflows in the same XML format as the
other components of the system. It shares the familiar nodes-and-
connections paradigm with dataflow systems. In order to automati-
cally generate the visual representation of the modules, it reads the
same data structure generated by the VP VTK wrapping process
(see Playing a Vistrail above). Like the VP, the VB requires no
change to support additional types of modules. The VB uses QT
and OpenGL* to display the dataflow of a visualization as well as
the history of changes to the dataflow.

The VisTrails Visualization Spreadsheet (VS) allows users com-
pare the results of multiple dataflows. The VS consists of a set of
separate visualization windows arranged in a tabular view. This
layout makes efficient use of screen space, and the row/column
groupings can conceptually help the user explore the visualization
parameter space [8, 9] (see Section 5.2). The cells in a spreadsheet
may execute different dataflows and they may also use different
parameters for the same dataflow specification (see Figure 5). To
ensure efficient execution, all cells share the same cache. Note that
cells in a spreadsheet can be synchronized in many different ways.
For example, in Figure 8, cells are synchronized with respect to the
camera viewpoint—if one cell is rotated, the same rotation is ap-
plied to the other synchronized cell. This figure also illustrates the
usefulness of the spreadsheet to explore the parameter space of an
application. In this case, it allows different visualizations of MRI
data of a lung to be compared: different isosurface values are used
in the horizontal axis, and different opacity values are used in the
vertical axis.

3http://www.trolltech.com
“http://www.opengl.org

4. ACTION-BASED PROVENANCE

The first version of VisTrails only tracked provenance of visu-
alization products [3]: for a given visualization, it stored the steps
and parameters that led to the visualization. To explore data, scien-
tists create many related visualizations that must be compared, so
that they can understand complex phenomena, calibrate simulation
parameters or debug applications. While working on a particular
problem, scientists often create several variations of a workflow
through trial and error, and these workflows may differ in both pa-
rameter values and the actual workflow specifications.

To provide full provenance of the visualization exploration pro-
cess, we introduce the notion of a visualization trail, a vistrail. A
vistrail captures the evolution of a dataflow—all steps followed to
construct a set of visualizations. It represents several versions of
a dataflow (which differ in their specifications), their relationships,
and their instances (which differ in the parameters used in each par-
ticular execution).

VisTrails uses an action-based model to capture provenance. As
the scientist makes modifications to a particular dataflow, the prove-
nance mechanism records those changes. Instead of storing a set of
related dataflows, we store the operations or actions that are applied
to the dataflows. Besides being simple and compact, the action-
based representation enables the construction of a user interface
that shows the history of the dataflow through these changes, as
can be seen in Figure 6. A tree-based view allows a scientist to
return to a previous version in an intuitive way. The scientist can
undo bad changes, make comparisons between datasets or parame-
ter settings, and be reminded of the actions that led to a particular
result. This, combined with a caching strategy that eliminates re-
dundant computations, allows the scientist to efficiently explore a
large number of related visualizations.

Although the issue of provenance in data management systems
and in particular, for scientific workflows, has received substantial
attention recently, most works focus on data provenance only, i.e.,
maintaining information of how a given data product was gener-
ated [23,26,31]. VisTrails is the first system to provide a mecha-
nism that uniformly captures provenance information for both the
data and the processes that derive the data. As we discuss below,
the action-based representation of provenance has several benefits:
it enables the creation of intuitive mechanisms for dataflow re-use

<action parent="54" time="55" what="addModule™>
<object cache="0" id="8" name="vtkTextActor"/>
</action>

<action parent="55" time="56" what="addConnection”>
<connect id="
<objectinput destld="6" name="AddActor2D”
sourceld="5"/>
</connect>
</action>

<tag name="With Text" time="56"/>

<action parent="105" time="111"
what="changeParameter">
<set function="SetTimeStep" functionld="1" moduleld="0"
"(unnamed)" p 1d="0" type="int"

value="90"/>
</action>

N A .
Time Step 30 Time Step 60 Time Step 90

Figure 6: A snapshot of the VisTrails history management interface. Each node in the vistrail history tree represents a dataflow version. An edge
between a parent and child nodes represents to a set of actions applied to the parent to obtain the dataflow for the child node.

and parameter-space exploration (Section 5), and distributed col-
laboration (Section 6).

Vistrail: An Evolving Dataflow. A vistrail VT is a rooted tree
in which each node corresponds to a version of a dataflow, and
each edge between nodes d), and d., where d,, is the parent of d.,
corresponds to the action applied to dj, which generated d.. This is
similar to the versioning mechanism used in DARCS [27].

The vistrail in Figure 6 shows a set of changes to a dataflow
that was used to generate the CORIE visualization products shown
in Figure 5. In this case, a dataflow to visualize the salinity in a
small section of the estuary. This dataflow (tagged “With Text”)
was used to create four different dataflows that represent different
time steps of the data and are shown separately in the spreadsheet.
Note that in this figure, only tagged nodes are displayed. Instead
of displaying every version, by default we only show versions that
the user tags. We represent an edge between two tagged versions
in different ways. If a tagged version is not a child of another, the
edge will represent a series of actions, and we draw this as an edge
crossed with three perpendicular lines.

More formally, let DF be the domain of all possible dataflow
instances, where @ € DF is a special empty dataflow. Also, let
x : DF — DF be a function that transforms a dataflow instance into
another, and & be the set of all such functions. A vistrail node cor-
responding to a dataflow d,, is constructed by a sequence of actions,
where each x; € 2:

dy =Xy 0xp_10---0x100

In what follows, we use the following notation: we represent
dataflows as d;, and if a dataflow d; is created by applying a se-
quence of actions on d;, we say that d; < d; (i.e., the vistrail node
dj is a descendant of d;). A vistrail VT can be thought of as a set
of actions x; that induces a set of visualizations d;. The actions are
partially ordered. In addition, @ € VT, Vx € VT,x # 0,0 < x and
AxeVT,x<0.

Internally, the system manipulates a vistrail using an XML rep-
resentation. An excerpt of the vistrail XML schema is shown in
Figure 7. For simplicity of the presentation, we only show subset
of the schema and use a notation less verbose than XML Schema.
A vistrail has a unique id, a name, an optional annotation, a
set of actions, and a set of macros. Each act ion is uniquely iden-
tified by a timestamp (@t ime), which corresponds to the time the
action was executed. Since actions form a tree, an action also stores

type Vistrail = vistrail [Q@id, @name, Actionx,
Macrox, annotation?]

type Action =
action [@parent, @time, tag?, annotation?,
(AddModule |DeleteModule |ReplaceModule |
AddConnection|DeleteConnection|SetParameter)]

type Macro =
macro [@id, @name, Action*, annotation?]

Figure 7: Excerpt of the vistrail schema.

the timestamp of its parent (@parent). The different actions we
have implemented in our current prototype include: adding, delet-
ing and replacing dataflow modules; adding and deleting connec-
tions; setting parameter values. A macro contains a set of actions
which can be reused inside a vistrail (see Section 5) To sim-
plify the retrieval of particularly interesting versions, a node may
have a name (the optional attribute tag in the schema) as well as
annotations.

5. DATA EXPLORATION THROUGH
WORKFLOW MANIPULATIONS

Capturing provenance by recording user interactions with the
system has benefits both in uniformity and compactness of repre-
sentation. In addition, it allows powerful data exploration opera-
tions through direct manipulation of the version tree. In this sec-
tion, we discuss three applications enabled by these manipulations.
First, we show that stored actions lend themselves very naturally to
reuse through an intuitive macro mechanism. Then, we describe a
bulk-update mechanism that allows the creation of a large number
of visualizations of an n-dimensional slice of the parameter space
of a dataflow. Finally, we discuss how users can easily create visu-
alizations by analogy.

5.1 Reusing Stored Provenance
Visualization pipelines are complex and require deep knowledge

of visualization techniques and libraries such as for example VTK [28].

Even for experts, creating large pipelines is time-consuming. As
complex visualization pipelines contain many common tasks, mech-
anisms that allow the re-use of pipelines or pipeline fragments are
key to streamlining the visualization process.

Figure 9 shows a simplified example of a dataflow that reads
a data, applies a colormap, creates a scalar bar, and finally, adds
some text before rendering the images. Since the last three steps

(@ VisTrails Spreadsheet

BE%

Fie cel

O = =
A B
] %] (] 5=

Y

et} =

Sheet 1 /_Sheet2 A\ Buk 0

Figure 8: Vistrail Spreadsheet. Parameters for a vistrail loaded in a spreadsheet cell can be interactively modified by clicking on the cell. Cameras
as well as other vistrail parameters for different cells can be synchronized. This spreadsheet contains visualizations of MRI data of a lung and was
generated procedurally with the use of bulk changes. The horizontal axis varies isosurface value while the vertical axis explores different opacities.

are needed for each time step, they can be made into a macro re-
used in all these pipelines.

The sequence of actions stored in a vistrail leads to a very natural
representation for a macro. Inserting a macro in a vistrail node
d; is conceptually very simple: the macro actions are applied to
the selected workflow corresponding to the vistrail node d;. More
formally, a macro m can be represented as a sequence of operations

xjoxj—lo"'oxi

To apply this macro to a vistrail node d;, we compose the two sets
of actions:

(xjoxj_10---0x;)0d;

There are several possible ways of defining a macro. The sim-
plest is to do so directly on the version tree, by specifying a pair
of versions d; and d;, where d; < dj, and define the macro as the
sequence of actions that takes d; into d;. Another way of defining
a macro is by interactively selecting a set of modules and connec-
tions in a given dataflow, so that these modules can be re-created in
a different pipeline. The problem here is that there is a mismatch
between the action-oriented model of a vistrail and the dataflow
representation. Whereas intuitively a macro corresponds to a set
of modules and connections in a dataflow, since dataflows are not
stored directly, it is necessary to identify the actions in a vistrail that
create and modify the modules and connections selected. However,
between the first action x; and the last action x;, there might be ac-
tions that change parts of the pipeline that were not selected. These
potentially irrelevant actions must be removed. In the current im-
plementation, we perform a simple analysis and remove actions
that are applied to modules that are not created between x; and x;.
More complex, application-dependent analyses are possible.

The final important feature of macros is the context. When a user
defines a macro, some of the actions will create new pipeline mod-
ules. Even though some of the connections will be between mod-
ules created inside the macro, some other will connect to previously
existing modules. When the macro is to be applied to a different
pipeline, the set of external modules to which the macro modules
will connect to will change. In VisTrails, the user is prompted to
choose the right modules to connect the macro to. To help the user
identify the matching modules, we store, together with the macro,
the external modules from the original pipeline.

5.2 Scalable Derivation of Visualizations

The action-oriented model also leads to a very natural means to
script dataflows. In what follows, we describe a bulk-update mech-
anism that leverages this model to greatly simplify the creation of a
large number of related visualizations. To simplify the exposition,
we restrict the discussion to explorations that involve only combi-
nations of different values for an n-dimensional slice of the param-
eter space of a dataflow. Since parameter value modifications and
dataflow modifications are captured uniformly by the action-based
provenance, a similar mechanism can be used to explore spaces of
different dataflow definitions.

As discussed in Section 4, a dataflow d consists of a sequence of
actions applied to the empty dataflow:

Xgoxjo---ox;0l

The parameter space of a dataflow d, denoted by P(d), is the
set of dataflows that can be generated by changing the value of
parameters of d. From xg,---,x;, we can derive P(d) by tracking
addModule and deleteModule actions, and knowing P(m), the pa-
rameter space of module m, for each module in the dataflow. Each
parameter can then be thought of as a basis vector for the parameter
space of d. It is easy to see that a set of setParameter actions on
different dataflow parameters is the specification of a vector of this
parameter space. Dataflows spanning an n-dimensional subspace
of P(d) are generated as follows:

setParameter(idy,value,) o - - - o setParameter(id ,value;) o d

Bulk updates greatly simplify the exploration of the parameter
space for a given task and provide an effective means to create
a large number of visualizations. A composite visualization con-
structed with the bulk-update mechanism is shown in Figure 8.

Note that since VisTrails identifies and avoids redundant oper-
ations, dataflows generated from bulk changes can be executed
efficiently—the operations that are common to the set of affected
dataflows need only be executed once.

After a bulk update, if the user decides to keep a certain param-
eter setting, he has the choice to store it in the vistrail. This is easy
to do, since the representation for a specific dataflow within a bulk
change is the same as a regular dataflow inside a vistrail.

00

N
&

]

-

o

-

‘

Figure 9: A vistrail macro consists of a sequence of change actions
which represent a fragment of a dataflow. Here we show an example
of a series of actions that occur on one version that can be applied to
other similar versions using a macro.

5.3 Analogy-Based Visualization

Analogical reasoning is used to relate an inference or argument
from one particular context to another. The problem of determin-
ing an analogy can be summarized as follows: if b is related to a in
some way, what is the object related to ¢ in this same way? Analogy
provides a powerful means of reasoning and exploring a problem
domain, and it is especially useful in visualization. Figure 10 illus-
trates an example of visualization by analogy. The same simplifi-
cation applied to the torso dataset (top row) is applied the Mount
Hood model (bottom row). By examining two images, however, it
may be hard (and sometimes impossible) to precisely define their
relationship.

The vistrail action-based model makes it possible to precisely
define the relationship between two images. Given two dataflows
d, and dj, such that d; < dp, the relationship R(d,,d),) consists of
all the actions applied to d, to derive d:

d;, =xkoxk,lo~-~oxjoda

Now, given a dataflow d_, to create d; by analogy with R(d,,d}),
we must first translate the actions to the context of d.. Notice that
this is equivalent to defining a macro starting at d, and ending at
dp, and applying it at d.

In complex problems, such as cancer treatment planning (see
Section 2.2), a set of different visualizations is often necessary
to help physicians identify pathologic tissue. When the physician
finds a favorable set of parameters for one visualization, he will
likely need to change other related visualizations in the same way.
Instead of having to identify the relevant operations, which may
have taken place over a long period of time, he can tell the sys-
tem to automatically infer, by way of analogy, which changes are
needed. This makes it possible for non-experts to derive complex
visualizations.

6. A COLLABORATIVE PLATFORM FOR
DATA EXPLORATION THROUGH VISU-
ALIZATION

Data exploration through visualization is a complex process that
requires close collaboration among domain scientists and visual-
ization experts [15]. Thus, adequate support for collaboration is

Figure 10: An example of analogy-based visualization. The simplifi-
cation process that takes the top left image to the top right can be used
to take the bottom left image to the bottom right.

key to fully exploit the benefits of visualization. In this section, we
describe how we use the action-based provenance mechanism to
allow several users to collaboratively, and in a distributed and dis-
connected fashion, modify a vistrail—collaborators can exchange
patches and/or synchronize their vistrails.

Vistrails and Monotonicity. A distinctive feature of the VisTrails
provenance mechanism is monotonicity: nodes in the vistrail his-
tory tree are never deleted or modified—once pipeline versions are
created, they never change. Having monotonicity makes it possi-
ble to adopt a collaboration infrastructure similar to modern ver-
sion control systems (e.g., GNU Arch, BitKeeper, DARCS). The
idea is that every user’s local copy can act as a repository for other
users. This enables scientists to work offline, and only commit back
changes they perceive as relevant. Scientists can also exchange
patches and synchronize their vistrails.

As we discuss below, the main challenge in providing this func-
tionality lies in keeping consistent action timestamps—the global
identifiers of actions within a vistrail (Section 4). Intuitively, in a
distributed operation, two or more users might try to commit vi-
sualizations with the same timestamp, and a consistent relabeling
must be ensured.

Synchronizing Vistrails. We call vistrail synchronization the pro-
cess of ensuring that two repositories share a set of actions (or,
equivalently, visualizations). Figure 11 gives a high-level overview
of the synchronization process. Because of monotonicity, to merge
two history trees, it suffices to add all nodes created in the indepen-
dent versions of a vistrail. In what follows we describe an example
scenario that illustrates the issues that must be addressed in vistrails
synchronization.

Suppose user A has a vistrail which is checked out by both users
B and C. User B creates a new visualization, represented by a se-
quence of actions with timestamps {10,11,12}. Unbeknownst to
user B, user C also creates a new visualization, which happens to
have overlapping timestamps: {10,11,12,13}. User C happens
to commit its visualization before user B, so when B decides to
commit this changes, there will already be actions with his times-
tamps. The only solution is for A to provide a new set of action
timestamps, which A knows to be conflict free (say, {14,15,16}),
and report these back to B. The problem appears simple, except B

000

€D,

0000
0

CYorere

906

S O
<
@ (b) ©

Figure 11: Synchronizing vistrails. When users and collaborate in a
distributed fashion (subfigures (a) and (b)), they might create actions
with the same timestamp. When these are committed to the parent
repository, some timestamps have to be changed (subfigure (c)).

might himself have served as a repository for user D, who checked
out {10,11,12} before B decided to commit. We illustrate this in
Figure 12. If B ever exposed his changed timestamps, a cascade
of relabellings might be necessary. Worse than that, D might be
offline, or depending on the operation mode, B might even be un-
aware of D’s use of the vistrail.

Our solution is based on a simple observation. Action times-
tamps need to be unique and persistent, but only locally so. In
other words, even if user A exposes his actions to B, as a certain set
of timestamp values, there is no reason for B to use the same times-
tamps. The problem lies exactly when actions created by user B
have timestamps that may be changed in the future, when commit-
ted to A. To avoid that, we introduce what we call relabeling maps,
a set of bijective functions f; : N — N. Each user keeps a relabeling
map whose preimage is the set of timestamps given by the parent
vistrail i, and whose image is a local set of timestamps which will
be exposed in case its vistrail is used as a repository. When the user
commits a set of actions, the parent vistrail might provide a new set
of timestamps (more specifically, the parent creates new entries on
its own relabeling map, and exposes new timestamps). The child
vistrail’s relabeling map then only changes the preimage. In the
previous paragraph’s example, part of B’s relabeling map preim-
age goes from {10,11,12} to {14,15,16}, but the image stays the
same. If we call fp the old relabeling map, and f5 the new one,
then f3(10) = f5(14), f(11) = fz(15) and so on. Notice that in
this way, it does not matter what B’s relabeling map is. The im-
portant feature is that its image does not change when B commits
back to A. Since D’s repository only depends to the image of fg, D
will never be affected by any actions of B, a property essential for
scalable distributed operation.

Failure mode. The distribution model of vistrails allows for opera-
tion under peer failure. Using the above example, assume User B’s
hard drive fails, losing his vistrail repository. Even though the local
changes are lost, some of the data might be available in User D’s
vistrail. In failure mode, we allow D to commit changes directly
to A (or any other repository). Even though this makes it possible
to prevent data loss, some redundancy becomes inevitable. Since
User B’s relabeling map has been lost, it is impossible to know the
mapping between User D and User A’s timestamps. We simply as-
sume, then, that all actions User D wants to commit are new. The
most important feature of this operation mode is that it does not vi-
olate monotonicity. User A’s vistrail is still valid, User C might still
use User A’s vistrail, and User D will simply receive a completely
new preimage for its relabeling map. The most important feature
of the scheme is that users that have checked out User D’s vistrail
will not be aware of User B’s failure.

User B User D

O ©
& OJO

Internal [45 | Internal [7]8]9
7138 — | External [10[11]12

O Oy

External

User C

%3 °
6
IO

Internal [4]5]6
External [7[8]9

Internal [1]2
External [4[5

Figure 12: Synchronizing vistrails through relabeling maps. Even
though its local timestamps might change on commits, each vistrail ex-
poses locally consistent, unchanging timestamps to the world, ensuring
correct distributed behavior.

7. EVALUATION AND CASE STUDIES

To evaluate the utility VisTrails in a practical setting, we describe
how our system simplifies the visualization processes used in the
motivating examples described in Section 2.

Streamlining the CORIE Visualization Processes. The process
by which Professor Baptista and his staff create visualizations with
custom-built scripts for the CORIE project is both time-consuming
and error-prone. VisTrails not only helps streamline this process,
but it also facilitates collaboration among members of Baptista’s
group. Because detailed provenance is captured, every image can
be easily reproduced and modified. For example, if Dr. Baptista
wants to regenerate a series of figures using more recent forecasts,
he can query the repository for the desired vistrails and easily re-
place the old data sets with the new ones. With VisTrails, he has
the ability to steer his own simulations and explore the data.

Another important feature of VisTrails is the ability to perform
comparative visualization. The VisTrails Spreadsheet is an efficient
tool for comparing multiple visualizations. For example, a new
forecasting technique may be compared to an old one by show-
ing different visualizations side-by-side in the spreadsheet where
they can be interactively rotated, zoomed, and probed. Further-
more, with the use of bulk updates (see Section 5), multiple visu-
alization techniques or parameter values can be easily generated
with a simple interface to allow the scientist to explore the data and
find a desired image quickly. Note that because VisTrails employs
a caching mechanism, which avoids redundant computations [3],
comparative visualization can be performed efficiently, at interac-
tive speeds.

Replacing the Laboratory Notebook in Cancer Treatment Plan-
ning. The documentation process required to generate a set of im-
ages or movies for radiation oncology treatment planning is dif-
ficult and tedious. By capturing both data and dataflow prove-
nance, VisTrails provides a convenient (and automatic) alternative
to maintaining a laboratory notebook.

Using VisTrails, the visualization specialist can easily explore
the parameter space of a visualization, incorporate new suggestions
quickly, and regenerate the series of original images automatically.
As an example, a clinician looking for a lung tumor often prefers
visualizing the full breathing cycle as an animation of the differ-
ent time steps for both the pathological and normal tissue. Using

parameter exploration through bulk changes, the visualization spe-
cialist can automatically show different time steps and parameters
using one or more pipelines in the spreadsheet and compose a video
with the push of a button. This allows animations of different tissue
types to be contrasted simultaneously.

The VisTrails support for collaborative visualization allows sim-
pler interaction among physicians and visualization specialists—
they can work on shared vistrails and exchange patches. The sim-
plified process to create visualizations, in particular the ability to
create visualizations by analogy (see Section 5), makes it possible
for the physicians themselves to explore the data and try different
parameter settings.

8. RELATED WORK

The first implementation of VisTrails [3] only tracked prove-
nance of visualization products: for a given visualization, it stored
the steps and parameters that led to the visualization. In [6], we in-
troduced the notion of action-based provenance and how that cap-
tures the evolution of dataflows. In this paper, we give a detailed
description of the vistrails data exploration infrastructure, and show
how the action-based provenance can be used to implement fea-
tures that greatly simplify and streamline the scientific discovery
process.

Visualization Systems. Several systems are available for creat-
ing and executing visualization pipelines [13, 16,24,28,35]. Most
of these systems use a dataflow model, where a visualization is
produced by assembling visualization pipelines out of basic mod-
ules. They typically provide easy-to-use interfaces to create the
pipelines. However, as discussed above, these systems lack the in-
frastructure to properly manage a large number of pipelines; and
often apply naive execution models that do not exploit optimiza-
tion opportunities. The solutions we propose in VisTrails can be
easily integrated with these systems.

Comparative Visualization. The use of spreadsheets for display-

ing multiple images was proposed in previous works. Levoy’s Spread-

sheet for Images (SI) [20] is an alternative to the flow-chart-style
layout employed by many earlier systems which use the dataflow
model. SI devotes its screen real estate to viewing data by using a
tabular layout and hiding the specification of operations in interac-
tively programmable cell formulas. The 2D nature of the spread-
sheet encourages the application of multiple operations to multiple
data sets through row or column-based operations. Chi et al. [9] ap-
ply the spreadsheet paradigm to information visualization in their
Spreadsheet for Information Visualization (SIV). Linking between
cells is done at multiple levels, ranging from object interactions at
the geometric level to arithmetic operations at the pixel level. The
difficulty with both ST and SIV is that they fail to capture the history
of the exploration process, since the spreadsheet only represents the
latest state in the system.

The Vistrail Spreadsheet supports concurrent exploration of mul-
tiple visualizations. The interface is similar to the one proposed by
Jankun-Kelly and Ma [14], and it provides a natural way to ex-
plore a multi-dimensional parameter space (Section 5). The action-
based provenance mechanism makes the vistrail model especially
suitable to be used in such an interface. Users can change any of
the parameters present in a dataflow and create new dataflow ver-
sions; and they can also synchronize different views over a set of
parameters—changes to this parameter set are reflected in related
vistrails shown in different cells of the spreadsheet.

Scientific Workflows. In recent years, there has been a growing
interest in scientific workflows, as can be evidenced from a number

of events (e.g., [12,29,30]) and a fast growing literature on the topic
(e.g., [22,23,32]).

Although VisTrails was originally designed to support data ex-
ploration through visualization, ideas developed in the context of
VisTrails have been successfully applied to scientific workflow sys-
tems in different domains. For example, the VisTrails data prove-
nance mechanism is being used in the Emulab testbed, to track re-
visions of network security experiments [10, 11]; and algorithms
developed for VisTrails have also been used in Kepler, a general
scientific workflow system [23]. Note that, our goal in this project
is not to build yet another scientific workflow system. Instead, the
focus of our research is on developing general techniques and al-
gorithms, and novel functionalities that support and streamline the
data exploration process.

Data Provenance and Workflow Evolution. The issue of prove-
nance in the context of scientific workflows has received substantial
attention recently. Most works, however, focus on data provenance,
i.e., maintaining information of how a given data product was gen-
erated [31]. This information has many uses, from purely infor-
mational to enabling the re-generation of the data product, possi-
bly with different parameters. However, while solving a particular
problem, scientists often create several variations of a workflow in
a trial-and-error process. These workflows may differ both in the
parameter values used and in their specifications. If only the prove-
nance of individual data products is maintained, useful information
about the relationship among the workflows is lost. In addition,
since a lot of expert knowledge is involved in the exploratory pro-
cess, the change history of both data (e.g., input parameters) and
processes contains important knowledge that can potentially be ex-
tracted and re-used to solve an array of problems. To the best of
our knowledge, VisTrails is the first system to provide support for
tracking workflow evolution.

Kreuseler et al. [18] proposed a history mechanism for exploratory
data mining. They use a tree-structure, similar to a vistrail, to repre-
sent the change history, and describe how undo and redo operations
can be calculated in this tree structure. They describe a theoretical
framework that attempts to capture the complete state of a software
system. In contrast, in our work, we only track the evolution of the
dataflows and this allows for the much simpler action-based prove-
nance mechanism described in Section 4.

9. CONCLUSION

In this paper we propose a new infrastructure for streamlining
data exploration through visualization. The infrastructure lever-
ages a new action-based provenance mechanism to provide useful
features that allow effective and collaborative exploration of visu-
alizations over large parameter spaces.

The provenance information captured by VisTrails can be used
to augment existing scientific data repositories with the process that
scientists go through to generate and analyze data. For example,
a scientist can publish the vistrail used to generate the images in
a paper. This has obvious benefit of allowing scientific results to
be reproduced. In addition, since a lot of expert knowledge is in-
volved in the exploratory process, having this information creates
the opportunity for the development of mining techniques that ex-
tract knowledge, in the form of exploratory patterns, which can be
used to solve an array of problems.

We are currently applying VisTrails to a number of different
problem areas, from environmental sciences and medical imaging,
to computer-aided drug design and discovery. Our initial experi-
ences have confirmed that the VisTrails data exploration infrastruc-
ture greatly simplifies the scientific discovery process, and that it

indeed allows scientists to more effectively explore vast amounts of
data. This indicates that appropriate management of both data and
processes involved in visualization has the potential to substantially
increase the impact of visualization in scientific discovery.

It is worthy of note that although VisTrails was originally de-
signed to support data exploration through visualization, ideas de-
veloped in the context of VisTrails have been successfully applied
to scientific workflow systems in different domains. For example,
the VisTrails data provenance mechanism is being used in the Emu-
lab testbed, to track revisions of network security experiments [10].
Algorithms developed for VisTrails have also been used in Kepler,
a general scientific workflow system [23].

10. VIDEO OVERVIEW

Our submission includes a narrated video that demonstrates sev-
eral of the features discussed in this paper. We encourage the re-
viewers to see the video. The video shows a user interacting with
the VisTrails system in real time. It illustrates, among other things:
the transparent, action-based provenance capture; the application
of macros to reuse parts of the provenance in different situations;
and scalable data derivation through the bulk update mechanism.

Unfortunately, the conference management system does not sup-
port large files and we were not able to upload the video together
with the paper. The video is available at

http://www.sci.utah.edu/"vgc/vistrails/videos

and it can also be obtained from Dr. Gustavo Alonso, the PC chair
for the VLDB 2006 IIS track.

Acknowledgments. Professor Anténio Baptista (Oregon Health &
Science University) has provided us valuable input for the system
design. We thank him for letting us use CORIE as a testbed for
the development of VisTrails. We thank Dr. George Chen (Mas-
sachusetts General Hospital/Harvard University) for providing us
the lung datasets, and Erik Anderson for creating the lung visual-
izations. This work was partially supported by the National Sci-
ence Foundation under grants 11S-0513692, CCF-0401498, EIA-
0323604, CNS-0541560, and OISE-0405402, the Department of
Energy, an IBM Faculty Award and a University of Utah Seed
Grant.

11. REFERENCES

[1] A. Ailamaki, Y. E. Ioannidis, and M. Livny. Scientific
workflow management by database management. In
Proceedings of SSDBM, pages 190-199. IEEE Computer
Society, 1998.

[2] A. Baptista, T. Leen, Y. Zhang, A. Chawla, D. Maier, W.-C.
Feng, W.-C. Feng, J. Walpole, C. Silva, and J. Freire.
Environmental observation and forecasting systems: Vision,
challenges and successes of a prototype. In Conference on
Systems Science and Information Technology for
Environmental Applications (ISEIS), 2003.

[3] L. Bavoil, S. Callahan, P. Crossno, J. Freire, C. Scheidegger,
C. Silva, and H. Vo. Vistrails: Enabling interactive
multiple-view visualizations. In Proceedings of IEEE
Visualization, pages 135-142, 2005.

[4] S. Boag, D. Chamberlin, M. Fernandez, D. Florescu,

J. Robie, J. Siméon, and M. Stefanescu. XQuery 1.0: An
XML query language. W3C Working Draft, June 2001.

[5] A.Brown, M. Fuchs, J. Robie, and P. Wadler. XML Schema:

Formal description, 2001. W3C Working Draft.

[6] S. Callahan, J. Freire, E. Santos, C. Scheidegger, C. Silva,
and H. Vo. Managing the evolution of dataflows with
vistrails (Extended Abstract). In IEEE Workshop on
Workflow and Data Flow for Scientific Applications
(SciFlow), 2006. To appear.

S. Callahan, J. Freire, E. Santos, C. Scheidegger, C. Silva,

and H. Vo. VisTrails: Visualization meets Data Management.

In Proceedings of ACM SIGMOD, 2006. Demo description.

To appear.

[8] E. H. Chi, P. Barry, J. Riedl, and J. Konstan. A spreadsheet
approach to information visualization. In Proceedings of
IEEE Information Visualization Symposium, pages 17-24,
1997.

[9] E. H. Chi, P. Barry, J. Riedl, and J. Konstan. Principles for
information visualization spreadsheets. IEEE Computer
Graphics and Applications, 18(4):30-38, 1998.

[7

—

[10] E. Eide, T. Stack, L. Stoller, J. Freire, and J. Lepreau.
Integrated scientific workflow management for the emulab
network testbed. In Proceedings of USENIX, 2006. To
appear.

[11] The Emulab Network Emulation Testbed.
http://www.emulab.net.

[12] e-Science Grid Environments Workshop.
http://www.nesc.ac.uk/esi.

[13] IBM. OpenDX. http://www.research.ibm.com/dx.

[14] T. Jankun-Kelly and K. Ma. Visualization exploration and
encapsulation via a spreadsheet-like interface. IEEE
Transactions on Visualization and Computer Graphics,
7(3):275-287, 2001.

[15] C. Johnson, R. Moorhead, T. Munzner, H. Pfister,
P. Rheingans, and T. S. Yoo. NIH/NSF Visualization
Research Challenges Report. IEEE, 2006.

[16] Kitware. Paraview. http://www.paraview.org.

[17] Kitware. The Visualization Toolkit. http://www.vtk.org.

[18] M. Kreuseler, T. Nocke, and H. Schumann. A history

mechanism for visual data mining. In Proceedings of IEEE

Information Visualization Symposium, pages 49-56, 2004.

[19] E. A. Lee and T. M. Parks. Dataflow Process Networks.

Proceedings of the IEEE, 83(5):773-801, 1995.

M. Levoy. Spreadsheet for images. In SIGGRAPH, pages

139-146, 1994.

M. Levoy, H. Fuchs, S. Pizer, J. Rosenman, E. L. Chaney,

G. W. Sherouse, V. Interrante, and J. Kiel. Volume rendering

in radiation treatment planning. In Proceedings of the First

Conference on Visualization in Biomedical Computing, May

1990.

B. Ludaescher and C.Goble. Special section on scientific

workflows. ACM SIGMOD Record, 34(3), Sept. 2005.

B. Ludischer, 1. Altintas, C. Berkley, D. Higgins,

E. Jaeger-Frank, M. Jones, E. Lee, J. Tao, and Y. Zhao.

Scientific Workflow Management and the Kepler System.

Concurrency and Computation: Practice & Experience,

2005.

S. G. Parker and C. R. Johnson. SCIRun: a scientific

programming environment for computational steering. In

Supercomputing, page 52, 1995.

C. A. Pelizzari and G. T. Y. Chen. Volume visualization in

radiation treatment planning. Critical Reviews in Diagnostic

Imaging, 41(6):379-364, 2000.

[26] The EU Provenance Project.
http://twiki.gridprovenance.org/bin/view/Provenance.

[20]

[21]

[22]

[23]

[24]

[25]

[27]
(28]

[29]

[30]

[31]

[32]

[33]
[34]
[35]
[36]

[37]

[38]

D. Roundy. Darcs. http://abridgegame.org/darcs.

W. Schroeder, K. Martin, and B. Lorensen. The Visualization
Toolkit An Object-Oriented Approach To 3D Graphics.
Kitware, 2003.

IEEE Workshop on Workflow and Data Flow for Scientific
Applications (SciFlow 2006).

http://www.cc.gatech.edu/ cooperb/sciflow06.

Scientific Data Management Framework Workshop.
http://sdm.lbl.gov/arie/sdm/SDM.Framework.wshp.htm.

Y. L. Simmbhan, B. Plale, and D. Gannon. A survey of data
provenance in e-science. SIGMOD Record, 34(3):31-36,
2005.

E. Stolte, C. von Praun, G. Alonso, and T. R. Gross.
Scientific data repositories: Designing for a moving target. In
Proceedings of ACM SIGMOD, pages 349-360, 2003.

The Taverna Project. http:/taverna.sourceforge.net.

The Triana Project. http://www.trianacode.org.

C. Upson et al. The application visualization system: A
computational environment for scientific visualization. IEEE
Computer Graphics and Applications, 9(4):30-42, 1989.

J. van Wijk. The value of visualization. In Proceedings of
IEEE Visualization, 2005.

Extensible Markup Language (XML).
http://www.w3.0org/XML.

XML path language (XPath) 2.0.
http://www.w3.0rg/TR/xpath20.

