
1

Ray Tracing Deformable Scenes using Dynamic

Bounding Volume Hierarchies

Ingo Wald×†, Solomon Boulos†, and Peter Shirley†
×SCI Institute, University of Utah †School of Computing, University of Utah

UUSCI-2006-015

Scientific Computing and Imaging Institute
University of Utah

Salt Lake City, UT 84112 USA

April 5, 2006

Abstract:

The most significant deficiency of interactive ray tracers is that they are restricted to static walk-
throughs. This restriction is due to the static nature of the acceleration structures used. While the
best reported frame-rates for static geometric models have been achieved using carefully constructed
k-d trees, this paper shows that bounding volume hierarchies (BVHs) can be used to efficiently ray
trace large static models. More importantly, the BVH can be used to ray trace deformable models
(sets of triangles whose positions change over time) with little loss of performance. A variety of
serial efficiency techniques are used to achieve this efficiency, but three algorithmic changes to the
typical BVH algorithm are mainly responsible. First, the BVH is built using a variant of the surface
area heuristic usually used to build k-d trees. Second, the topology of the BVH is not changed
over time so that only bounding volume positions need be changed from frame to frame. Third,
packets of rays are traced together through the BVH allowing rapid hierarchy descent for packets
that hit bounding volumes, and rapid exits for packets that fully miss. A BVH-based ray tracer
is described with performance on deformable models comparable to that previously available only
for static models.

SCI Institute, University of Utah. Technical Report UUSCI-2006-015

Ray Tracing Deformable Scenes
using Dynamic Bounding Volume Hierarchies

Ingo Wald×† Solomon Boulos† Peter Shirley†
× SCI Institute, University of Utah † School of Computing, University of Utah

{ingo,boulos,shirley}@cs.utah.edu

Figure 1: Screenshots from an animated 180,000 triangle scene with moving dragonfly, fairy, and plants. At 1024×1024 pixels the animated
scene is ray traced at roughly 3.7 frames per second on a dual-2.6 GHz Opteron desktop PC including shadows and texturing.

Abstract

The most significant deficiency of interactive ray tracers is that they
are restricted to static walkthroughs. This restriction is due to the
static nature of the acceleration structures used. While the best re-
ported frame-rates for static geometric models have been achieved
using carefully constructed k-d trees, this paper shows that bound-
ing volume hierarchies (BVHs) can be used to efficiently ray trace
large static models. More importantly, the BVH can be used to ray
trace deformable models (sets of triangles whose positions change
over time) with little loss of performance. A variety of serial effi-
ciency techniques are used to achieve this efficiency, but three algo-
rithmic changes to the typical BVH algorithm are mainly respon-
sible. First, the BVH is built using a variant of the “surface area
heuristic” usually used to build k-d trees. Second, the topology of
the BVH is not changed over time so that only bounding volume
positions need be changed from frame to frame. Third, packets of
rays are traced together through the BVH allowing rapid hierarchy
descent for packets that hit bounding volumes, and rapid exits for
packets that fully miss. A BVH-based ray tracer is described with
performance on deformable models comparable to that previously
available only for static models.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Raytracing, Animation, Color, Shading,
Shadowing, and Texture

1 Introduction

Recent trends in computer architecture and model complexity,
along with a desire for improved visual realism, have spurred re-
searchers to demonstrate that ray tracing is a viable method for a
wide class of interactive applications [Muuss 1995; Cross 1995;
Parker et al. 1999; Wald 2004; Reshetov et al. 2005]. However,
these demonstrations have been largely restricted to static scenes;
ray tracing on dynamic scenes has not been able to yield such high
framerates. The reason ray tracing is currently slow for dynamic
scenes is that fast ray tracers use precomputed spatial search struc-
tures to ech interactive ramerates, and rebuilding these structures is
too expensive for any but relatively small models [Wald et al. 2003].
Ray tracing’s failure to deal with dynamic scenes is a major limi-
tation because they are important for a large class of applications
such as games and simulation [Mark and Fussell 2005].

In this paper we use a bounding volume hierarchy (BVH) [Ru-
bin and Whitted 1980] to interactively ray trace a particular type
of dynamic scene: deformable scenes. A deformable scene is one
whose triangles move, but no triangles are split, created, or de-
stroyed over time. An example of such a scene is shown in Figure 1
where two meshes deform and change position within an animated
polygonal environment; the entire scene is ray traced with a single
BVH whose topology is constant for the whole animation. This ap-
proach was motivated by the successful use of constant-topology
BVHs for collision detection between deformable objects [van den
Bergen 1997; Schmidl et al. 2004]. In contrast to spatial subdivi-
sion structures such as the k-d tree, the BVH subdivides the ob-
ject hierarchy, and a given object hierarchy is more robust over
time than a given subdivision of space. As a result, a BVH can
be quickly updated between frames thus avoiding a complete per-
frame rebuilding phase. However, a barrier to exploiting the BVH’s
advantages for dynamic scenes is that their performance on static
scenes has lagged far behind that achieved using k-d trees [Wald
2004; Reshetov et al. 2005]. The rest of this paper describes two
main contributions (also see Table 1):

• BVHs can be used for fast ray tracing of static models by
using many of the same techniques developed for k-d trees
including careful tree construction, SIMD programming, and
the use of ray packets. This allows a BVH to be competitive
with a k-d tree even where k-d trees perform their best.

OpenRT MLRTA BVH
P4 2.4GHz Xeon 3.2GHz Opteron

Scene #tris w/ HyperThr. 2.6 GHz
erw6 static 800 2.3 50.7 31.3
conf static 280k 1.9 15.6 9.3
soda static 2.5M 1.8 24 10.9
toys anim. 11k – – 21.9
runner anim. 78k – – 14.2
fairy anim. 180k – – 5.6

Table 1: Performance in frames/sec. (at 10242 pixels, 1 CPU) com-
pared to the OpenRT and MLRTA systems. OpenRT and ML-
RTA times from [Reshetov et al. 2005], and include simple shad-
ing. Both OpenRT and MLRTA use k-d trees and are restricted
to static models only. Our BVH-based method targets animated
scenes while staying competitive for static scenes.

1

Wald, Boulos, Shirley; Dynamic Bounding Volume Hierarchies SCI Institute, University of Utah. Technical Report UUSCI-2006-015

box

boxbox

2 tris 2 tris

Figure 2: Different BVHs for 4 triangles. The siblings are allowed
to spatially overlap (unlike spatial subdivision). Other possibilities
include splitting to size 1 and 3 triangle list, and recursively splitting
lists of 2 or 3 triangles.

• BVHs can be extended naturally to ray tracing dynamic
scenes. This is achieved by choosing a suitable BVH whose
topology doesn’t vary over time, along with the use of ray
packets which make runtimes less sensitive to the details of
the tree. This approach does not require full knowledge of all
frames of an animation, so it should be applicable to models
driven by physics or user-interaction.

2 Background

Ray tracing was used for rendering at least as early as the clas-
sic work by Appel [1968], but was introduced in its modern form
by Whitted [1980]. To speed up intersection, hand-constructed
bounding volume hierarchies (BVHs) [Clark 1976] were the first
spatial efficiency structure used for ray tracing [Rubin and Whit-
ted 1980; Whitted 1980]. While a BVH partitions objects, various
schemes for partitioning space soon became more popular for ray
tracing [Cleary et al. 1983; Glassner 1984; Kaplan 1985; Jansen
1986; Arvo and Kirk 1989]. Kirk and Arvo [1988] speculated that
the best efficiency scheme varied with object characteristics and
advocated a heterogeneous software architecture. The first modern,
systematic investigation of the various efficiency schemes was con-
ducted by Havran [2001] in his dissertation. He concluded that k-d
trees [Bentley 1975] were probably the best, and BVHs were by far
the worst data structures for ray tracing.

Interactive ray tracing. In the last decade a number of interac-
tive ray tracing systems have been developed on a variety of archi-
tectures. Wald used k-d trees to achieve interactivity on both single
PCs and clusters of PCs [Wald et al. 2001; Wald 2004]. His im-
plementation was released as part of the OpenRT system, which we
use as a comparison baseline in this paper. Interactive ray tracing
has also been demonstrated on a variety of platforms including su-
percomputers [Parker 2002], FPGAs [Schmittler et al. 2002; Woop
et al. 2005], GPUs [Purcell et al. 2002; Foley and Sugerman 2005;
Carr et al. 2006], and the Cell [Minor et al. 2005].

Bounding volume hierarchies. BVHs are trees that store a
closed bounding volume at each node. In addition, each internal
node has references to child nodes, and each leaf node also stores a
list of geometric primitives. The bounding volume is guaranteed to
enclose the bounding volumes of all its descendants. Each geomet-
ric primitive is in exactly one leaf, while each spatial location can
be in an arbitrary number of leaves. A variety of shapes have been

used for the bounding volumes [Weghorst et al. 1984], with axis-
aligned boxes a common choice. An example of different BVHs
for a small model are shown in Figure 2.

Building BVHs Goldsmith and Salmon [1987] used a cost
model to optimize the bottom-up construction of BVHs. Top-down
builds have also been used that split at the spatial median [Kay and
Kajiya 1986] or the object median to force a balanced tree [Smits
1998] as often done in spatial databases [Guttman 1984]. Both top-
down and bottom-up builds have also been used for collision de-
tection applications [Larsson and Akenine-Möller 2005]. For k-d
trees, a greedy top-down build based on Goldsmith and Salmon’s
cost model has been shown to be quite effective [Havran 2001;
Hurley et al. 2002; Wald 2004]. A similar build has been used
for BVHs [Müller and Fellner 1999; Mahovsky 2005], but has not
resulted in performance competitive with k-d implementations even
once improvements in hardware speeds are accounted for. Ng and
Trifonov [2003] investigated randomized BVH construction, but
only found modest improvements over other techniques.

Traversing BVHs The BVH has a very simple recursive inter-
section routine. For leaves the ray is first tested for intersection
with the bounding volume, and when positive, the list of triangles is
tested. For internal nodes, when the ray hits the bounding volume,
its two children are recursively called. Unlike spatial subdivision
schemes, the two children are not spatially ordered, so the second
child must be tested even when the first is hit. Haines [1991] and
Mahovsky [2005] proposed schemes that reduced the numbers of
tests by attempting to order the tests in at least some cases. Ray
packets have been used with BVHs [Parker et al. 1999; Mahovsky
2005] and have resulted in speedups up to a factor of two relative
to single rays. Other optimizations on serial efficiency for BVH
traversal include different memory layouts [Smits 1998], faster ray-
box overlap tests [Mahovsky and Wyvill 2004; Williams et al.
2005], and early exits for shadow rays [Smits 1998].

Dynamic models. Ray tracing for dynamic models has re-
ceived relatively little attention. Most research on animated se-
quences stresses exploiting the coherence within successive frames
to reduce the number of rays to be traced [Gröller and Purgath-
ofer 1991; Adelson and Hodges 1995]. The earliest paper directly
related to animated ray tracing is the “space-time ray tracing” ap-
proach proposed by Glassner [1988], which used a heavy-weight
data structure for batch ray tracing of known animation sequences.
Parker et al. [1999] kept animated objects out of the overall ac-
celeration structure, and intersected those separately. This allowed
for animating several objects, but does not scale well. Reinhard
et al. [2000] used an updateable grid data structure. Their method
allows a wide range of dynamic behavior but its efficiency is lim-
ited by the overall performance of the grid. For hierarchical rigid-
body deformations, Lext et al. [2001] proposed a two-level rapid
reconstruction scheme. Though their scene update time is insignif-
icant, their overall speed was not interactive. This idea was was
applied for k-d trees [Wald et al. 2003] and extended to more gen-
eral animations, but was too costly except for small scenes. For
point based models, Adams et al. [2005] used a deforming BVH of
spheres. Larsson and Akenine-Möller [2003] proposed a method
to incrementally update the BVH in sublinear time. However, their
performance for static models was low compared to k-d tree based
systems. Carr et al. [Carr et al. 2006] ray trace deformable geom-
etry images using a balanced BVH on a GPU. They achieve good
performance for small models, but their method does not yet scale
well to large models.

2

Wald, Boulos, Shirley; Dynamic Bounding Volume Hierarchies SCI Institute, University of Utah. Technical Report UUSCI-2006-015

spatial median object median SAH

Figure 3: Three potential splitting strategies, with the bounding box of the right child shown for each. Left: splitting at the spatial median of
the box. Middle: splitting into equal numbers of objects for each child. on an even number of triangles on each side. Right: splitting using
the surface arrea heuristic (SAH).

Summary. Overall, previous BVH implementations for static
models are at least an order of magnitude slower than fast k-d tree
implementations. There is no agreement on how BVHs should be
built for ray tracing, and scant evidence in the literature that using
BVHs can be made competitive with k-d implementations. Only a
few projects have investigated ray tracing complex dynamic mod-
els, and none of those has been competitive with the times for static
models when more than a few objects are in motion, or when any
of the objects are deformable.

3 Improvements for BVH ray tracing

In this section we discuss improving the BVH performance for
static scenes using a variety of techniques. At a high level we op-
timize our system using the two basic strategies that have made
k-d trees dominant: improving the structure of trees via cost func-
tions (Section 3.1), and using coherent packets of rays during tree
traversal (Section 3.2). Though there are many cases where ori-
ented bounding volumes would be advantageous, we have pursued
a “simplest is best” strategy and thus have concentrated only on bi-
nary BVHs using axis-aligned bounding boxes (AABBs). This use
of packets proves particularly valuable and is handled quite differ-
ently to packet optimizations for the k-d tree. As we shall show in
Section 4 packets are also a key to our performance on animated
scenes.

3.1 Building effective BVHs

The way the hierarchy is built has a strong impact on traversal per-
formance. For example, Figure 2 shows three of the seven dif-
ferent ways to partition a set of four triangles into a hierarchy of
two subtrees. Each of these will result in different runtimes. The
runtimes of k-d tree based implementations have been shown to
be greatly improved by careful tree construction [Havran 2001].
That construction is based on a greedy algorithm with the “sur-
face area heuristic” (SAH) cost function [MacDonald and Booth
1989; Havran 2001]. Interestingly, the (SAH) cost function is de-
rived from analysis first done by Goldsmith and Salmon [1987] for
the optimization of BVHs. This section reviews the reasoning be-
hind the SAH and shows how it can be applied to ray tracing using
BVHs.

As discussed in Section 2, various authors have advocated divid-
ing objects evenly for a balanced tree, dividing space evenly, and
using a SAH to attempt tighter-fitting boxes. Examples of these
alternatives are shown in Figure 3. While the rightmost example
makes it seem the most attractive for this case, we test all three.
The object and space median builds are straightforward, but the
surface-area build deserves some discussion.

For BVHs, Goldsmith and Salmon [1987] developed a simple
expression for the expected execution time of a random ray that hits
the root node’s bounding volume. They argued that the probability
of interacting with a particular node is the ratio of the surface area

of that node’s bounding volume to the surface area of the bounding
volume of the root node. If an internal node is hit, it will make calls
to two children and a bounding volume hit routine will be executed.
If a leaf node is hit, the triangles in the list of that node will have
their intersection routines called. For binary BVHs the expected
time for random rays interacting with a BVH will be

T =

2B+1X
i=1

Ai

A1
Ti, (1)

where T is the execution time for an average ray, B is the number of
internal nodes in the tree (so there are B + 1 leaves), Ai is the area
of the bounding volume of node i, A1 is the area of the bounding
volume of the root node, and Ti is the execution time associated
with processing node i. In the case of an internal node, Ti is the
time to test whether the bounding volumes of its two children are
hit, while for a leaf node it is the time to test the triangles in its
list. Breaking Equation 1 into separate sums over internal and leaf
nodes yields:

T =

BX
i=1

2
Ai

A1
TAABB +

2B+1X
i=B+1

Ai

A1
NiTtri, (2)

where TAABB is the time to test a ray and an AABB for intersec-
tion, Ttri is the time to compute a ray-triangle intersection, and Ni

is the number of triangles in the list for leaf node i. There are sev-
eral simplifications implicit in this formula such as uniformly dis-
tributed rays that start and finish outside the root node’s AABB,
times for box and triangle intersection that do not vary, single rays
rather than ray packets, and the lack of accounting for memory lay-
out, early exits, or other optimizations (see, e.g., [Havran 2001] for
more details). Computing a global optimum of this cost function is
generally believed to be infeasible except for very small models.

Macdonald and Booth [1989] developed a cost expression simi-
lar to Equation 2 for k-d trees. The argued empirically for a greedy
top-down tree building strategy that recursively attempted to find
the best two-leaf tree possible. A similar greedy strategy can be
applied for BVHs. When building a BVH top-down, each recursive
construction step consists of partitioning a set S of triangles into
two subsets S1 and S2, and subdivided recursively until S is con-
sidered small enough to be made a leaf. Following the local greedy
strategy, in each step one chooses the partition that minimizes the
cost that would ensue if a two-leaf tree would be built. Applying
Equation 2 to this two-leaf tree (and dividing out common factors)
we get:

T = 2TAABB +
A(S1)

A(S)
N(S1)Ttri +

A(S2)

A(S)
N(S2)Ttri, (3)

where A(S) is the area of the bounds of the triangles in set S, and
N(S) is the number of triangles in set S. Since for N triangles
there are O(2N) possible binary partitions, finding the global min-
imum by checking all cases is infeasible.

3

Wald, Boulos, Shirley; Dynamic Bounding Volume Hierarchies SCI Institute, University of Utah. Technical Report UUSCI-2006-015

Algorithm 1 Centroid-based SAH partitioning

function partitionSweep(Set S)
BestCost = Ttri*|S|, BestAxis = -1, BestEvent = -1
for axis = 0 to 3 do
Box OverallBox = S.Box
Sort S using centroid of boxes in current axis

{Sweep from left}
Set S1 = Empty, S2 = S
for i = 0 to |S| do
S[i].LeftArea = Area(S1) {Area(Empty) = ∞}
Move Triangle i from S2 to S1

end for

{Sweep from right}
S1 = S, S2 = Empty
for i = |S| - 1 to 0 do
Move Triangle i from S1 to S2
ThisCost = Evaluate Equation 3
if ThisCost < BestCost then
BestCost = ThisCost
BestEvent = i
BestAxis = axis

end if
end for

end for

if BestAxis = -1 then {No better partition found}
return Make Leaf

else
Sort S in axis BestAxis
S1 = S[0..BestEvent)
S2 = S[BestEvent..|S|)
return Make Inner Node with Axis BestAxis

end if
end

We attempt to optimize Equation 3 by using a set of candidate axis-
aligned planes to partition the triangles. For a given plane, the cen-
troids of the objects are used to choose which of the two sets in the
partition they are added to. The partition that minimizes Equation 3
is chosen, and this procedure is applied recursively until the entire
BVH is constructed.

We have investigated three schemes for choosing sets of parti-
tioning planes. First, we have used a sets of evenly spaced planes in
each axis. Second, we have used the sides of all the bounding boxes
of the triangles as done in some k-d tree builds. Finally we have
used the planes through the centroids of all the triangles. The over-
all ray tracing speed resulting from these schemes is very similar.
The fastest build times comes from the subquadratic centroid-based
method, so we detail it in Algorithm 1. We compare its ray tracing
performance to the object and spatial median partitioning methods
in Table 2. We did not include a Goldsmith-Salmon [1987] bottom-
up build as this method has been shown to be greatly inferior to
other strategies in practice [Havran 2001; Mahovsky 2005].

3.2 Packet-based Traversal

A ray packet-based implementation can be used to lower required
memory bandwidth and thus improve efficiency. Tracing pack-
ets of rays has been used effectively for k-d trees by exploiting
SIMD extensions [Wald et al. 2001]. More recently, Reshetov et
al. [2005] exploited packet coherence by performing some traver-
sal steps based on a conservative approximation of the packet using
either interval arithmetic or a bounding frustum. In this section, we
show how these concepts can also be applied to BVHs in a straight-
forward manner. This use of packets for BVHs is both natural and
general, and the key to our system’s performance.

Ray packets and SIMD. To allow for the use of SIMD exten-
sions to compute intersections in parallel, data must be arranged
carefully. Although there is nothing in our algorithm requiring the
use of SIMD extensions, we describe the layout used in our imple-
mentation as a reference for implementors.

For each inner node, we need to store information about the
bounding volume, the node traversal order, and a reference to the
child nodes or triangle list. This information can be stored in a 32
byte record:

#pragma align(32)
struct BVHNode {
float box_min[3]; // 16 byte aligned
union {
int firstChildNodeID; // for inner nodes
int firstTriangleID; // for leaf nodes

};
float box_max[3]; // 16 byte aligned
short num_triangles; // 0 flags inner node
unsigned char ordered_traversal_axis;
unsigned char ordered_traversal_sign;

};

Once the data is properly organized, the SIMD implementation
is fairly straightforward. For each node, we use the slabs algo-
rithm [Kay and Kajiya 1986] for computing ray-box overlap. Using
SIMD extensions we can intersect 4 rays in parallel. Once a leaf is
reached, we use the SIMD triangle test described by Wald [2004] to
test 4 rays with the same triangle in parallel. Though we also tested
a SIMD version of the Möller-Trumbore test [Möller and Trumbore
1997], its performance was slightly inferior. The main benefits of
using ray packets are algorithmic in nature, as we detail next.

Early hit test. In a standard packet-based kd-tree traversal all
rays are tested at each tree node, albeit 4 at a time [Wald et al.
2001]. For a BVH, however, not all rays in the packet need to be
tested. If any of the rays during the packet-box intersection reports a
positive intersection, we can immediately enter this subtree without
considering any of the remaining rays. When rays are coherent
this avoids many redundant intersections, usually testing an entire
packet using just a single test.

Tracking the first active ray. As just described, as soon as
any ray in a packet hits the box they all descend. However, the ray
that hits the box may not be the first ray in the packet. We can
take advantage of this by not testing rays that have already missed
an ancestor of the current node. This is easily accomplished by
storing the index of the first ray that has not yet missed an ancestor
and starting the loop over rays at that index. We still immediately
descend as soon as a hit is detected.

By having all rays in a packet descend to the two children when
the first ray hits the parent, we can often replace the N ×N (packet
size) ray-box tests with a single one. This comes at the cost of some
rays descending that miss the parent. In practice this trade-off is
greatly in our favor.

Scene object median spatial median SAH
erw6 27.0 32.4 42.6
Conference 5.7 7.6 10.5
Soda Hall 5.5 8.8 12.3

Table 2: Performance of object median build, spatial median build,
and centroid-based surface area heuristic (SAH) build for three
static scenes. Numbers are frames per second for 1024 × 1024
pixels on a 2.6 GHz Opteron CPU, and depend on the fast BVH
traversal method explained Section 3.2. For single ray implementa-
tions, using the SAH provides an even larger relative improvement.

4

Wald, Boulos, Shirley; Dynamic Bounding Volume Hierarchies SCI Institute, University of Utah. Technical Report UUSCI-2006-015

Figure 4: The scenes used for our experiments. From left to right: ERW6 (800 triangles, static), Conference (280,000, static), Soda Hall
(2.5M, static), Toys (11,000, animated), Ben (78,000, animated), complete FairyForest (180,000, animated; also see Figure 1). With pure ray
casting (without shading), these scenes render at 42.6, 10.5, 12.3, 23.7, 15.6, and 6.1 frames per second (fps) at 10242 pixels, respectively.
Including shading, shadows, and textures, they still render at 15.2, 4.8, 9.5, 10.5, 8.53, and 2.16 fps.

Early miss exit. The combination of early hit tests and first ac-
tive ray tracing essentially makes those cases in which the packet
actually overlaps the box very cheap. However, if the packet misses
the box, we would still have to test all of the rays in the packet to
find that none of them hits the box.

For this case, however, we employ the same idea that Reshetov et
al. [2005] have proposed in MLRTA traversal. Using interval arith-
metic, we can compute an approximate (but conservative) packet-
box overlap test, and can immediately skip all individual traversal
steps if this conservative test already indicates missing the box. To
use this scheme, we first perform the first active ray’s overlap test
as described above. If this ray overlaps, we return an overlap, and
do not perform the interval arithmetic test. If not, we perform the
overlap test based on the packet’s precomputed minima and max-
ima direction components, and, if that test fails, can skip all other
rays and return a miss.

Testing the remaining rays. If both the first hit test and the
conservative miss test failed, we intersect all the remaining rays in
the packet until we find the first one that hits. The pseudo-code for
the resulting packet-box intersection test is given in Algorithm 2.
Compared to the other two cases which have constant cost, testing
the remaining rays is linear in the number of rays in the packet.
Though implemented in SIMD – and always testing four rays at a
time – the test can be quite costly. Fortunately, this case happens
rarely as we show empirically in Section 3.3.

Ordered traversal. The rest of the BVH is fairly standard. For
nodes hit by the packet, one of the child nodes is pushed on the
stack, and iteration proceeds with the other one. If a node is missed
by the packet, the next node along with its first active ray’s ID is
taken off the stack, and iteration continues. To increase the like-
lihood that the traversal order of the children is front-to-back and
thus increase early exists, the order the children are tested is deter-
mined from properties of the rays. BVH nodes store two fields: the
dimension ndim in which its two children are furthest apart, and an
int nfirst specifying which of the children should be traversed by
a ray traveling along axis ndim. During runtime the traversal order
is determined by xor’ing the node’s order bit with the rays ndim

direction sign. In contrast to kd-tree packet tracers we do not need
to guarantee that all rays in a packet have the same sign bits. If
the children are tested in the “wrong” order there is an efficiency
penalty but no error. Not having to guarantee same signs avoids all
kinds of special cases, and greatly simplifies the overall implemen-
tation.

Shadow rays and secondary rays. Packets for different
kinds of rays have different properties. For example, primary rays
share the same origin, and are bounded by their corner rays; shadow
rays often share the same origin, but have no concept of corner
rays; secondary rays may not even share the same origin; and some

Algorithm 2 Pseudo-code for the fast packet/box intersection. Note
that both “full hits” (i.e., first ray that hits parent also hits box)
and “full misses” (i.e., a covering frustum misses the box) are very
cheap, and have a constant cost independent of packet size. Only
for rays partially hitting the box do we need to perform more than
the first two cheap tests.

{Compute ID of first ray hitting AABB box}
{’first’ is the ID of the first ray hitting box’ parent}
function findFirst(ray[maxRays], int first, AABB box)
{First: Quick ‘‘hit’’ test using ’first’ ray}
if ray[parentsFirstActive] intersects box then
{first one hits → packet hits...}
return parentsFirstActive

end if

{Second: Quick ‘‘all miss’’ test using either frustum
or interval arithmetic}
if frustum(ray[0..N]) misses box then
return maxRays {all rays miss}

end if

{Neither quick test helped, test all rays}
for i = parentsFirstActive .. do
if ray[i] intersects box then
return i {all earlier ones missed}

end if
end for
return maxRays {all rays have missed}

end

packets do have the same direction signs while others don’t. Cur-
rently, both the traversal and intersection functions are templated in
a way such that the template parameters specify whether the packet
has common origin, corner rays, or is a shadow packet. The cor-
ner rays are used only for the triangle intersection, where a trian-
gle can be skipped if all the corner rays miss the triangle at the
same side [Reshetov et al. 2005]. During traversal and box inter-
section, only interval arithmetic is used, and all rays are handled the
same. Since some operations like the ray box intersection and inter-
val arithmetic get simpler if the signs are known, we compute the
signs at the beginning of the traversal loop, and can use a somewhat
faster box intersection if the signs are equal. Even if they differ,
we do not have to split the packet, and only lose a few percent of
performance due to the slower intersection routine.

3.3 Static model performance

Including all the techniques described above, the complete algo-
rithm can be implemented in a few dozen lines of code. We show
the code as two routines: Algorithm 2 performs the packet-box test
with all the optimizations described above, and Algorithm 3 is the
main traversal routine that tracks the current node and the current

5

Wald, Boulos, Shirley; Dynamic Bounding Volume Hierarchies SCI Institute, University of Utah. Technical Report UUSCI-2006-015

node’s first active ray, and calls back to the findFirst routine.

Algorithm 3 Pseudo-code of our packet-based BVH traversal.

{Traverse packet of of rays through the BVH}
function traverse(ray[Nrays])
node=root; firstActive = 0; {Initialize recursion}
while true do
{Find ID of first ray hitting node}
firstActive = findFirst(ray,node->box,firstActive);
if firstActive < maxRays then
if node is inner node then
firstChild = traversalOrder(node,ray);
stack.push(firstActive,node.child[1-firstChild]);
node = node.child[firstChild];
continue

else
intersect all triangles in node

end if
end if
if stack.empty() then
return

end if
(node,firstActive) = stack.pop();

end while
end

To demonstrate that our packet tests can gain efficiency over trac-
ing every ray, we ran our algorithm on several test scenes shown in
Figure 4, and have measured the probabilities for an early hit and
for an early miss, as well as the average number of SIMD ray-box
intersections that have to be performed if neither of the tests was
successful. As can be seen in Table 3, in around half of the cases
can we exit immediately after the first test, and the frustum test
handles the majority of the remaining cases. In only 5% to 30% of
the cases we have to test the remaining rays, and even then only a
fraction of the rays have to be considered.

Table 4 shows that these packet tests greatly reduce the total
number of ray-box tests. The influence of packet size on run times
is shown in Table 5 and as can be seen packets deliver tremendous
benefit. Note that in the case of 2 × 2 packet size, we derive no
benefit from packet culling since our SIMD code handles four rays
at a time, so we use this rather than a single ray implementation for
our base case.

scene (A) early (B) frustum (C) SIMD avg SIMD
hit exits exits tests tests in (C)

erw6 52.3% 42.9% 4.8% 31.7
conf 51.9% 35.3% 12.8% 22.8
soda 49.5% 27.5% 23.0% 32.8
toys 49.7% 32.2% 18.1% 22.7
runner 44.1% 25.3% 30.6% 20.6
fairy 49.1% 30.2% 20.7% 19.9

Table 3: Relative number of cases where our algorithm can im-
mediately exit after the first test, after the second test, and during
the loop over all rays, respectively, and the average number of rays
tested in the latter case.

4 Building effective BVHs for animation

In this section we show that the methods from Section 3 can also
be used to ray trace deformable models. The most straightforward
way to handle deformable models would be to build a new BVH
for each frame, but this is too slow as we show at the end of this
section. Alternatively, we could incrementally change the tree, but

this introduces a good deal of complexity over the static case [Lars-
son and Akenine-Möller 2003]. To avoid that complexity we try to
build a tree whose topology (hierarchy) does not change over time,
but whose AABB coordinates do change. An example of such a
change for a small tree is shown in Figure 5.

Figure 5: When the objects move, a BVH can keep the same hi-
erarchy, and only needs to update the bounding volumes. Though
the new hierarchy may not be as good as the old one, it will always
be correct. By considering different primitive positions during the
build, we can also make sure that the chosen BVH will be reason-
ably good for all scene configurations.

Building the BVH over time. For tree construction we need
to consider the dynamic behavior of the scene so that one set of
partitions (tree topology) can be shared by all deformations with-
out making ray tracing too slow for any configuration the scene
might take. Because we want our method to be easily applied to
user-manipulated and physics-driven models where not all frames
are known in advance, we want to avoid any method that requires
knowledge of all possible deformations of the model.

To find a set of partitions that works for all deformations, we first
need a way to evaluate how good a BVH is for a certain deforma-
tion. Given this metric, we need another metric that allows us to
compare BVHs across a series of deformations. While we could
evaluate a tree by actual ray tracing, we instead evaluate Equation 2
to estimate the quality of a BVH for a certain deformation. This is
more straightforward than determining a “fair” camera path for ray
traced evaluation, and is inexpensive to compute.

Given a set of candidate BVHs, and a set of deformations we
wish to ray trace, we can pick the “best” BVH either by evaluating
the cost for every BVH and every deformation in these sets. We can
then choose the BVH with the lowest maximum cost, or the lowest
maximum cost depending on the priorities of the application. In
pactice we have found that using lowest maximum cost to results in
slightly better frame rates than using lowest average cost does.

One way to create a a candidate set of BVHs is we can build a
BVH for each known deformation (e.g., a time step in an anima-
tion). Alternatively we we can build a BVH that chooses the best

scene erw6 conf soda toys runner fairy
static static static 1st frame 1st frame 1st frame

2x2 brute force
ray-box tests 4,201 12,021 8,688 4,041 4,728 14,501

16x16 clever
ray-box tests 148 890 2,129 462 1,102 1,781
interval tests 31 91 72 32 41 116

sum 179 982 2,202 494 1,143 1,898
ratio (2x2:sum) 23.4 12.2 3.9 8.2 4.1 7.6

Table 4: Number of SIMD ray-box intersections (in thousands) for
both a brute force 2x2 packet traverser, as well as for our algorithm
with 16x16 rays per packet, with a 10242 image. The number of
ray triangle tests stays about the same for both methods. As can
be seen, the improved traversal method greatly reduces the total
number of box tests.

6

Wald, Boulos, Shirley; Dynamic Bounding Volume Hierarchies SCI Institute, University of Utah. Technical Report UUSCI-2006-015

2x2 4x4 8x8 16x16 32x32
erw6 4.9 15.1 32.2 42.6 36.7
conf 1.8 5.3 10.2 10.5 7.0
soda 2.7 7.4 12.6 12.3 7.7
toys 5.4 14.1 23.3 23.7 16.7
runner 5.0 11.5 16.4 15.6 10.5
fairy 1.5 3.9 6.4 6.1 4.0

Table 5: Runtimes in frames per second for ray casting at 10242 on
one CPU as packet size is varied. Animated scene performance is
given as an average over the course of the animation and includes
update time.

single BVH build triangle AABB
scene #tris build over time update update
toys 11k 0.13s 1.2s 0.001s 0.0004s
ben 78k 1.26s 10.8s 0.008s 0.0060s
fairy 180k 3.24s 31.4s 0.018s 0.0130s

Table 6: BVH build times for one BVH, and for a build over time
with 10 candidates, as well as per-frame update time split into tri-
angle update and bounding box refitting.

partition based on all known deformations at each recursive parti-
tioning step. Since this function has to evaluate different poses of
the model in each partitioning step, this best split over time can be
quite expensive. For all the models we tested, the results were usu-
ally the same as with the simpler method of constructing a BVH for
each time step. Whether there are models that would benefit from
the more sophisticated build method is unknown.

Note that we are not interested in finding a BVH that is the op-
timal one for each potential pose of the model, as such an always
optimal pose probably does not exist. In contrast, we are looking
for the BVH that deteriorates the least over all possible poses.

BVH updates. Given a tree whose topology is valid but whose
AABB coordinates are not valid for the current frame, we need to
quickly update these coordinates. This procedure is straightforward
as shown in Algorithm 4. Because we use an ordered traversal, the
flag indicating which of the three axes is “dominant” also needs to
be updated when the box positions are.

The build times running into seconds in Table 6 show why re-
building the tree for each deformation is impractical. While we
could store trees customized for known timesteps, this would in-
crease update time, and more importantly would preclude using
our BVH in applications where deformations result from physics
or user interaction. The time for building the best BVH over time is
then mostly linear in the number of chosen candidate BVHs. For all
our experiments, 10-20 candidate BVHs have been sufficient. The
times in Table 6 also shows that updating the bounding boxes does
not add undue time over updating the triangles.

Algorithm 4 BVH update after triangles move

function UpdateBBoxes(Node node)
if node is leaf then
bounds(node) ← boundsOf(triangles(node));

else
(c0, c1) = children(node);
UpdateBBoxes(c0)
UpdateBBoxes(c1)
node.bounds = ∪{ bounds(c0), bounds(c1) }
recompute ordered traversal information

end if
end

Scene #tris OpenRT BVH
toys 1st frame 11k 12.7 23.7
runner 1st frame 78k 8.0 16.6
fairy 1st frame 180k 4.4 7.9

Table 7: Performance frames/sec. (at 10242 pixels, 1 CPU, 2.6 GHz
Opteron desktop PC) for the OpenRT and our BVH system on each
of the first frames of our three test animations. Note that this is a
newer version of OpenRT than that used by Reshetov et al. [2005]
to generate the OpenRT performance quoted in Table 1.

Figure 6: Visualization of the hierarchy for the poser model at
frame 14. Left: The full model. Right: The three of the eight level
3 subtrees containing the main body. Top: A deformed BVH origi-
nally built for frame 0. Bottom: The best BVH over time. The best
tree over time does find the natural partitioning quite well, whereas
the deformed first tree did far worse in separating the arms from the
body, and has much larger subtrees with significant overlap.

4.1 Performance on deformable models

Our BVH was implemented in C++, and uses SIMD extensions via
SSE intrinsics that are available with both the Intel compiler as well
as on recent versions of GCC. The code is mainly optimized for
Opteron CPUs, but also runs on Intel processors, and was proto-
typically implemented on an Apple G5 using Altivec instructions.
It does not contain any scene or machine specific code, although
choosing between 8× 8 and 16× 16 packet sizes was done manu-
ally for each model.

To illustrate the performance of our system we use three sample
animations described later in this section. To establish that our sys-
tem is fast for static models that are more like typical deformable
scenes than the architectural models shown in Table 1, we com-
pared performance with OpenRT on the first frame of each of the
animations (Table 7). We now show how these numbers are affected
by using a shared BVH topology across time for each of the scenes.
These scenes were chosen to highlight different properties of the
algorithm, especially robustness of for different types of scenes.

Runner: a single deformed mesh. We begin with a typical
example of a “single model” deformable mesh. It is a 80,000 trian-
gle animated figure from the Poser program and has a reasonable
range of deformations. Even for this simple model, deforming a
tree built over a fixed timestep can deteriorate quickly: Figure 6
shows the top levels of the BVH from the first frame of animation
compared to that using the build over time. Using the better BVH
rather than the BVH of the first frame improves performance from
15.3 to 16.2 frames per second. While this improvement is worth
attaining given that the build over time is straightforward, its rela-
tively small magnitude surprised us given that the BVH for the first
frame looks so much worse.

An explanation for the small improvement is that while the
packet based traversal does benefit from good trees, it is surpris-
ingly robust when those trees deteriorate incrementally. This is fact
is the key to its performance in animation and allows us to use one

7

Wald, Boulos, Shirley; Dynamic Bounding Volume Hierarchies SCI Institute, University of Utah. Technical Report UUSCI-2006-015

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 5 10 15 20 25

S
e
c
o
n
d
s

P
e
r

F
r
a
m
e

Frame Number

Worst Per Frame

Build over Time

Best Per Frame

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 5 10 15 20 25

S
e
c
o
n
d
s

P
e
r

F
r
a
m
e

Frame Number

Worst Per Frame

Build over Time

Best Per Frame

Figure 7: The ray tracing times per frame for the Runner model for
16× 16 ray packet (left), and 4× 4 ray packets (right). The BVHs
used are the same for both graphs and only packet size varies. The
blue bars represent the times for each frame when a separate BVH
is built for each frame (BVH build time not included). The green
shows the times using a shared BVH among all the frames (BVH
update time included). The red shows the time when the worst BVH
from all other frames is used for each frame (BVH build time not
included).

tree over time. The left graph in Figure 7 shows efficiency broken
down by frames of the animation. Note that for 16×16 ray packets,
our build-over-time method is never more than about 15% slower
than using a custom BVH for each frame. More surprising is that
if we actively seek the worst BVH to use for each frame, we only
are still within about 30% of the times using custom BVHs for each
frame. Note that this is a peculiarity of our algorithm, and not true
for every BVH traversal method; even for a badly chosen hierarchy,
deformations will mostly result in getting some rather large bound-
ing volumes close to the root. In our algorithm, these large volumes
will trigger the early hit exit, and thus are extremely cheap to tra-
verse. Evidence for this can be seen in the right of Figure 7 that
shows the 2× 2 ray packet code that does not benefit as much from
packet optimizations. Not only does the overall speed slow down
about a factor of four, the relative performance of the build-over-
time tree jumps from 15% to 40%, presumably because more rays
are tested against the larger boxes in the tree. Note that the trees are
the same for both cases.

There are two additional important factors causing the small de-
terioration over time. The first is that the SAH build tends to find
objects and groups of objects and place them together in subtrees.
The second is the ordered traversal employed by our traversal algo-
rithm. During the animation, the deformation to the subtrees can
make an originally left subtree move to the right, and the right one
move to the left. For example, this happens every time the runner’s
legs make a full step. However, each node’s ordered traversal infor-
mation is recomputed during each BVH update, and will make sure
that the traversal order will be correct.

Toys: incoherent motion of individual objects. The previ-
ous example has shown that a BVH can be shared for deformations
of an individual objects. However, typical interactive applications
use multiple animated objects at the same time. These usually show
a totally different dynamic behavior: they run around each other, are
sometimes close and sometimes far apart from each other, etc. Such
a scene is shown in Figure 8, where a set of animated wind-up toys
run incoherently around among each other, bump into each other,
and even jump over each other.

Since this kind of motion is completely different from a single
deformed mesh, it is not obvious that our method can handle it as
well. However, our method does not depend on a single, connected
mesh, but only on a “natural hierarchy” inherent in the scene. For
scenes composed of multiple animated models, this hierarchy is ac-

Figure 8: Four example frames from the Toys sequence, with the
hierarchy visualized via color-coding. The build over time auto-
matically separates the individual objects into individual subtrees.
On a single 2.6 GHz Opteron, this scene renders fullscreen at 10.5
fps, including shading, shadows, and animation.

tually simpler to find than for an animated mesh by putting each
of the animated objects into a separate subtree. Though this would
be trivial and highly efficient if that scene hierarchy were speci-
fied explicitly by the application (which in practice is usually the
case), the build over time can also find this hierarchy automatically,
and without any effort: If a split separates two objects, their boxes
over all frames will be small, and the associated cost low; if a split
accidentally groups part of one model with a different model, the
resulting cost over deformation will be huge, and not accepted.

Because the SAH tends to place objects in their own subtrees, the
build over time works mostly as expected. However, the first split
is somewhat unintuitive in that it first separates the larger ground
object. Because the split happens in the middle of the toys it splits
each in half. Each of these halves does get its own subtree. This hor-
izontal chopping of all toys could be avoided if our algorithm were
allowed to exploit knowledge about the scene hierarchy. While un-
intuitive, this split is not a bad split from the expected cost perspec-
tive, and in fact may be the right one to have taken. The order in
which the objects themselves are grouped in the upper levels of the
BVH is less obvious if the movement is mostly incoherent. Thus,
the BVH’s upper few boxes can become quite large when the ob-
jects start to move. However, this only affects the first few bound-
ing volumes close to the root. Since these get traversed extremely
quickly by the “first hit” optimization, this is probably not expen-
sive. Thus, even in this example we achieve a performance of 10.5
frames per second (on average) on a single Opteron 2.6 GHz CPU
(at 1024x1024 pixel) including shading and shadows. The impact
of using a built-over-time BVH for all frames is, like for the Runner
scene, relatively small (Figure 9, left).

Fairy-forest: a scene with moving deformable objects.
Finally, to stress test our approach with a real-world animated
scene, we have taken a free modeling program by DAZStudio, and
have created a scene composed of a total of nearly 180,000 an-
imated triangles (Figure 10). The scene consists of an animated
80,000 triangle fairy model dancing through a forest made up of
trees and animated ferns. Additionally, a dragonfly – with skinned
body and flapping wings - flies around the fairy. The scene also

8

Wald, Boulos, Shirley; Dynamic Bounding Volume Hierarchies SCI Institute, University of Utah. Technical Report UUSCI-2006-015

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0 5 10 15 20

S
e
c
o
n
d
s

P
e
r

F
r
a
m
e

Frame Number

Worst Per Frame

Build over Time

Best Per Frame

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 5 10 15 20

S
e
c
o
n
d
s

P
e
r

F
r
a
m
e

Frame Number

Worst Per Frame

Build over Time

Best Per Frame

Figure 9: Left: performance of 20 frames from the 250 frame Toys
scene with 16 × 16 ray packets. As with the Runner scene, there
is little overhead added by sharing a BVH between frames. Right:
the same measurements for the Fairy scene.

Figure 10: Fairy-forest test scene: An animated dragonfly (a) and
a dancing fairy (b), placed into a typical game environment with
background textures and animated foreground geometry (c). The
resulting scene (d) consists of 180,000 animated triangles, and is
rendered with textures, shading, and shadows, at 2.2 fps at 10242

resolution.

makes use of textures (30 megabytes total), and – though the back-
ground and floor textures are pre-lit – is rendered with shadows
from a point light source.

This scene intentionally stresses several issues for our approach:
It is quite complex, and with 180,000 triangles in the complexity
range of today’s games; it is almost fully animated, but no knowl-
edge about the modeling hierarchy is provided to our algorithm (ex-
cept some sample frames); the surrounding geometry with tall trees
and background objects stresses some “teapot in a stadium” situa-
tions and makes hierarchy construction non-obvious.

Our algorithm handles this scene surprisingly well. Without
shading and shadows – but with full animation – the five exam-
ple frames in Figure 1 render at 6.0 – 6.5 frames per second on a
single CPU. This includes the time to recompute all of the 180,000
triangles and 100,000 vertices every frame, as well as the time to re-
compute bounding volumes and the triangle acceleration structure
required for the triangle test (Figure 9, right).

Including shading and shadows, the performance drops consid-
erably as expected. As reported by [Reshetov et al. 2005], for a
fast ray tracer even a simple shader computing only a dot product
can reduce performance by 50%. Additionally, our shader inter-
polates shading normals, computes textures coordinates, touches
megabytes of textures, and shoots shadow rays. Nevertheless, we
still achieve 2.0 to 2.3 frames per second on a single CPU, and 3.4
to 4.0 frames per second once we enable the second CPU in our PC.

5 Conclusion

In this paper, we have presented two main contributions: a novel
ray packet traversal scheme for BVHs, and a method for BVH con-
struction that allows many deformations of the same scene to reuse
the same hierarchy. Taken together, these two techniques allow for
ray tracing animated models at a performance that is competitive to
the fastest ray published ray tracing performance for static models.
Our approach combines ordered traversal, packet traversal, SIMD

computations, early BVH hits, and MLRTA-style early exits. This
combination turns out to be so natural that the full implementation
including all these concepts can be written up compactly.

Limitations. There are several limitations to our current ap-
proach. It is limited to deformable scenes, so only triangle positions
can be changed. Thus applications with primitives such as adaptive
meshes or particle systems with births and deaths could be a prob-
lem. Because we assume some reasonably smooth space of poses,
our BVH might not be efficient for some models. So far, how-
ever, we have not found an animation sequence that exhibits this
behavior. Finally, even for scenes composed of multiple objects
we currently assume that all these objects are known in advance,
and that their positions can be sampled. In practice, however, many
interactive applications consist of several independent models that
are moving incoherently, and no advance knowledge at all of how
many of these models will be in the scene, nor where these will be,
at any time. In that case the upper levels of the hierarchy that group
the scene’s individual objects would have to be rebuilt. Though we
believe this is feasible, a concrete demonstration would need to be
created before we could conclude that.

Future work. To help compare different approaches, the ray
tracing community needs a set of animation benchmarks similar
in spirit to the static SPD database developed by Haines [1987].
There is some movement in this direction [Lext et al. 2000] but
more is needed. To address the limitation to deformable scenes,
incremental trees that can change the number of leaves is worth in-
vestigating. To make the BVH more general, oriented bounding
primitives could be helpful. There are several optimizations that
could improve our run times. First, there are algorithmic techniques
such as marking shadow rays once they are occluded to prevent re-
dundant traversal and intersection, exiting once all shadow rays are
occluded [Smits 1998], and the same optimizations for architec-
tural scenes that are being used in MLRTA [Reshetov et al. 2005].
Second, there is considerable room for low-level optimizations. Al-
though we already use SIMD extensions, most of the code is written
for flexibility, simplicity, and portability, and makes use of tem-
plated high-level C++ code. We believe there is potential in further
optimizing this code if more aggressive and architecture-specific
coding were performed. Finally, our algorithm could benefit from
powerful hardware architectures such as IBM’s Cell processor [Mi-
nor et al. 2005]. If our algorithm maps well to the Cell, which we
believe it will, it could run at 10x the speeds reported here and ray
tracing on commodity game consoles might finally come into reach.
Finally, adapting our system to interactive modeling applications
would be the ultimate test of whether ray tracing could become an
everyday interactive technique.

Acknowledments
The ’fairy forest’ animation has been created with DAZ Studio; the
base models have been graciously provided by DAZ Productions
(www.daz3d.com). The ’toys’ animation is courtesy of Andrew
Kensler. All scenes are available via the Utah Animation Repos-
itory (http://www.sci.utah.edu/∼wald/animrep). We would like to
thank Alexander Reshetov for insight into his MLRT system.

Miscellaneous
An accompanying demonstration video is available online at
http://www.sci.utah.edu/∼wald/SuppVideo dynbvh.mov.

This paper has been conditionally accepted at ACM Transactions
on Graphics. Once available, the revised TOG version will replace
this technical report. Please check back for the revised version.

9

Wald, Boulos, Shirley; Dynamic Bounding Volume Hierarchies SCI Institute, University of Utah. Technical Report UUSCI-2006-015

References
ADAMS, B., KEISER, R., PAULY, M., GUIBAS, L. J., GROSS, M., AND

DUTRÉ, P. 2005. Efficient raytracing of deforming point-sampled sur-
faces. Computer Graphics Forum 24, 3 (Sept.), 677–684.

ADELSON, S. J., AND HODGES, L. F. 1995. Generating exact ray-traced
animation frames by reprojection. IEEE CG&A 15, 3, 43–52.

APPEL, A. 1968. Some techniques for shading machine renderings of
solids. SJCC, 27–45.

ARVO, J., AND KIRK, D. 1989. A survey of ray tracing acceleration tech-
niques. In An Introduction to Ray Tracing, A. S. Glassner, Ed. Academic
Press, San Diego, CA.

BENTLEY, J. L. 1975. Multidimensional binary search trees used for asso-
ciative searching. Communications of the ACM 18, 9, 509–517.

CARR, N., HOBEROCK, J., CRANEH, K., AND HART, J. 2006. Fast GPU
ray tracing of dynamic meshes using geometry images. In Proceedings
of Graphics Interface (submitted).

CLARK, J. H. 1976. Hierarchical geometric models for visible surface
algorithms. Communications of the ACM 19, 10, 547–554.

CLEARY, J., WYVILL, B., BIRTWISTLE, G., AND VATTI, R. 1983. A
Parallel Ray Tracing Computer. In Proceedings of the Association of
Simula Users Conference, 77–80.

CROSS, R. A. 1995. Interactive realism for visualization using ray tracing.
In Proceedings of Visualization, 19–26.

FOLEY, T., AND SUGERMAN, J. 2005. Kd-tree acceleration structures for
a gpu raytracer. In Proceedings of HWWS, 15–22.

GLASSNER, A. S. 1984. Space subdivision for fast ray tracing. IEEE
CG&A 4, 10, 15–22.

GLASSNER, A. 1988. Spacetime ray tracing for animation. IEEE CG&A
8, 2, 60–70.

GOLDSMITH, J., AND SALMON, J. 1987. Automatic creation of object
hierarchies for ray tracing. IEEE CG&A 7, 5, 14–20.

GRÖLLER, E., AND PURGATHOFER, W. 1991. Using temporal and spatial
coherence for accelerating the calculation of animation sequences. In
Proceedings of Eurographics, 103–113.

GUTTMAN, A. 1984. R-trees: A dynamic index structure for spatial search-
ing. In Proceedings of SIGMOD, 47–57.

HAINES, E. 1987. A proposal for standard graphics environments. IEEE
CG&A 7, 11, 3–5.

HAINES, E. 1991. Efficiency improvements for hierarchy traversal in ray
tracing. In Graphics Gems II, J. Arvo, Ed. Academic Press, 267–272.

HAVRAN, V. 2001. Heuristic Ray Shooting Algorithms. PhD thesis, Faculty
of Electrical Engineering, Czech Technical University in Prague.

HURLEY, J. T., KAPUSTIN, A., RESHETOV, A., AND SOUPIKOV, A. 2002.
Fast ray tracing for modern general purpose CPU. In Proceedings of
GraphiCon.

JANSEN, F. 1986. Data structures for ray tracing,. In Proceedings of the
Workshop in Data structures for Raster Graphics, 57–73.

KAPLAN, M. 1985. The uses of spatial coherence in ray tracing. In ACM
SIGGRAPH ’85 Course Notes 11.

KAY, T., AND KAJIYA, J. 1986. Ray tracing complex scenes. In Proceed-
ings of SIGGRAPH, 269–278.

KIRK, D., AND ARVO, J. 1988. The ray tracing kernel. In Proceedings of
Ausgraph, 75–82.

LARSSON, T., AND AKENINE-MÖLLER, T. 2003. Strategies for bounding
volume hierarchy updates for ray tracing of deformable models. Tech.
Rep. MDH-MRTC-92/2003-1-SE, MRTC, February.

LARSSON, T., AND AKENINE-MÖLLER, T. 2005. A dynamic bounding
volume hierarchy for generalized collision detection. In Workshop On
Virtual Reality Interaction and Physical Simulation, 91–100.

LEXT, J., AND AKENINE-MÖLLER, T. 2001. Towards Rapid Reconstruc-
tion for Animated Ray Tracing. In Proc. of Eurographics, 311–318.

LEXT, J., ASSARSSON, U., AND MÖLLER, T. 2000. BART: A benchmark
for animated ray tracing. Tech. rep., Department of Computer Engineer-
ing, Chalmers University of Technology, Göteborg, Sweden, May.

MACDONALD, J. D., AND BOOTH, K. S. 1989. Heuristics for ray tracing
using space subdivision. In Proceedings of Graphics Interface, 152–63.

MAHOVSKY, J., AND WYVILL, B. 2004. Fast ray-axis aligned bounding
box overlap tests with Plücker coordinates. JGT 9, 1, 35–46.

MAHOVSKY, J. 2005. Ray Tracing with Reduced-Precision Bounding Vol-
ume Hierarchies. PhD thesis, University of Calgary.

MARK, W., AND FUSSELL, D. 2005. Real-time rendering systems in 2010.
Tech. Rep. 05-18, Computer Science, University of Texas, May.

MINOR, B., FOSSUM, G., AND TO, V. 2005. TRE : Cell broadband
optimized real-time ray-caster. In Proceedings of GPSx.

MÖLLER, T., AND TRUMBORE, B. 1997. Fast, minimum storage ray
triangle intersection. JGT 2, 1, 21–28.

MÜLLER, G., AND FELLNER, D. 1999. Hybrid scene structuring with
application to ray tracing. In Proceedings of International Conference
on Visual Computing, 19–26.

MUUSS, M. 1995. Towards real-time ray-tracing of combinatorial solid
geometric models. In Proceedings of BRL-CAD Symposium.

NG, K., AND TRIFONOV, B. 2003. Automatic bounding volume hierar-
chy generation using stochastic search methods. In Mini-Workshop on
Stochastic Search Algorithms.

PARKER, S. G., MARTIN, W., SLOAN, P.-P. J., SHIRLEY, P., SMITS,
B. E., AND HANSEN, C. D. 1999. Interactive ray tracing. In Proceed-
ings of Interactive 3D Graphics, 119–126.

PARKER, S. 2002. Interactive ray tracing on a supercomputer. In In Prac-
tical Parallel Rendering, A. Chalmers and E. Reinhard, Eds.

PURCELL, T., BUCK, I., MARK, W., AND HANRAHAN, P. 2002. Ray trac-
ing on programmable graphics hardware. In Proceedings of SIGGRAPH,
703–712.

REINHARD, E., SMITS, B., AND HANSEN, C. 2000. Dynamic acceleration
structures for interactive ray tracing. In Proceedings of the Eurographics
Workshop on Rendering, 299–306.

RESHETOV, A., SOUPIKOV, A., AND HURLEY, J. 2005. Multi-level ray
tracing algorithm. In (Proceedings of SIGGRAPH, 1176–1185.

RUBIN, S., AND WHITTED, T. 1980. A 3D representation for fast rendering
of complex scenes. In Proceedings of SIGGRAPH, 110–116.

SCHMIDL, H., WALKER, N., AND LIN, M. 2004. CAB: Fast update of
OBB trees for coll. det. between articulated bodies. JGT 9, 2, 1–9.

SCHMITTLER, J., WALD, I., AND SLUSALLEK, P. 2002. SaarCOR –
A Hardware Architecture for Ray Tracing. In Proceedings of the ACM
SIGGRAPH/Eurographics Conference on Graphics Hardware, 27–36.

SMITS, B. 1998. Efficiency issues for ray tracing. Journal of Graphics
Tools 3, 2, 1–14.

VAN DEN BERGEN, G. 1997. Efficient collision detection of complex
deformable models using AABB trees. JGT 2, 4, 1–14.

WALD, I., SLUSALLEK, P., BENTHIN, C., AND WAGNER, M. 2001. In-
teractive rendering with coherent ray tracing. In Proceedings of Euro-
graphics, 153–164.

WALD, I., BENTHIN, C., AND SLUSALLEK, P. 2003. Distributed inter-
active ray tracing of dynamic scenes. In Proceedings of the IEEE Sym-
posium on Parallel and Large-Data Visualization and Graphics (PVG),
77–86.

WALD, I. 2004. Realtime Ray Tracing and Interactive Global Illumination.
PhD thesis, Saarland University.

WEGHORST, H., HOOPER, G., AND GREENBERG, D. 1984. Improved
computational methods for ray tracing. ACM TOG 3, 1, 52–69.

WHITTED, T. 1980. An improved illumination model for shaded display.
CACM 23, 6, 343–349.

WILLIAMS, A., BARRUS, S., MORLEY, R. K., AND SHIRLEY, P. 2005.
An efficient and robust ray-box intersection algorithm. JGT 10, 1, 49–54.

WOOP, S., SCHMITTLER, J., AND SLUSALLEK, P. 2005. RPU: A pro-
grammable ray processing unit for realtime ray tracing. In Proceedings
of SIGGRAPH, 434–444.

10

