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Figure 1: Several animated models ray traced using our coherent grid traversal: a) A gesturing hand of 15K triangles. b) An animated “Poser”
model (78K triangles). c) Animated wind-up toys (11K triangles) walking incoherently around among each other. d) A rigid-body dynamics
simulation of marbles (8.8K triangles). e) A complex scene of 174K animated triangles, where a fairy and a dragonfly dancing through an
animated forest. Scenes are rebuilt from scratch every frame, allowing fully dynamic animation. Excluding shadows and shading, we can
rebuild and ray trace these scenes at 1024× 1024 pixels at 29.5, 13.3, 25.8, 47.8, and 3.1 frames per second on a dual 3.2 GHz Xeon.

Abstract

We present a new approach to interactive ray tracing of animated
scenes based on traversing frustum-bounded packets of coherent
rays through uniform grids. By incrementally computing the over-
lap of the frustum with a slice of grid cells, we accelerate grid
traversal by more than a factor of 10, and achieve ray tracing perfor-
mance competitive with the fastest known packet-based kd-tree ray
tracers. The ability to efficiently rebuild the grid on every frame en-
ables this performance even for fully dynamic scenes that typically
challenge interactive ray tracing systems.

1 Introduction and Related Work

Over the last 20 years, a number of different data structures have
been proposed for accelerating ray tracing, such as Bounding Vol-
ume Hierarchies (BVH), Grids, Octrees [Glassner 1984], and Bi-
nary Space Partitioning (see, e.g., [Glassner 1989; Havran 2001] for
an overview). Each of these data structures has their own strengths
and weaknesses, and the effectiveness of each technique strongly
depends on the scene, application, and efficiency of the actual im-
plementation. Recent work in interactive ray tracing, however,
has focused primarily on kd-trees [Wald 2004; Foley and Suger-
man 2005; Reshetov et al. 2005; Woop et al. 2005] on multilevel
grids [Parker et al. 1999b; Reinhard et al. 2000; Purcell et al. 2002].

While the first interactive ray tracers used grids [Parker et al.
1999b], algorithmic developments for kd-tree based ray tracers –
most notably coherent ray tracing [Wald et al. 2001] and MLRT
traversal [Reshetov et al. 2005] – have significantly improved the
performance of kd-trees. Packet tracing [Wald et al. 2001] creates
groups of spatially coherent rays that are simultaneously traced to-
gether through a kd-tree, where all rays perform each traversal it-
eration in lock-step. This enables effective use of SIMD extensions
on modern CPUs, increases the computational density of the code,
and reduces strain on memory access. In turn, this gives rise to
fast software implementations [Wald et al. 2001], and instruction-
parallel design of special-purpose ray tracing hardware [Woop et al.
2005]. Exploiting the coherence in a packet of rays has yielded fur-
ther improvements in “Multilevel Ray Tracing” (MLRT) [Reshetov
et al. 2005], where a bounding frustum drives the kd-tree traversal
of rays in bulk instead of considering each ray individually. Con-
sequently, the cost of a traversal step becomes independent of the
number of rays in the packet, encouraging larger packets with sig-
nificantly lower cost per ray.

Unfortunately, these techniques are not directly applicable to grids.
Thus, packet-enabled kd-trees have recently shown to consistently
outperform grid-based ray tracers, and many believe that they are
a superior acceleration structure for most interactive applications
(see, e.g., [Stoll 2005]).

Dynamic Scenes Although packet kd-tree traversals outper-
form grids for static scenes, animated scenes present a challenge
due to the high computational cost of rebuilding a kd-tree as ob-
jects move. For the surface area heuristics required to build fast
kd-trees [Reshetov et al. 2005], building the acceleration struc-
ture effectively requires seconds to minutes for moderately complex
scenes. This limitation to static scenes limits the utility of interac-
tive ray tracing for many applications that would benefit from ad-
vanced lighting models, such as visual simulation, animations, and
interactive games. While some efforts have focused on extending
kd-trees to dynamic scenes [Wald 2004; Wald et al. 2003], they are
limited to simple hierarchical motion of rigid bodies, and therefore
are unsuitable for most truly dynamic animations that require un-
structured motion. For full generality, we propose rebuilding the
acceleration structure from scratch every frame. With kd-trees, this
is currently infeasible.

A grid, in contrast, can be created and modified at interactive
rates [Reinhard et al. 2000]. Consequently, grids are attractive for
dynamic scenes because of their faster build, even if they have a
higher traversal cost than a kd-tree. Nevertheless, as kd-trees can be
up to an order of magnitude faster than single-ray grids, grids will
only be viable when their traversal can be performed with similar
efficiency. Ultimately, this will require employing the same tech-
niques for grids that made kd-trees as fast as they are today: coher-
ent packets of rays, SIMD, and frusta. However, the 3D digital dif-
ferential analyzer (3DDDA) algorithms usually used for traversing
a grid do not lend well to packetization, as we will explain below.

In this paper, we propose a new traversal scheme for grid-based
acceleration data structures that allows for traversing and inter-
secting packets of coherent rays using an MLRT-inspired frustum-
traversal scheme. This algorithm is well-suited for SIMD imple-
mentation and provides dramatic speedup over a conventional grid
traversal, yielding performance comparable to kd-tree based sys-
tems for static scenes. More importantly, this scheme facilitates
animated scenes in a straightforward manner by interactively re-
building the data structure from scratch every frame. Using this
technique on fully animated scenes of up to about 100,000 trian-
gles, we achieve a ray tracing performance of 10-50 frames per
second (at 1024× 1024 pixels) on a dual 3.2 GHz Xeon CPU.
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2 Coherent Grid Traversal
Efficient ray-grid traversal has already received much atten-
tion [Cleary et al. 1983; Fujimoto et al. 1986; Amanatides and Woo
1987; Parker et al. 1999b; Spackman and Willis 1991], in aspects of
both algorithm and implementation. Significant improvements can-
not be expected from merely optimizing current implementations;
we must explore new concepts to design an effective packetized
traversal. Our new algorithm delivers to grids the same compo-
nents that made KD-trees as fast as they are today: packets, SIMD
extensions, and frustum traversal; while preserving the trivial com-
putation of an incremental grid marching step.

In this section, we explain why these techniques have been suc-
cessful for other acceleration structures and discuss the difficul-
ties of applying the same concepts to a conventional grid traversal.
Then, we derive our new packet traversal scheme, and show how
it can benefit from known optimizations to achieve significantly
higher performance than past grid implementations.

2.1 Issues with Packetized Grids

The basic idea of packet and frustum traversal is straightforward:
rather than traverse each ray on its own, we exploit the intrinsic
coherence between neighboring rays, and trace them together. If
the rays are coherent, they will largely traverse the same regions
of space, accessing identical nodes in an acceleration structure, and
intersecting the same underlying triangles. Effectively, the cost of
memory access becomes amortized over all the rays in a packet,
ideally for both our acceleration structure and geometry data. In
addition, traversing multiple rays through the same node of the ac-
celeration structure allows us to perform SIMD operations on four
rays at once, reducing the computation costs of both traversal and
primitive intersection by up to a factor of four. Finally, frustum
techniques determine intersection patterns of an entire packet, of-
ten replacing intensive per-ray branching with a single test.

The advantages of packets, SIMD and frustum methods are bene-
ficial to any acceleration structure. Spatially hierarchical structures,
such as a kd-tree or BVH, typically exhibit little divergence at the
upper levels of traversal, making them ideally suited for adaptation
to ray packets. Packets are easily traversed through hierarchical
acceleration structures where rays generally progress through iden-
tical cells; diverging only in finer nodes deep down in the hierarchy,
if at all. Even when rays diverge, some rays just traverse a few cells
that they would not have traversed otherwise, but do not interfere
with traversal decisions in the remaining part of the subtree. Since
the packet is never divided, those rays automatically are re-enabled
as soon as the recursion returns from that subtree.

For a grid, in contrast, the situation is more complicated: traver-
sal is always performed on the same fine level, where divergence is
most likely. Moreover, grid based ray tracers typically use 3D dig-
ital differential analyzers (3DDDA) or Bresenham-like algorithms
to iterate through the voxels traversed by the ray (e.g., [Fujimoto
et al. 1986; Amanatides and Woo 1987; Spackman 1990]). These
algorithms can only chose one cell at a time to step into, but differ-
ent rays can disagree on the next cell to be traversed. For example,
Figure 2 shows four rays diverging in cell B; some demand traversal
to C, while others demand traversal to D. If the packet decides to go
to C first, the 3DDDA state variables for those rays entering cell D
become invalid (and vice versa). These invalid state variables break
the 3DDDA algorithm in the next traversal step.

This could be solved by splitting the packet into subpackets with
the same traversal decision. However, Figure 2 shows that the rays
that have diverged in cell A still traverse other common cells (E, F,
G) later on. If the packet were split at cell B, that coherence would
be lost. Re-merging the packets after each step would solve that
problem, but is prohibitively expensive.

A B C

D E F

G

Figure 2: Four coherent rays traversing a grid. The rays are initially
together in cells A and B, but then diverge at B where they disagree
on whether to first traverse C or D in the next step. Even though they
have diverged, they still visit common cells (E, F, G) afterwards.

2.2 A Slice-based Packet Traversal for Grids

As the above discussion has shown, the primary concern with pack-
etizing a grid is that with a 3DDDA, different rays may demand
different traversal orders. We solve this by abandoning 3DDDA
altogether, and devise an algorithm that traverses the grid slice by
slice rather than cell by cell. For example, we can traverse the rays
in Figure 2 by traversing through vertical slices; from cell A in the
first slice, we would traverse the rays to cells B and D in the sec-
ond slice, then to C and E in the third, and so on. In each slice,
we would intersect all rays with all of the slice’s cells that are over-
lapped by at least one ray. This may traverse some rays through
cells they would not have intersected themselves, but will keep the
packet together at all times. In Figure 2, we would intersect 7 cells
with 4 rays each, instead of 22 cell visits if the rays are traced in-
dividually. Though the packet now intersects only 7 instead of 22
cells, the total number of ray-cell intersection tests is 7 × 4 = 28.
In practice, ray coherence easily compensates for this overhead.

We first transform the rays into the canonical grid coordinate
system, in which a grid of Nx × Ny × Nz cells maps to the 3D
region of [0..Nx) × [0..Ny) × [0..Nz). In that coordinate system,
the cell coordinates of any 3D point p can be computed simply by
truncating it. Then, in this coordinate system, we pick the dominant
component (the ±X , ±Y or ±Z axis) of the direction of the first
ray. This will be the “major traversal axis” that we call ~K; all rays
are traversed along this same axis. The remaining dimensions are
denoted ~U and ~V . In order to traverse the rays front to back, which
allows early termination when all rays have intersected intersection
before the next slice, all rays must have the same sign along the
traversal direction. For coherent packets, this is not a limitation; to
violate this assumption, two rays would need to span an angle of
more than π

2
. We do not demand that all rays in a packet have the

same dominating axis, nor that their direction signs match along
~U or ~V , as is usually required by kd-tree packet traversers [Wald
2004] as long as the rays are coherent.

Now, consider a slice k along the major traversal axis, ~K. For
each ray in the packet, there is a point pin

i where it enters this slice,
and a point pout

i where it exits. The axis aligned box B that en-
closes these points will also enclose all the 3D points – and thus,
the cells – visited by at least one of of the rays. Once B is known,
truncating its minimum and maximum coordinates yields the u, v
extents of all the cells on slice k that are overlapped by any of the
rays (Figure 3d).

Extension to Frustum Traversal Instead of determining the
overlap B based on the entry and exit points of all rays, we can
compute the four planes bounding the packet on the top, bottom,
and sides. This forms a bounding frustum that has the same overlap
box B as that computed from the individual rays. Since the rays are
already transformed to grid-space, we can determine our bounding
planes based on the minima and maxima of all the rays’ u and v
slopes. For a packet of N×N primary rays, we can simply compute
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Figure 3: Given a set of coherent rays, our algorithm first computes
the packet’s bounding frustum (a) that is then traversed through the
grid one slice at a time (b). For each slice (blue), we incremen-
tally compute the frustum’s overlap with the slice (yellow), which
determines the actual cells (red) overlapped by the frustum. (c) In-
dependent of packet size, each frustum traversal step requires only
one four-float SIMD addition to incrementally compute the min and
max coordinates of the frustum slice overlap, plus one SIMD float-
to-int truncation to compute the overlapped grid cells. (d) Viewed
down the major traversal axis, each ray packet (green) will have
corner rays which define the frustum boundaries (dashed). At each
slice, this frustum covers all of the cells covered by the rays.

these extremal planes using the four corner rays; however for more
general packets all rays must be considered.

Traversal Setup Once the plane equations are known, we can
intersect the frustum with the bounding box of the grid; the mini-
mum and maximum coordinates of the overlap determine the first
and last slice that should be traversed. If this interval is empty, the
frustum misses the grid, and we can terminate without traversing.

Then, we compute the minimum and maximum u and v coordi-
nates of the entry and exit points with the first slice to be computed.
Essentially, these describe the lower left and upper right corner of
an axis-aligned box bounding the frustum’s overlap with the initial
slice, B(0). Note that we only need the u and v coordinates of each
B(i), as the k coordinates are equal to the slice number.

Incremental Traversal Since each slice’s overlap box B(i) is
determined by the frustum’s planes, the minimum and maximum
coordinates of two successive boxes B(i) and B(i+1) will differ
by a constant vector ∆B. With each slice being 1 unit wide, this
∆B is simply ∆B = (dumin, dumax, dvmin, dvmax, where the
dumin/max and dvmin/max are the slopes of the bounding planes
in the grid coordinate space.

Given a slice’s overlap box B(i), we can now incrementally com-
pute the next slice’s overlap box B(i+1) via B(i+1) = B(i) + ∆B.
This requires only four floating point additions, and can be per-
formed with a single SIMD instruction]. As mentioned above, once
a slice’s overlap box B is known, the range [i0..i1] × [j0..j1] of
overlapped cells can be determined by truncating B’s coordinates
and converting them to integer values. This operation can also be
performed with a single SIMD float-to-int conversion instruction.
Thus, for arbitrarily sized packets of N × N rays, the whole pro-
cess of computing the next slice’s overlapped cell coordinates costs

only two instructions: a SIMD addition, and a SIMD float-to-int
conversion. The complete algorithm is sketched in Figure 3.

2.3 Efficient Slice and Triangle Intersection

Once the cells overlapped by the frustum have been determined, we
intersect all of the rays in a packet with the triangles in each cell.
Triangles may appear in more than one cell, and some rays will
traverse cells that would not have been traversed without packets.
Consequently, redundant triangle intersection tests are performed.
The overhead of these additional tests can be avoided using two
well-known techniques: SIMD frustum culling, and mailboxing.

SIMD Frustum Culling A grid does not conform as tightly to
the geometry than a kd-tree, and thus performs some triangle in-
tersections that a kd-tree would avoid (see Figure 4). To allow for
interactive grid builds, cells are filled if they contain the bounding
boxes of triangles rather than the triangles themselves, further ex-
acerbating this problem. (see Section 3). However, as once can see
in Figure 4, many of these triangles will lie completely outside the
frustum; had they intersected the frustum, the kd-tree would have
performed an intersection test on them as well.

a) b)

Figure 4: Since a grid (b) does not adapt as well to the scene geom-
etry than a kd-tree (a), a grid will often intersect triangles (red) that
a kd-tree would have avoided. These triangles however usually lie
far outside the view frustum, and can be inexpensively discarded by
inverse frustum culling during frustum-triangle intersection.

For a packet tracer, triangles outside the bounding frustum can
be intersected quite cheaply using Dmitriev et al.’s “SIMD shaft
culling” [Dmitriev et al. 2004]. If the four “corner rays” of the frus-
tum miss the triangle on the same edge of the triangle, then all the
rays must miss that triangle. Using the SIMD triangle intersection
method outlined in [Wald 2004], intersecting the four corner rays
costs roughly as much as a single SIMD 4-ray-triangle intersection
test. As such, triangles outside the frustum can be intersected at 1

N
the cost of triangles inside the frustum, where N is the number of
rays in the packet.

Mailboxing In a grid, large triangles may overlap many cells. In
addition, since a single-level grid cannot adapt to the position of a
triangle, even small triangles often straddle cell boundaries. Thus,
most triangles will be referenced in multiple cells. Since these ref-
erences will be in neighboring cells, there is a high probability that
our frustum will intersect the same triangle multiple times. In fact,
as shown in Figure 5 this is much more likely for our frustum traver-
sal than for a single-ray traversal: While a single ray would visit the
same triangle only along one dimension, the frustum is several cells
wide, and will re-visit the same triangle in all three dimensions.

Repeatedly intersecting the same triangle can be avoided by
mailboxing [Kirk and Arvo 1991]. Each packet is assigned a unique
ID, and a triangle is tagged with that ID before the intersection test.
Thus, if a packet visits a triangle already tagged with its ID, it can
skip intersection. Mailboxing typically produces minimal perfor-
mance improvement in either a grid or a kd-tree for inexpensive
primitive such as triangles; and may even reduce performance if
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a) b)

Figure 5: While one ray (a) can re-visit a triangle in multiple cells
only along one dimension, a frustum (b) visits the same triangle
much more often (even worse in 3D). These redundant intersection
tests would be costly, but can easily be avoided by mailboxing.

gains from avoiding repeat intersection tests do not outweigh the
costs of checking and updating the mailbox [Havran 2002].

As explained above, however, our frustum grid traversal yields
far more redundant intersection tests than a single ray grid or kd-
tree, and thus profits better from mailboxing. Additionally, the
overhead of mailboxing for a packet traverser becomes insignifi-
cant; the mailbox test is performed per packet instead of per ray,
amortizing the cost as we have seen before.

Impact of Mailboxing and Frustum Culling Mailboxing
and frustum culling are both very useful in reducing the number of
redundant intersection tests. In fact, both methods are much more
powerful for our frustum grid traversal than for their original appli-
cations. Mailboxing is performed for multiple rays simultaneously,
so the cost is amortized over the entire packet, and also avoids more
redundant intersection tests. Similarly, due to the higher number of
redundant triangle intersections in the packetized grid, SIMD frus-
tum culling is more beneficial than in a kd-tree, where these inter-
sections may have been avoided in the first place.

To quantify the magnitude of this impact, we have measured
statistics on example scenes, using both a well-built kd-tree sys-
tem employing 4×4 packets, and our frustum grid also using 4×4
packets. For each of those, we have measured the total number
of ray-triangle intersections that are performed if neither of these
techniques are used, then the results when mailboxing and finally
SIMD frustum culling are applied. As can be seen from Table 1,
mailboxing alone reduces the number of tests by up to a factor of 2;
for a kd-tree, it usually trims this by less than 10% [Havran 2002].
On top of the reductions achieved by mailboxing, frustum culling
achieves yet another reduction by a factor of 4 to 9. With both tech-
niques, the final number of intersection tests decreases by a factor
of 8.5 to 14, and the absolute number of ray-triangle intersection
tests roughly matches that of a kd-tree.

Together, mailboxing and frustum traversal remedy the deficien-
cies of frustum traversal on uniform grids. Only one source of over-
head cannot be avoided: when the bounding box of a triangle over-
laps some cells traversed by a ray, but does not fall entirely outside
the frustum. This scenario, however, is not limited to the grid; it
also occurs in a packetized kd-tree.

scene #tris grid ratio kd-tree
MB/FC -/- +/- +/+ -/- to +/+ +/+

ben 78K 12.8 6.0 1.51 8.5 1.09
hand 15K 12.5 6.0 0.93 13.4 0.85
toys 11K 14.0 8.7 1.0 14.0 0.82
conf 274K 96.0 53.9 6.9 13.9 3.66

Table 1: Ray-triangle intersection tests (in millions) for both a 4×4
kd-tree and for our 4 × 4 frustum-grid traversal, and the impact of
mailboxing (MB) and frustum culling (FC). Mailboxing and frus-
tum culling reduce the number of ray-triangle intersections by up
to a factor of 14, to roughly as few as performed by a good kd-tree.

2.4 Extension to Hierarchical Grids

This algorithm is described for a singe-level grid; however hierar-
chical grids generally achieve superior performance. There are sev-
eral ways to organize grids hierarchically, including loosely nested
grids [Cazals et al. 1995] [Klimaszewski and Sederberg 1997],
recursive or multiresolution grids [Jevans and Wyvill 1989], and
macrocells or multigrids [Parker et al. 1999a]. Though these terms
are ill-defined and often used ambiguously, they all share the same
idea of subdividing some regions of space more finely than others,
and thus traverse empty space more quickly than populated space.
To demonstrate that our approach is not restricted to uniform grids,
we have extended it with a single-level macrocell layer. Macrocells
are a simple hierarchical optimization to a base uniform grid, of-
ten used to apply grids to scalar volume fields [Parker et al. 1999a].
Macrocells superimpose a second, coarser grid over the original fine
grid, such that each macrocell corresponds to an M×M×M block
of original grid cells. Each macrocell stores a boolean flag specify-
ing whether any of its corresponding grid cells are occupied.

Building the macrocell grid is trivial and virtually cost-free.
Traversing it with our algorithm is rather simple: the macrocell grid
in essence is just an M ×M ×M downscaled version of the orig-
inal grid, and many of the values computed in the frustum setup
can be re-used, or computed by dividing by M . During traversal,
we first consider a slice of macrocells, and determine all the macro-
cells overlapped by the frustum. (In practice, the frustum usually
overlaps one macrocell). If the macrocells in our slice are all empty,
we can skip M traversal steps on our original fine grid. Otherwise,
we perform these steps as usual.

Though the best value of M obviously depends on the scene,
M = 6 has consistently shown to be a good choice for the test
scenes in our system. For smaller resolutions, the savings for each
macrocell step become too small to justify the additional computa-
tions; for larger resolutions the probability of finding empty regions
decreases. Using macrocells yields a performance improvement of
around 30%, which is consistent with improvents seen for single
ray grids. Additional levels of macrocells and could improve per-
formance for more complex models with larger grids. More robust
varieties of hierarchical grid could speed up large scenes with vary-
ing geometric density, at the cost of higher build time. As our goal
is to formulate a viable grid traversal for medium-size animated
scenes, these have not yet been investigated.

3 Acceleration Structure Rebuild

With an animated scene, our acceleration structure is recreated ev-
ery frame. Though schemes for incrementally [Reinhard et al.
2000] or hierarchically [Lext and Akenine-Möller 2001] updating a
grid exist, we did not want to impose any restrictions on the kind of
animations we support, and thus opted for the most general method
by rebuilding the grid from scratch for every frame. We use the
common scheme of choosing the number of cells to be a multi-
ple, λ, of the number of triangles, N [Devillers 1988; Cleary et al.
1983]. Due to having the smallest surface area in relation to vol-
ume, cubically shaped cells minimize a grid’s expected ray tracing
cost. Thus, we choose the grid’s resolution as:

Nx = dx
3

r
λN

V
, Ny = dy

3

r
λN

V
, Nz = dz

3

r
λN

V
,

where ~d is the diagonal and V the volume of our grid. Fortunately,
our experiments show that most scenes are insensitive to the param-
eter λ and achieved their best performance around λ = 6 (Figure 6),
which we use for all the experiments throughout this paper.

Once the grid resolution is chosen, for each triangle we deter-
mine the cells overlapped by the triangle’s bounding box and add
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Figure 6: For several different models, this graph shows the fram-
erate, normalized by the best time, in relation to grid size as de-
termined by λ. Nearly all tested scenes, both static and dynamic,
reach their optimum at approximately λ ≈ 6.

a reference to the triangle to each of these cells. Since this is quite
conservative, we also tested a more exact grid insertion scheme
using an exact triangle-in-box test (e.g., [Akenine-Möller 2001]).
However, though the exact test could reduce the number of triangle
references in the grid by more than one third, the number of ray-
triangle intersection tests – after mailboxing – would only shrink
by a few percent. For such a small reduction in ray-triangle tests,
the significantly higher rebuild cost does not pay off, leading us to
use the less accurate – but faster – bounding box test.

Since memory allocations are costly, we use a preallocated
pooled-memory scheme that prevents per-cell memory allocations
and fragmentation as the scene changes from frame to frame. Mem-
ory layout techniques such as bricking [Parker et al. 1999b] have
also been tested; but since the frustum traversal already amortizes
memory accesses over the entire packet, these techniques did not re-
sult in a measurable performance difference for our scenes. Larger
grids, however, may still benefit from these techniques.

In addition to rebuilding the grid, we also need to create the de-
rived data for the triangle test described in [Wald 2004]. Though
this could be avoided by storage-free triangle tests [Möller and
Trumbore 1997], we found these to be slightly inferior in perfor-
mance even when the per-frame triangle rebuild time is taken into
account. Furthermore, the triangle rebuild takes less time than the
grid rebuild, and can be run in parallel with the grid rebuild on a
multi-CPU system.

4 Experiments and Results

In addition to the statistics presented above, we evaluated the per-
formance of our algorithm on a working implementation. We
first discuss the impact of the different governing parameters, and
present the performance of the system for a range of both static and
dynamic scenes. If not mentioned otherwise, all these experiments
are performed at 1024 × 1024 pixels, and on a dual 3.2 GHz Intel
Xeon PC with 3 Gigabytes of RAM.

4.1 Impact of Grid and Packet Resolution

For any given scene, the performance of our frustum traversal algo-
rithm is governed by four factors: The resolution of the grid, macro-
cell resolution, screen resolution, and ray packet size. As shown in
the previous section, choosing the grid resolution via λ = 6 in
practice works fine for all kinds of scenes. Similarly, extensive ex-
periments show that a macrocell resolution of 6× 6× 6 yields rea-
sonable performance for all tested scenes. Though tweaking these
parameters can sometimes result in small performance gains, these
default parameters usually work well.

While grid and macrocell resolution do have an impact, screen
resolution and packet size have the greatest impact on performance.
For any given packet size, the cost of a traversal step is constant, but
the cost for intersecting the cells in a slice increases with the num-
ber of cells that the frustum overlaps. Larger packets will benefit
more from the constant cost traversal step, but are also more likely
to overlap more cells. Thus, there is a natural crossover point where
the savings in traversal steps from a larger packet are offset by the
additional cell intersections. Obviously, this crossover point will
be influenced by the model resolution, as larger models have finer
grids and correspondingly smaller cells.

To find that crossover point – and thus determine the optimal
packet size – we generated different resolutions of the Stanford Ar-
madillo model, and measured the rendering performance for packet
sizes of 2×2, 4×4, 8×8, 16×16 and 32×32 rays per packet. The
results of these experiment are given in Figure 7. For 2 × 2 pack-
ets the benefit of tracing packets is rather small, and the rendering
times correspondingly high. Also not surprisingly, for the packets
of 32× 32 rays the packets get very wide, and performance deteri-
orates quickly as model complexity increases. Packets of 16 × 16
rays are better, but still deteriorate quite quickly. Somewhat surpris-
ingly, both 4×4 and 8×8 perform similarly well. Though there is a
crossover point around 250,000 triangles where the smaller packets
work slightly better, the difference is not dramatic, and both 4 × 4
and 8× 8 work well for the test scenes.
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Figure 7: This graph shows the static scene render time per frame
for different packet sizes, and for different resolutions of the Stan-
ford Armadillo. As can be seen, there is a crossover point around
250K triangles where 4 × 4 packets become more efficient than
8× 8 packets. Nevertheless, both 4× 4 and 8× 8 show nearly the
same performance over a wide range of model complexity.

4.2 Scalability with Screen Resolution

Obviously, the optimal packet size also depends on the screen res-
olution, as higher resolutions result in a higher density of rays, and
thus allow for larger packet sizes. Given today’s hardware con-
straints, we chose 1024× 1024 pixels as a default resolution for all
our experiments. In the future, high-resolution displays and super-
sampling will push demand for even larger images.

While the cost of ray tracing is usually considered to be linear
in the number of pixels, this is not the case for our algorithm.
Since higher resolutions enable larger packets, we generally see
sublinear scaling in screen resolution. For virtually all of our test
scenes, when increasing the screen resolution from 1024 × 1024
to 2048× 2048 the frame rate drops by only a factor of 1.75-2.25,
significantly less than the expected factor of 4. Weakening the lin-
ear dependence on pixel count helps overcome a major hurdle in
interactive ray tracing systems.
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4.3 Performance for Static Scenes

Though our main motivation was to enable ray tracing of dynamic
scenes, the performance gains achieved by the packet traversal ap-
ply also to static models. To evaluate our raw ray tracing perfor-
mance, we used several typical static test models for ray tracing,
and rendered them with our system with the rebuild disabled. This
lets us consider traversal time independently from grid build time,
and facilitates a comparison between our algorithm and contempo-
rary interactive ray tracing systems, namely OpenRT [Wald 2004]
and Intel’s MLRT system [Reshetov et al. 2005].

For this comparison, we chose the erw6, conference, and soda
hall scenes of 800, 280K, and 2.2M triangles, respectively, as these
are the only scenes for which numbers from both systems are avail-
able [Reshetov et al. 2005]. Though the axis-aligned features of
these three architectural models strongly favor the kd-trees used in
MLRT and OpenRT, Table 2 shows that our system, despite rel-
atively little low-level optimization, is competitive even for these
best-case scenarios for the other systems.

scene #tris OpenRT MLRT Frustum Grid
1 Pentium IV 1 Pentium IV 1 Pentium IV

2.5 GHz 3.2 GHz w/ HT. 3.2 GHz w/ HT
erw6 804 2.3 50.7 18.3
conf 274k 1.93 15.6 4.0
soda hall 2.2m 1.8 24.1 7.4

Table 2: Static scene ray tracing performance for both the packe-
tized grid, OpenRT, and MLRT. OpenRT and MLRT Data are taken
from [Reshetov et al. 2005]; all times are including simple shad-
ing, but without display. Though these three scenes are best-case
examples for our competitors, we remain at least competitive.

4.4 Comparison to Single-Ray Grid Traversal

The surprising performance of our frustum grid on architectural
models can be explained by the benefits of packetization. To il-
lustrate this difference, we compare our approach to an optimized
single-ray 3DDDA implementation of a hierarchical grid. Though
this implementation uses a more sophisticated multilevel hierarchy,
Table 3 shows that the packetized grid ranges from 4 to 21 times
faster, depending on the scene and viewpoint. Though some of
this improvement is due to our use of SIMD extensions that can-
not easily be used with single-ray traversal, SIMD implementation
alone usually gives only about a factor of two; the remainder is
due to cost amortizations and the algorithmic improvements of the
packet/frustum technique.

scene ben hand toys erw6 conf
single-ray 1.57 1.59 1.53 0.670 0.302
8× 8 packets 10.6 16.1 20.0 14.0 3.2
ratio 6.75 10.1 13.1 20.9 10.6

Table 3: Static scene performance (in frames per second) for
our system; and for an optimized 3DDDA single-ray grid, us-
ing a macrocell hierarchy if advantageous. Images rendered at
1024 × 1024 pixels on a Pentium IV 3.2 GHz CPU with 1 thread
and simple shading. Our frustum traversal outperforms the single-
ray variant by up to an order of magnitude.

This can best be explained by the number of cells visited during
traversal: as we see in Table 4, compared to a single ray traversal,
the frustum version visits roughly 10 to 20 times fewer cells for the
4 × 4 packets, and over 50 times fewer for the 8 × 8 packets. Due
to efficient packetized slice and triangle intersection (Section 2.3),
the frustum actually tests fewer triangle intersections as well; and
can even do that in SIMD.

scene ben hand toys erw6 conf
# ray-triangle intersection tests (millions)
single ray 2.96 3.58 1.97 8.9 15.7
packet 4× 4 1.50 0.93 1.02 1.54 6.90

packet 8× 8 5.74 2.54 2.23 2.00 20.70
# visited cells (millions)
single ray 24.3 19.6 7.72 33.2 167.7
packet 4× 4 2.91 0.95 0.80 2.18 16.54
packet 8× 8 1.37 0.36 0.32 0.58 5.84
ratio 4× 4 13.1 20.74 9.65 15.23 10.13
ratio 8× 8 8.35 54.9 23.9 55.7 28.7

Table 4: Total number of triangles intersected and cells visited (in
millions) for a single ray grid; a 4×4; and an 8×8 packet traversal.
No macrocells are being used by either grid, and tests use identical
dimensions for the same scene. Frustum traversal dramatically re-
duces both the numbers of cell visits and triangle intersection tests.

4.5 Performance for Animated Scenes

To support animation, the simplest mechanism for a grid is to re-
build the grid structure every time the geometry changes. For small
to medium sized scenes, rebuilding the grid is fast; allowing the per-
formance achieved for static scenes to be sustained during anima-
tion. For larger scenes, other techniques such as incremental or par-
allel rebuilds may be required to maintain interactive performance,
although these techniques were not employed here. To demonstrate
these performance characteristics, we used several animated scenes
of various sizes and different dynamic behavior, and measured the
rebuild time and rendering performance. In the following, all per-
formance data corresponds to 10242 pixels, with a simple shader as
proposed in [Reshetov et al. 2005], but without shadows or display.

Animated meshes Some of the benchmark scenes are depicted
in Figure 8: The “wood-doll” is a simple model with 5,378 trian-
gles, and can easily be rendered at 30 frames per second. However,
consisting only of rigid body animation of its otherwise static limbs,
the wood-doll could also be rendered using rigid-body animation
schemes for kd-trees as proposed in [Wald et al. 2003].

To stress more complex kinds of animation, we also tested an an-
imated “hand” model of 15K triangles, as well as a “ben”, a runner
character of 80K triangles. Though already non trivial in size, the
grid for the“ben” model can be rebuilt in 39ms, and around 13-15
frames per second are achieved during rendering, depending on the
actual pose and viewing parameters.

Figure 8: Some of the simpler animated models: a rigid-body
wood-doll (5,378 triangles), a gesturing hand (15,855 triangles),
and a running poser figure (78,029 triangles). Without shading and
shadows, these scenes render at 56.7, 29.3, and 13.1 frames per sec-
ond (including grid rebuild), and still at 30.1, 14.2, and 7.7 frames
per second with shading, texturing, and shadows turned on.
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Animated scenes Though differing in their forms of anima-
tion, both “wood-doll”, “hand”, and “ben” are individual mod-
els that are tightly enclosed by the grid. To demonstrate that our
method is not limited to such models, the “toys” scene has a set
of 5 individually animated wind-up toys that walk around incoher-
ently, bump into each other, and even jump over each other (see
Figure 9). With a total of 11K triangles, grid rebuild took 5ms, and
a framerate of 20-34 frames per second is achieved.

The grid’s strongest advantage over other data structures for han-
dling dynamic models is that it does not require any kind of a hier-
archy to be present in the model. Thus, it can also be used for com-
pletely incoherent motion of triangles, such as explosions, physics-
driven simulations, or particle sets. To demonstrate this, we mod-
elled a scene where 110 “marbles” are dropped into a (invisible)
glass box, where they participate in a rigid-body simulation (Fig-
ure 9). Since the grid does not depend on any kind of coherence
in the motion, this kind of animation can be supported easily, and
35-47 frames per second are achieved.

Figure 9: Examples of complex scenes composed of multiple indi-
vidual objects: a) wind-up toys walking around and colliding with
each other (11.1K tri); b) A simulation of 110 marbles dropping
into an (invisible) box (8.8K tri). c) A complex scene of a typi-
cal game scenario: A fairy and a dragonfly dance through an (an-
imated) forest; both fairy and dragonfly are animated based on a
skinned skeleton (197K tri total). Without shading, these anima-
tions run at 20.0-34.1, 34.6-47.2, and 3.1-4.3 fps, respectively, and
still at 8.1-16.2, 18.3-25.2, and 1.6-2.2 frames per second if shad-
ing, texturing, and shadows are turned on.

A real-world example While all these scenes are more or less
artificial test models, the “fairy forest” scene (see Figure 9) has been
chosen in particular because of its similarity to typical interactive
scenarios: In this scene, a fairy and a dragonfly dance through an
animated forest; both fairy and dragonfly are animated via a skinned
skeleton. The scene incorporates both locally dense and largely
empty regions; it is rather wide in spatial extent, requires complex
shading, and consists of a total of 180K triangles, most of which are
animated. Initially, we expected the high variation in scene density
to be quite a challenge for our approach. However, the frustum
traversal did surprisingly well, and still achieved some 3-4 frames
per second, even under full animation.

The scenes discussed above were all modeled offline as anima-
tion sequences. This fact is not exploited at all by our traverser. The
grid itself is built from a list of triangles and vertex positions every
frame, neither knowing nor caring where they originate. It does not
exploit the the temporal coherence properties of sequenced anima-
tion, but also does not depend on it. Thus, the system would work
just as well for completely dynamic models. The number of trian-
gles in the scene can easily be changed from frame to frame, and
there is no restriction on the movement of existing triangles.

4.6 Impact of Shading and Shadows

In all the results so far, we considered only primary rays. How-
ever, shadow rays can easily be supported. For most rendering al-
gorithms, coherent shadow rays can be generated by connecting all
of the primary rays’ hit points to the same point light source [Wald
et al. 2001]. These packets then share a common origin just like
primary rays, and differ from primary rays only in that they have no
concept of “corner rays”. However, we can easily use the four cor-
ners of the frustum to perform our SIMD frustum culling. In effect,
shadow packets and primary rays packets behave exactly the same.

Obviously, the performance for shadow rays depends signifi-
cantly on the coherence in the packet: If the primary ray packet has
strafed the silhouette of a foreground object, the 3D hitpoints may
be quite distant, and connecting those to the same point light may
result in quite wide and incoherent packets. As proposed in [Wald
et al. 2001], such packets can be detected by looking at the primary
rays’ minimum and maximum hit distances; the packets can then
be split if this difference exceeds a certain threshold. For many of
the scenes that we tested, this was not necessary since the reduced
coherence affected a small fraction of the packets. However, some
lighting configurations slowed our system substantially when shad-
ows were applied, indicating that a splitting technique would be
required to restore the coherence in the packet.

More general packets that do not even share the same origin
would be possible, as long as the rays are still coherent. Though
this would imply the method also works at least for perfect reflec-
tions or highly glossy materials, this has not yet been tested.

5 Summary and Discussion

We presented a new approach to ray tracing with uniform grids.
This algorithm elegantly allows for transferring the recent advan-
tages in fast ray tracing – namely, ray packets, frustum testing and
SIMD extensions – to grids, for which these techniques had pre-
viously not been available. The frustum based grid traversal has
several important advantages. First, it has a simple traversal step,
where a few SIMD operations allow for determining all the cells
in a grid slice that are overlapped by the frustum. This operation
has a constant cost for the entire frustum that is amortized over the
entire packet of rays, and allows for a traversal step that is at least
as cheap as that of a packet/frustum kd-tree. Using mailboxing and
SIMD frustum culling (Section 2.3), our method performs roughly
the same number of ray-triangle intersection tests as the kd-tree.
Though our implementation is not as highly tuned as that of Intel’s
MLRT system [Reshetov et al. 2005], it is up to 21 times faster than
known single-ray grid traversal schemes; competitive with kd-trees;
and inherently supports fully-dynamic animated scenes.

Our method does possess several limitations. The very nature of
using a uniform grid makes the method ill-suited for highly com-
plex scenes with a high variation in size and density of geometry
– e.g., the Boeing data set [Gobbetti and Marton 2005] or the clas-
sic teapot-in-a-stadium. Though our macrocell technique works for
most cases, for highly complex scenes multiresolution grids [Parker
et al. 1998], multilevel techniques [Wald 2004; Lext and Akenine-
Möller 2001], or separation of static and dynamic objects [Reinhard
et al. 2000], as well as mechanisms to incrementally rebuild the grid
data structure may be advantageous.

Grids still suffer from common pathological cases such as large
flat areas (i.e., from architectural models) where geometry overlaps
numerous cells. These situations can be handled more efficiently by
today’s kd-tree based ray tracers and therefore, kd-trees are likely
to remain somewhat more efficient for many scenes. It is also un-
clear how the proposed technique will perform for secondary rays
(i.e. reflection and refraction), where the coherence is lower than in
primary and shadow rays.
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Our technique may be very appropriate for special-purpose hard-
ware architectures such as GPUs and the IBM Cell processor [Mi-
nor et al. 2005] that offer several times the computational power of
our current hardware platform. Though kd-trees have been realized
on both architectures [Foley and Sugerman 2005], are limited by
the streaming programming model in those architectures. In con-
trast, a grid-based iteration scheme is a better match to these ar-
chitectures, and may be able to achieve a higher fraction of their
peak performance. The current method may be appropriate for a
hardware-based implementation, similar to [Woop et al. 2005]. The
grid has a reduced dependence on stack memory that may reduce
the resources required in a hardware implementation.

The primary motivation of this approach is to enable ray trac-
ing of dynamically deforming models. Rebuilding an acceleration
structure on each frame enables ray tracing these models without
placing constraints on the nature and range of the motion. As this
update cost is – like rasterization – linear in the number of trian-
gles, it introduces a natural limit for the size of models that can
be rebuilt interactively. The rebuild cost is manageable for many
applications such as visual simulation or games, where objects of
several thousand to a few hundred thousand polygons are common.
The ability to support these kind of models makes interactive ray
tracing practical for an entirely new class of applications.
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Miscellaneous
An accompanying demonstration video is available online at
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2006. Once available, the revised version will replace this technical
report. Please check back for the revised version.
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