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Abstract:

A one-dimensional nonlinear dynamical system is examined as a simplified model of the dynamics
ensued by the Navier-Stokes equations. The model has a richer dynamical behaviour than the
Burgers equation and shows several features similar to the ones that are associated with the three-
dimensional Navier-Stokes. Although the spatial dimension is only one, there are still three velocity
components and three “directions.” The gradients along the transverse (virtual) directions are
given by the product of the gradient along the real dimension and two arbitrary parameters, α
and β, which can be either constant or variable. In general, differentiation with respect to the y-
and z-axis is replaced by differentiation in the x-axis and multiplication by α and β, respectively.
This model, for various values of the two parameters, is solved numerically with a pseudo-spectral
method and the results are analyzed. The dynamics of the proposed model differs from the well
studied dynamics of the Burgers equation. For example, in the case of variable coefficients, the
shock formation which characterizes Burger-like solutions is not present in the proposed model.
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1 Introduction

The problem of incompressible viscous flows at high Reynolds numbers remains a fluid dynamical
puzzle of great interest. If we restrict our attention to the cases where the presence of geometric
boundaries can be neglected, there are essentially two difficulties which hinder our analysis. The
first is the nonlinearity inherent in the Navier-Stokes and the second is the three spatial dimensions
of the general problem. These two difficulties are coupled, which is demonstrated by the fact that
the reduction of dimensionality results in a significantly different physical problem. For example, in
the case of inviscid two-dimensional flows both energy and enstrophy are constants of motion and
lead to equilibria in which most of the energy accumulates at the largest spatial scales; a familiar
situation known as the Einstein-Bose condensation in the case of an ideal boson gas (Kraichnan
& Montgomery 1980). On the other hand, in inviscid three-dimensional flows the enstrophy is
not conserved – although the helicity is conserved – and most of the energy (of a truncated Eu-
ler system) in equilibrium resides at the high-wavenumber regime. Moreover, there is not vortex
stretching parallel to the vorticity axis in two-dimensional flows whereas this mechanism is con-
sidered essential for the energy and enstrophy cascade in three dimensions. Hence, the change of
dimensions results in significant differences from the fluid mechanics, as well as from the statistical
mechanics, perspective.

Nevertheless, the study of dynamical systems that are characterized by similar nonlinearities
with the Navier-Stokes is a reasonable way to gain information about them. Such an attempt was
made early on by Jan M. Burgers (1939), who derived the following equation

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
, (1)

as a one dimensional archetype of the Navier-Stokes dynamics; here u(x, t) is the one-dimensional
velocity field and ν plays the role of the kinematic viscosity or, if we consider the quantities to be
non-dimensional, the role of the inverse of the Reynolds number. However, it is well known that
Cole (1951) and Hopf (1950), independently of each other, noted that the Burgers equation can
be written as the linear heat equation by employing a nonlinear transformation (see, for example,
Whitham (1974)). Therefore, the Burgers equation is integrable and not chaotic (i.e. it is not
sensitive to initial conditions), as one would expect from a model of turbulence. Some problems
related to Burgers equation are far from trivial; they include nonlinear wave phenomena in acoustics,
plasma physics, and surface growth, and they deserve further study by themselves (see Gurbatov
et al. (1997) and references therein).

A fundamental difference between the Burgers flow model and the actual turbulent flows is the
lack of a vorticity vector. In order to illustrate this, let us write the incompressible Navier-Stokes
in the so-called rotational form, i.e.

∂u

∂t
= −ω × u −∇

(

p

ρ
+

u2

2

)

+ ν∇2
u , (2)

where p is the pressure field, ρ and ν are the density and kinematic viscosity of the fluid, respectively,
u is the three-dimensional velocity field, and ω is the vorticity. A mere inspection of equation (2)
shows that the nonlinearity that is included in the Burgers equation is not the one that contains
vorticity. The latter term is often called the Lamb vector and is absent from the Burgers model.
This simple observation motivated the work presented herein. Our goal was to derive a one-
dimensional model of the Navier-Stokes equations that included a term equivalent to the Lamb
vector. In addition, we have chosen to impose a “continuity” equation in the model system, so that
we can mimic, as much as it is possible, the system of equations that describe the turbulent motion
of incompressible viscous (Newtonian) fluids in three-dimensions.



2 THE MODEL SYSTEM 3

2 The Model System

The primary dynamical variables of our model system are four, namely, u, v, w, and p. The first
three are envisioned as three velocity components whereas the last plays the role of the pressure;
therefore, we will simply refer to the first three variables as the velocity variables. We will also
envision that they correspond to three different directions which form an orthogonal triplet and take
values along the x-axis of a Cartesian system in a Euclidean three-dimensional space. Thus, they
will all be functions of one spatial dimension (x) and of time (t), and they will form a vector denoted
by u = (u, v,w). In this context, we are able to define a vorticity vector that will be denoted by
ω = (ωx, ωy, ωz) and whose three variables, which are functions of the velocity components, are
given by

ωx = α
∂w

∂x
− β

∂v

∂x
, (3)

ωy = β
∂u

∂x
−

∂w

∂x
, (4)

and

ωz =
∂v

∂x
− α

∂u

∂x
. (5)

In the above equations α and β are arbitrary parameters; they can be constants, deterministic
functions of space and time, or random spatio-temporal functions with a given probability distri-
bution. However, notice that when α and β are functions of x, they must be dependent variables
if we want the vorticity to remain divergence free. In the present article we will focus on the case
where α and β are constant along x, although they may vary as functions of time. Notice that
the above definition is equivalent to the definition of the vorticity as the curl of the velocity, if we
formally define a nabla operator (∇∗) as follows:

∇∗ ≡ (1, α, β)T ∂

∂x
. (6)

It follows that the equivalent of the Lamb vector l should be given by the following triplet

lx = w ωy − v ωz , (7)

ly = uωz − w ωx , (8)

and
lz = v ωx − uωy . (9)

Lastly, we define the equivalent of the Bernoulli energy function (Φ) by

Φ = p +
u2 + v2 + w2

2
. (10)

Our model dynamical system consists of four equations for the four unknowns, i.e. u, v,w, p.
In vectorial form the first three equations can be written as follows

∂u

∂t
= −l − ∇∗ · Φ + ǫ∇2

∗
u + F , (11)

or, in terms of the individual components, as

∂u

∂t
= −lx −

∂Φ

∂x
+ ǫ

(

1 + α2 + β2
) ∂2u

∂x2
+ Fx , (12)

∂v

∂t
= −ly − α

∂Φ

∂x
+ ǫ

(

1 + α2 + β2
) ∂2v

∂x2
+ Fy , (13)

∂w

∂t
= −lz − β

∂Φ

∂x
+ ǫ

(

1 + α2 + β2
) ∂2w

∂x2
+ Fz , (14)
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where ǫ is the equivalent of the inverse of the Reynolds number in the nondimensional Navier-Stokes
equations, and we have also added a possible external force, i.e. (Fx, Fy, Fz)

T . The fourth equation
is succinctly expressed in vectorial form, i.e.

∇∗ · u = 0 , (15)

Our goal is to study the dynamics of equations (12) to (15). In §2, we present a number of
analytical results that can be derived directly from the model equations. In §3, we use a standard
pseudo-spectral method and obtain numerical solutions under various flow conditions. A compari-
son to Burger’s and a fully three-dimensional flow for different α and β configurations is conducted
to reveal the fundamental characteristics of the proposed model. In §4, we summarize this work
and present our conclusions.

2.1 Analytical results of the model system

The space of three tuples of functions that depend on x and t is of course a vector space. The model

system employs the following operator over the vector space of three tuples ∇∗ =
(

∂
∂x

, α ∂
∂x

, β ∂
∂x

)T

as a substitute for the three dimensional nabla operator, ∇ =
(

∂
∂x

, ∂
∂y

, ∂
∂z

)T

. In the case where

α and β are constant with respect to x, several vector identities that are familiar hold true. For
example, given any vector A, the divergence of its curl vanishes, i.e. ∇∗ · (∇∗ × A) = 0 is an
identity. The newly defined nabla is clearly a linear operator over the three tuples vector space.

Utilizing this newly defined operator, it would be expected that the classical relationships of
fluid dynamics are maintained for the case where α and β are only functions of time. The evolution
of the vorticity field is obtained by formally taking the curl of equations (12) to (15).

∂wx

∂t
= −

(

α
∂lz
∂x

− β
∂ly
∂x

)

+ ǫ
(

1 + α2 + β2
) ∂2wx

∂x2
+ α

∂Fz

∂x
− β

∂Fy

∂x
, (16)

∂wy

∂t
= −

(

β
∂lx
∂x

−
∂lz
∂x

)

+ ǫ
(

1 + α2 + β2
) ∂2wy

∂x2
+ β

∂Fx

∂x
−

∂Fz

∂x
, (17)

∂wz

∂t
= −

(

∂ly
∂x

− α
∂lx
∂x

)

+ ǫ
(

1 + α2 + β2
) ∂2wz

∂x2
+

∂Fy

∂x
− α

∂Fx

∂x
, (18)

∇∗ · ω = 0 . (19)

By taking the divergence of the proposed model equations (12)-(15), the following equations
are obtained

∇∗ · l = −∇∗

2Φ (20)

∂lx
∂x

+ α
∂ly
∂x

+ β
∂lz
∂x

= −

(

∂2Φ

∂x2
+ α

∂2Φ

∂x2
+ β

∂2Φ

∂x2

)

. (21)

2.2 Physical discussion of the model system

Let us consider a three dimensional turbulent fluid flow and let us imagine that we can collect
information about the velocities and the pressure only along a virtual straight line which, without
loss of generality, we take it to be our x-axis. In that case, the three velocities and the pressure
can be measured, and the gradients of these quantities can be calculated along the x-axis. Let us
now take the system of the Navier-Stokes equations together with the equation of mass continuity
and examine what are the unknown quantities involved. We have six components of the rate of
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deformation tensor as unknowns, i.e. ∂u/∂y, ∂v/∂y, ∂w/∂y, ∂u/∂z, ∂v/∂z, ∂w/∂z; we have the
two gradients of pressure as unknowns, i.e. ∂p/∂y, ∂p/∂z; and we have the six second derivatives
of the viscous term as unknowns, i.e. ∂2u/∂y2, ∂2v/∂y2, ∂2w/∂y2, ∂2u/∂z2, ∂2v/∂z2, ∂2w/∂z2.
This makes a total of 16 unknown quantities. In other words, if we wanted to compare the results
of the laboratory experiments along that virtual line with the results of a one dimensional model,
we would have to provide these 16 quantities as an input to the model. Such a task could make
the problem more complicated than the original three dimensional problem for the whole domain!

Our proposed model attempts to simplify the problem by defining only two parameters, the
α and β that we already mentioned. The implications of this is that we effectively impose the
following system of constraints:

α
∂u

∂x
≡

∂u

∂y
, α

∂v

∂x
≡

∂v

∂y
, α

∂w

∂x
≡

∂w

∂y
, β

∂u

∂x
≡

∂u

∂z
,

β
∂v

∂x
≡

∂v

∂z
, β

∂w

∂x
≡

∂w

∂z
, α2 ∂2u

∂x2
≡

∂2u

∂y2
, α2 ∂2v

∂x2
≡

∂2v

∂y2
,

α2 ∂2w

∂x2
≡

∂2w

∂y2
, β2 ∂2u

∂x2
≡

∂2u

∂z2
, β2 ∂2v

∂x2
≡

∂2v

∂z2
, β2 ∂2w

∂x2
≡

∂2w

∂z2
,

α
∂p

∂x
≡

∂p

∂y
, β

∂p

∂x
≡

∂p

∂z
.

The above equations imply that the ratio α/β is a measure of the anisotropy for the gradients along
the y and z directions, whereas the ratio α2/β2 is a measure of the anisotropy for the dissipation
terms. Thus, our model examines a small subspace of the space of the Navier-Stokes solutions but
it does offer the opportunity to study its dynamics with more detail than the full system allows us
to.

Notice that the viscous term of the model system introduces an amount of dissipation that is
proportional to the square of the wavenumber and the (averaged) square of the arbitrary coeficients.
Hence, the values of α and β should not be arbitrarily large, since such a choice would bias the
model dynamics towards that of a purely dissipative system.

Equation (15) is not an expression of mass continuity. If the density of the fluid is constant,
say ρ, and we imagine that ρv and ρw represent the flux of fluid mass along the y and z directions,
respectively, then the continuity equation for our model is simply stated as

u + αv + βw = 0 . (22)

Hence, if the sum of the velocities is not equal to zero one has to assume that there are sources and
sinks of mass along the x-axis.

2.3 Fourier analysis of the model system

The interactions among scales of motion within the domain of the proposed model are given in the
Fourier-space view by the sum of collections of triadic interactions among subsets of Fourier modes
in the one-dimensional but multi-variable Fourier space. In the Fourier-spectral description, the
velocity and pressure fields are expanded as an infinite discrete set of Fourier modes,

u(x, t) =
∑

k1

ûk1(t)e
ı̂k1x,
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v(x, t) =
∑

k2

v̂k2(t)e
ı̂k2x,

w(x, t) =
∑

k3

ŵk3(t)e
ı̂k3x,

p(x, t) =
∑

k4

p̂k4(t)e
ı̂k4x,

with harmonic basis functions. Each Fourier mode contains scale information through its wavenum-
ber kn, directional information through eı̂knx, and phase information through the leading coefficient
~ukn

or pk4
where n represents the associated variable (i.e. u, v, w, and p correspond to 1, 2, 3, and

4, respectively). In Fourier-spectral space, the non-linear terms of the proposed model become

F (lx) = α
∑

k1,2

∑

k2,1

ûk1,2
v̂k2,1

ı̂k1,2e
ı̂(k1,2+k2,1)x + β

∑

k1,1

∑

k3,1

ûk1,1
ŵk3,1

ı̂k1,1e
ı̂(k1,1+k3,1)x −

∑

k2,1

∑

k2,2

v̂k2,1
v̂k2,2

ı̂k2,2e
ı̂(k2,1+k2,2)x −

∑

k3,1

∑

k3,2

ŵk3,1
ŵk3,2

ı̂k3,2e
ı̂(k3,1+k3,2)x

F

(

∂Φ

∂x

)

=
∑

k4

p̂k4
eı̂k4x +

∑

k1,1

∑

k1,2

ûk1,1
ûk1,2

ı̂k1,2e
ı̂(k1,1+k1,2)x +

∑

k2,1

∑

k2,2

v̂k2,1
v̂k2,2

ı̂k2,2e
ı̂(k2,1+k2,2)x +

∑

k3,1

∑

k3,2

ŵk3,1
ŵk3,2

ı̂k3,2e
ı̂(k3,1+k3,2)x

where the extra subscripts are used to keep track of separate summation indices. Even though the
results are only given for the u-component, the results are the same in the transverse variables due
to symmetry.

Notice that the last two (non-linear) terms in the above equations are eliminated when −lx−
∂Φ
∂x

is evaluated. This is a result of the reduction in dimensionality of the Navier-Stokes equations.
Hence, the proposed model is limited in so far as it does not model the dual non-linear triadic
interactions within the transverse variables with no dependence on the other velocity variables.
This means there are no r = −(k2,1 + k2,2) or r = −(k3,1 + k3,2) interactions for the x-direction,
where, by orthogonality, r is the set of modes that could be excited by the given interactions (i.e.
〈eı̂rx,

∑

k2,1

∑

k2,2
eı̂(k2,1+k2,2)x)〉 = 0). Note that the evolution of the negative wavenumbers can be

obtained from the positive set from u(−k1) = u(+k1)
∗, where the asterisk implies a complex con-

jugate, thus only half of the wavenumber space need be explicity analyzed. However, the proposed
model does exhibit energy transfer between different variables as has been observed empirically;
however, the nonlinear behavior is significantly damped relative to similar Burger’s flow conditions
as discussed in §3.

3 Results from the model

We will give now a brief description of the numerical method, the study cases of the numerical
simulations, and their results. The numerical method is a standard pseudo-spectral method similar
to the one that is used to solve the Navier-Stokes equations in the rotational form subject to the
incompressibility constraint. Since we are interested in the fundamentals of the dynamics we will
restrict ourselves to the case of periodic boundary conditions.
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Figure 1: Solutions to the viscid Burgers’ equation and the proposed model at time Tb where the
inviscid case would form a shock.

3.1 Numerical Methodology

For the purposes of this paper, we are interested in the numerical approximation of equations (12)-
(15) subject to periodic boundary conditions and parameters α = α(t) ∈ R and β = β(t) ∈ R

(i.e. only functions of time, not space). As is commonly done in the numerical study of homo-
geneous turbulence, we have chosen to use a Fourier pseudo-spectral method in space with a 3/2
de-aliasing rule ([Canuto et al. 1988]). For all simulations, the parameter N denotes the number
of evenly-spaced points per variable used on the interval (0, 2π] (or, correspondingly, the number
of Fourier modes employed for representing spatial variation). Since the new divergence operator
mathematically mimics the traditional operator (see section 2.1), the splitting scheme presented in
[Karniadakis, Israeli & Orszag] (1991) and [Karniadakis & Sherwin] (1999) was used to accurately
integrate in time equations (12)-(14) while maintaining the “divergence-free condition” given by
equation (15). All simulations presented herein were accomplished with second-order time integra-
tion using a stated ∆t.

3.2 Example 1: A comparison to the viscid Burgers’ equation

For the inviscid Burgers’ equation, it is well known that, if the first derivative of the initial condition,
ux(x, 0) is negative at any point in the domain, the characteristics of the differential equation will
cross resulting in a shock formation in the solution. This example will employ an initial condition
that would replicate this condition for the inviscid case in order to compare the shock formation
characteristic of the viscid Burgers’ equation and the proposed one-dimensional model. The initial
condition is a piecewise linear function of the form u(0 < x < π

2 , 0) = u(3π
2 < x ≤ 2π, 0) = 0,

u(π
2 ≤ x ≤ π, 0) =

(

2
π

)

x− 1, and u(π < x ≤ 3π
2 , 0) =

(

−2
π

)

x + 3. For the inviscid case, a shock will
appear at time Tb = π

2 . The solution u(x, Tb) for the viscid Burger’s equation and the proposed
model with N = 2048, ν = 0.005, ∆t = 0.0002, α = 1, and β = 1 is shown graphically in figure
1. Effectively, the proposed model does not propagate information to the higher wavemodes of the
solution, in effect, it dampens them resulting in a smoothing effect that is seen in figure 1. The
proposed model will not form shocks for smooth initial conditions.
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3.3 Example 2: Free decay with constant α and β

The following is an analysis of the time-history progression of a one-dimensional line of the velocity
profile from HyperBox, a fully three-dimensional spectral code for the solution of the incompressible
Navier-Stokes equations in a periodic box (Marmanis 1999). This will allow for the characteristics
of the proposed one-dimensional model to be compared to that of a fully three-dimensional DNS
simulation for a long time integration period.

HyperBox was run for a total of twenty convective time units under the condition of natural
decay starting with random initial conditions of a prescribed isotropic energy spectra and energy
level. A constant timstep ∆t = 0.0002, viscosity ν = 0.02, and resolution N = 1283 were used.
At t0 = 2, a line from the HyperBox solution along [x, π, π] including the u, v, and w data was
extracted. Similar extractions from the HyperBox solution were performed every 0.1 convective
units until the solution was stopped at t = 20 in order to consistenly compare the HyperBox and
one-dimensional model solutions. The line at t0 = 2 was then imported into the one-dimensional
solver using the appropriate Fourier methods and allowed to run to t = 20 using the same conditions
(∆t = 0.0002, ν = 0.02, N = 128) as used in HyperBox. This particular one-dimensional simulation
was performed using α = 1 and β = 1. Therefore, the decay is isotropic in both the gradient and
diffusion terms.

Let us define the error between the HyperBox and proposed model solutions for the u-component
of the velocity as eu = uHyperBox − umodel. The error between the other components are defined
similarly. Hence, discrete the L2 error and L∞ error (for u) are

‖eu‖2 =

√

√

√

√

1

N

N
∑

k=1

euk
2 , (25a)

‖eu‖∞ = max
k

|euk
| . (25b)

The variation of the discrete L2 and L∞ norms as a function of time are shown in figures 2
and 3, respectively. Naturally, it was not expected that a one-dimensional model would be able to
accurately predict the decay of u, v, or w, independently. The limitations imposed by the reduction
in dimensionlity are evident as shown in §2 as well as the HyperBox solution along [x, π, π] being
influenced through the transmittal of energy to and from its surroundings in the three-dimensional
lattice unlike the one-dimensional model, which is not externally modified. However, the bulk
dynamics of the flow as given by 〈u2〉 (= 1

N

∑

k uk · uk) are followed as shown in figure 4. This
characteristic of the proposed model is enhanced further for time-varying α and β as shown in the
next example.

3.4 Example 3: Free decay with time-varying α and β

In this example, the same simulation parameters were used as in the previous example except that
both α and β were modeled as functions of time. In order to more accurately model the 〈u2〉 decay
of the HyperBox solution, the proposed model parameters, α and β, were allowed to vary in time
as modified distribution functions,

α(t) = β(t) = 7

(

1

2
(

1 + e−(t−t0)
) −

1

4

)

. (26)

Since the previous example demonstrated that the decay of the HyperBox solution was not modeled
well during the initial stages of the decay where the convective terms were dominant with an α and
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Figure 2: Discrete L2 error in the solutions
of HyperBox and the one-dimensional model
for constant α and β.
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Figure 3: Discrete L∞ error in the solutions
of HyperBox and the one-dimensional model
for constant α and β.
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Figure 4: The 〈u2〉 decay for the HyperBox and one-dimensional model solutions with constant α
and β.
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Figure 5: Discrete L2 error in the solutions
of HyperBox and the one-dimensional model
for time-varying α and β.
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Figure 6: Discrete L∞ error in the solutions
of HyperBox and the one-dimensional model
for time-varying α and β.

t
0 5 10 15 20

0

0.2

0.4

0.6

0.8

HyperBox
One-dimensional model

<
u

>
2

Figure 7: The 〈u2〉 decay of the HyperBox and one-dimensional model solutions with time-varying
α and β.
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β combination that further amplifies the effect of the viscous terms, the α and β parameters as given
by equation 26 allowed for the proper transferal of the influence of the convective and viscous terms
during the initial and final stages of decay, respectively. Effectively, viscous diffusion is damped in
the initial stages of the decay where the flow dynamics are principally governed by the convective
terms and the viscous diffusion is made dominant towards the end of the simulation where viscous
forces are most influential. The variation of the discrete L2 and L∞ norms are shown in figures 5
and 6, respectively. Notice that the time-variation of the error in the solution is mitigated by the
introduction of time-varying α and β. Similarly, figure 7 shows a pronounced increase in accuracy
of the dynamics of the flow for the proposed model.

4 Summary

A one-dimensional non-linear model that attempts to capture the dynamics of the Navier-Stokes
equations was considered. An orthogonal triplet composed of the time-varying velocity variables
along a one-dimensional axis was formed. Due to the reduction of dimensionality, derivatives in
the transverse directions were considered to be related to the derivatives along the primary axis
by arbitrary parameters α and β. This simplification was shown to retain many of the non-linear
behaviors commonly associated with the Navier-Stokes equations. When α and β were taken as
time-varying but spatially constant variables, the 〈u2〉 decay of homogenous turbulence decay was
found to be well approximated by the aforementioned model. The particular form of the time-
varying parameters was chosen so as to either enhance inertial effects when the convective terms
dominated the transport equations or amplify the viscous effects during the latter stages of decay
through the system parameters α and β.

However, extension to wall-bounded or non-homogenous flow fields appears intractable without
determining the relationship between various derivatives of the flow field a priori. The choice of the
x-direction as the primary variable is difficult to justify. For example, in a fully-developed laminar
channel flow, the derivative α∂u

∂x
would be identically zero; however, the wall-normal derivative

∂u
∂y

= α∂u
∂x

would not be zero (specifically, the streamwise velocity would have a parabolic profile).
Hence, using this model for global dynamics is unproductive at best. Though, for local dynamics
where isotropy can be assumed, this model may hold merit.

This approach attempts to model the equations of motion rather than the underlying physics of
turbulence by imposing a set of constraints on the derivatives in the transverse directions with re-
spect to the primary dimension without any physical justification. Rearranging or deleting terms of
the governing equations without sufficient physical justification often leads to interesting dynamical
systems equations that have little predictive power in the space of fluid dynamics solutions.
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