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Abstract:

This paper presents a novel approach to unsupervised texture segmentation that relies on a very
general nonparametric statistical model of image neighborhoods. Themethod models image neigh-
borhoods directly, without the construction of intermediate features. It does not rely on using
specific descriptors that work for certain kinds of textures, but is rather based on a more generic
approach that tries to adaptively capture the core properties of textures. It exploits the funda-
mental description of textures as images derived from stationary random fields and models the
associated higher-order statistics nonparametrically. This general formulation enables the method
to easily adapt to various kinds of textures. The method minimizes an entropy-based metric on
the probability density functions of image neighborhoods to give an optimal segmentation. The
entropy minimization drives a very fast level-set scheme that uses threshold dynamics, which al-
lows for a very rapid evolution towards the optimal segmentation during the initial iterations. The
method does not rely on a training stage and, hence, is unsupervised. It automatically tunes its
important internal parameters based on the information content of the data. The method gener-
alizes in a straightforward manner from the two-region case to an arbitrary number of regions and
incorporates an efficient multi-phase level-set framework. This paper presents numerous results,
for both the two-texture and multiple-texture cases, using synthetic and real images that include
electron-microscopy images.
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Abstract. This paper presents a novel approach to unsupervised tex-
ture segmentation that relies on a very general nonparametric statistical
model of image neighborhoods. The method models image neighborhoods
directly, without the construction of intermediate features. It does not
rely on using specific descriptors that work for certain kinds of textures,
but is rather based on a more generic approach that tries to adaptively
capture the core properties of textures. It exploits the fundamental de-
scription of textures as images derived from stationary random fields
and models the associated higher-order statistics nonparametrically. This
general formulation enables the method to easily adapt to various kinds
of textures. The method minimizes an entropy-based metric on the prob-
ability density functions of image neighborhoods to give an optimal seg-
mentation. The entropy minimization drives a very fast level-set scheme
that uses threshold dynamics, which allows for a very rapid evolution to-
wards the optimal segmentation during the initial iterations. The method
does not rely on a training stage and, hence, is unsupervised. It automat-
ically tunes its important internal parameters based on the information
content of the data. The method generalizes in a straightforward manner
from the two-region case to an arbitrary number of regions and incor-
porates an efficient multi-phase level-set framework. This paper presents
numerous results, for both the two-texture and multiple-texture cases,
using synthetic and real images that include electron-microscopy images.

1 Introduction

Image segmentation is one of the most extensively studied problems in computer
vision. The literature gives numerous approaches based on a variety of crite-
ria including intensity, color, texture, depth, and motion. This paper addresses
the problem of segmenting textured images. Textured regions do not typically
adhere to the piecewise-smooth or piecewise-constant assumptions that char-
acterize most intensity-based segmentation problems. Julesz [13] pioneered the
statistical analysis of textures and characterized textures as possessing regular-
ity in the higher-order intensity statistics. This establishes the description of a
textured image, or a Julesz ensemble, as one derived from stationary random
fields [21]. This principle forms the foundation of the approach in this paper.

In recent years, researchers have advanced the state-of-the-art in texture
segmentation in several important directions. An important direction relates
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to the mechanism used to model or quantify the regularity in image textures.
Researchers have developed progressively richer descriptions of local image ge-
ometry and thereby captured more complex and subtle distinctions between tex-
tures [2, 23, 24]. In another direction, researchers have expressed the dissimilarity
between textures through sophisticated statistically-based metrics [4, 15, 19, 14,
22]. Furthermore, research in texture segmentation, like image segmentation in
general, has focused on more robust mechanisms for enforcing geometric smooth-
ness in the segmented-region shapes. This is usually done via the construction
of a patchwork of regions that simultaneously minimize a set of geometric and
statistical criteria [26].

This paper advances the state-of-the-art in texture segmentation by exploit-
ing the principle characteristics of a texture coupled with the generality of non-
parametric statistical modeling. The method relies on an information-theoretic
metric on the statistics of image neighborhoods that reside in high-dimensional
spaces. The nonparametric modeling of the statistics of the stationary random
field imposes very few restrictions on the statistical structure of neighborhoods.
This enables the method to easily adapt to a variety of textures. The method
does not rely on a training stage and, hence, is unsupervised. These properties
make it is easily applicable to a wide range of texture-segmentation problems.
Moreover, the method incorporates relatively recent advances in level-set evolu-
tion strategies that use threshold dynamics [11, 10].

The rest of the paper is organized as follows. Section 2 discusses recent works
in texture segmentation and their relationship to the proposed method. Section 3
describes the optimal formulation with an entropy-based energy on higher-order
image statistics. Entropy optimization entails the estimation of probability den-
sity functions. Hence, Section 4 describes a nonparametric multivariate density
estimation technique. It also describes the general problems associated with den-
sity estimation in high-dimensional spaces and provides some intuition behind
the success of the proposed method in spite of these difficulties. Section 5 gives
the optimization strategy using a very fast level-set scheme that uses threshold
dynamics, along with the associated algorithm. Section 6 addresses several im-
portant practical issues pertaining to nonparametric statistical estimation and
its application to image neighborhoods. Section 7 gives experimental results on
numerous real and synthetic images, including electron-microscopy medical im-
ages. Section 8 summarizes the contributions of the paper and presents ideas for
further exploration.

2 Related Work

Much of the previous work in texture segmentation employs filter banks, com-
prising both isotropic and anisotropic filters, to capture texture statistics. For
instance, researchers have used Gabor-filter responses to discriminate between
different kinds of textures [19, 23, 24]. Gabor filters are a prominent example of a
very large class of oriented multiscale filters [4, 3]. This approach emphasizes the
extraction of appropriate features for discriminating between specific textures,
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which is typically a non-trivial task. The proposed method, on the other hand,
does not rely on using specific descriptors that work for certain kinds of textures,
but is based on a more generic approach that tries to adaptively capture the core
properties of a wide variety of textures.

Researchers have also investigated using more compact sets of texture fea-
tures. For instance, Bigun et al. [2] use the structure tensor (a second-order
moment matrix used, e.g., to analyze flow-like patterns [32]) to detect local orien-
tation. Rousson et al. [22] refine this strategy by using vector-valued anisotropic
diffusion, instead of Gaussian blurring, on the feature space formed using the
components of the structure tensor. This strategy requires the structure tensors
to have a sufficient degree of homogeneity within regions as well as sufficient
dissimilarity between regions. However, as the coming paragraphs explain, not
all images meet these criteria.

Other approaches use the intensity (or grayscale) histograms to distinguish
between textures [15, 14]. However, the grayscale intensity statistics (i.e. 1D his-
tograms), may fail to capture the geometric structure of neighborhoods, which
is critical for distinguishing textures with similar 1D histograms. The proposed
method exploits higher-order image statistics, modeled nonparametrically, to
adaptively capture the geometric regularity in textures.

Figure 1(a) shows two textures that are both irregular (in addition to hav-
ing similar means and gradient-magnitudes) that would pose a challenge for
structure-tensor-based approaches such as [2, 22]. In Figure 1(b) the textures
differ only in scale. Approaches based on structure tensors at a single scale would
fail to distinguish such cases, as reported in [22]. Approaches solely using inten-
sity histograms would also fail here. In Figure 1(c) the textures have identical
histograms, identical scale, and an almost-identical set of structure-tensor ma-
trix components. In this case, the above-mentioned approaches [2, 22] would face
a formidable challenge. The proposed method, on the other hand, incorporating

(a) (b) (c)

Fig. 1. Segmentations with the proposed approach (depicted by white/gray outlines)
for (a) Brodatz textures for sand and grass— both irregular textures with similar gradi-
ent magnitudes, (b) Brodatz textures differing only in scale, and (c) synthetic textures
with identical histograms, identical scales, and an almost-identical set of structure-
tensor matrix components.
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a fundamentally richer texture description, produces successful segmentations
(depicted by white/gray outlines) for all the images in Figure 1.

Recently, researchers have investigated more direct approaches towards mod-
eling image statistics. For instance, the dynamic-texture segmentation approach
by Doretto et al. [6] uses a Gauss-Markov process to model the relationships
among pixels within regions and over time. However, that approach assumes
a Gaussian process for image intensities, a restrictive assumption that cannot
easily account for complex or subtle texture geometries [6, 22, 4]. Rousson et al.
[22] use nonparametric statistics for one of the channels (the image-intensity
histogram) in their feature space to counter this restriction and the proposed
method generalizes that strategy to the complete higher-order image statistics.

Popat et al. [20] were among the first to use nonparametric Markov sam-
pling in images. Their method takes a supervised approach for learning neighbor-
hood relationships. They attempt to capture the higher-order nonlinear image
statistics via cluster-based nonparametric density estimation and apply their
technique for texture classification. Varma and Zisserman [28] used a similar
training-based approach to classify textures based on a small Markov neigh-
borhood that was demonstrably superior to filter based approaches. Indeed, re-
searchers analyzing the statistics of 3 × 3 patches in images, in the corresponding
high-dimensional spaces, have found the data to be concentrated in clusters and
low-dimensional manifolds exhibiting nontrivial topologies [16, 5]. The proposed
approach also relies on the principle that textures exhibit regularity in neigh-
borhood structure, but this regularity is discovered for each texture individually
in a nonparametric manner. The proposed method builds on the work in [1],
which lays down the essentials for unsupervised learning of higher-order image
statistics. That work, however, focuses on image restoration.

The literature dealing with texture synthesis also sheds some light on the
proposed method. Texture synthesis algorithms rely on texture statistics from
an input image to construct novel images that exhibit a qualitative resemblance
to the input texture [9, 31]. This paper describes a very different application, but
the texture-synthesis work demonstrates the power of neighborhood statistics in
capturing the essential aspects of texture.

Lastly, this paper also borrows from a rather extensive body of work on vari-
ational methods for image segmentation [26], in particular the Mumford-Shah
model [18], its extensions to motion, depth, and texture, and its implementation
via level-set flows [29]. The proposed method employs the very fast approxima-
tion proposed by Esedoglu and Tsai [11, 10] based on threshold dynamics, and
extends it to include multiple regions within the variational framework.

3 Neighborhood Statistics for Texture Segmentation

This section introduces the random-field texture model, along with the associ-
ated notation, and then describes the optimal segmentation formulation based
on entropy minimization.
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3.1 Random Field Texture Model

A random field [7] is a family of random variables X(Ω; T ), for an index set
T , where, for each fixed T = t, the random variable X(Ω; t), or simply X(t), is
defined on the sample space Ω. If we let T be a set of points defined on a discrete
Cartesian grid and fix Ω = ω, we have a realization of the random field called
the digital image, X(ω, T ). In this case {t}t∈T is the set of pixels in the image.
For two-dimensional images t is a two-vector. We denote a specific realization
X(ω; t) (the image), as a deterministic function x(t).

If we associate with T a family of pixel neighborhoods N = {Nt}t∈T such that
Nt ⊂ T , and s ∈ Nt if and only if t ∈ Ns, then N is called a neighborhood system
for the set T and points in Nt are called neighbors of t. We define a random
vector Z(t) = {X(t)}t∈Nt , denoting its realization by z(t), corresponding to
the set of intensities at the neighbors of pixel t. We refer to the statistics of the
random vector Z as higher-order statistics. Following the definition of texture as
a Julesz ensemble [13, 21], we assume that the intensities in each texture region
arise out of a stationary ergodic random field.

3.2 Optimal Segmentation by Entropy Minimization on
Higher-Order Statistics

Consider a random variable L(t), associated with each pixel t ∈ T , that gives the
region the pixel t belongs to. For a good segmentation, knowing the neighbor-
hood intensities (z) tells us the unique pixel class (k). Also, knowing the pixel
class gives us a good indication of what the neighborhood is. This functional
dependence is captured naturally in the concept of mutual information. Thus,
the optimal segmentation is one that maximizes the mutual information between
L and Z:

I(L, Z) = h(Z) − h(Z|L) = h(Z) −
K∑

k=1

P (L = k)h(Z|L = k), (1)

where h(·) denotes the entropy of the random variable. The entropy of the higher-
order PDF associated with the entire image, h(Z), is a constant for an image
and is irrelevant for the optimization. Let {Tk}K

k=1 denote a mutually-exclusive
and exhaustive decomposition of the image domain T into K texture regions.
Let Pk(Z(t) = z(t)) be the probability of observing the image neighborhood z(t)
given that the center pixel of the neighborhood belongs to the texture region k.
We define the energy associated with the set of K texture probability density
functions (PDFs), i.e.

E =
K∑

k=1

P (L = k)h(Z|L = k). (2)

The entropy

h(Z|L = k) = −
∫
�m

Pk(Z(tk) = z(tk)) log Pk(Z(tk) = z(tk)dz, (3)
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where m = |Nt| is the neighborhood size and tk is any pixel belonging to re-
gion k—for any tk ∈ Tk the PDF Pk(·) remains the same due to the assumed
stationarity. Let Rk : T → {0, 1} denote the indicator function for region Tk,
i.e. Rk(t) = 1 for t ∈ Tk and Rk(t) = 0 otherwise. Considering the intensities
in each region as derived from a stationary ergodic random field to approximate
entropy, and using P (L = k) = |Tk|/|T |, gives

E ≈ −
K∑

k=1

(
P (L = k)

|Tk|
∑
t∈T

Rk(t) log Pk(z(t))

)
(4)

=
−1
|T |

K∑
k=1

∑
t∈T

Rk(t) logPk(z(t)). (5)

Thus, the optimal segmentation is the set of functions Rk for which E attains
a minimum. The strategy in this paper is to minimize the total entropy given
in (4) by manipulating the regions defined by Rk. This rather-large nonlinear
optimization problem potentially has many local minima. To regularize the so-
lution, variational formulations typically penalize the boundary lengths of the
segmented regions [18]. The objective function, after incorporating this penalty
using a Lagrange multiplier, now becomes

E + α

K∑
k=1

∑
t∈T

‖ ∇tRk(t) ‖, (6)

where α is the regularization parameter and ∇t denotes a discrete spatial-
gradient operator. In this framework, the critical issue lies in the estimation
of Pk(z(t)), and the next section focuses on addressing this issue.

4 Nonparametric Multivariate Density Estimation

Entropy optimization entails the estimation of higher-order conditional PDFs.
This introduces the challenge of high-dimensional, scattered-data interpolation,
even for modest sized image neighborhoods. High-dimensional spaces are notori-
ously challenging for data analysis (regarded as the the curse of dimensionality
[27, 25]), because they are so sparsely populated. Despite theoretical arguments
suggesting that density estimation beyond a few dimensions is impractical, the
empirical evidence from the literature is more optimistic [25, 20]. The results in
this paper confirm that observation. Furthermore, stationarity implies that the
random vector Z exhibits identical marginal PDFs, and thereby lends itself to
more accurate density estimates [25, 27]. We also rely on the neighborhoods in
natural images having a lower-dimensional topology in the multi-dimensional
feature space [16, 5]. Therefore, locally (in the feature space) the PDFs of images
are lower dimensional entities that lend themselves to better density estimation.

We use the Parzen-window nonparametric density estimation technique [8]
with an n-dimensional Gaussian kernel Gn(z, Ψn), where n = |Nt|. We have no
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a priori information on the structure of the PDFs, and therefore we choose an
isotropic Gaussian, i.e. Ψn=σ2In, where In is the n × n identity matrix. For a
stationary ergodic random field, the multivariate Parzen-window estimate is

Pk(Z(t) = z(t)) ≈ 1
|Ak,t|

∑
s∈Ak,t

Gn(z(t) − z(s), Ψn), (7)

where the set Ak,t is a small subset of Tk chosen randomly, from a uniform PDF,
for each ti. This results in a stochastic estimate of the entropy that helps alleviate
the effects of spurious local maxima introduced in the Parzen-window density
estimate [30]. We refer to this sampling strategy as the global-sampling strategy.
Selecting appropriate values of the kernel-width σ is important for success, and
Section 6 presents a data-driven strategy for the same.

5 Fast Level-Set Optimization Using Threshold Dynamics

The level-set framework [26] is an attractive option for solving the variational
problem defined by (6), because it does not restrict either the shapes or the
topologies of regions. However, classical level-set evolution schemes for front-
tracking based on narrow-band strategies entail some significant computational
costs—in particular, the CFL condition for numerical stability [26] limits the
motion of the moving wavefront (region boundaries) to one pixel per iteration.

Recently, Esedoglu and Tsai introduced a fast level-set algorithm based on
threshold dynamics [11, 10] for minimizing Mumford-Shah type energies. The
proposed method adopts their approach for the level-set evolution but relies on
a multiphase extension of the basic formulation to enable multiple-texture seg-
mentation [17, 29]. In this method, the embeddings, one for each phase, are main-
tained as piecewise-constant binary functions. This method, essentially, evolves
the level-set by first updating the embeddings using the PDE-driven force, and
then regularizing the region boundaries by Gaussian smoothing the embedding
followed by re-thresholding. This approach needs to neither keep track of points
near interfaces nor maintain distance transforms for embeddings. At the same
time it allows new components of a region to crop up at remote locations. We
have found that this last property allows for very rapid level-set evolution when
the level-set location is far from the optimum.

We now let {Rk}K
k=1 be a set of level-set functions. The segmentation for

texture k is then defined as Tk = {t ∈ T |Rk(t) > Rj(t), ∀j 	= k}. It is important
to realize that coupling (6) and (7) creates nested region integrals that introduce
extra terms in the gradient flow associated with the level-set evolution [15, 22].
The shape-derivative tool [12], specifically designed to handle such situations,
gives the level-set speed term for minimizing the energy defined in (6) as

∂Rk(t)
∂τ

= logPk(z(t)) +
1

|Tk|
∑
s∈Tk

Gn(z(s) − z(t), Ψn)
Pk(z(s))

+ α∇t ·
( ∇tRk(t)
‖ ∇tRk(t) ‖

)
,

(8)
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where τ denotes the time-evolution variable [15, 22].
To obtain an initial segmentation {R0

k}K
k=1, the proposed method uses ran-

domly generated regions, as shown in Section 7, based on the following algorithm.

1. Generate K images of uniform random noise, one for each R0
k.

2. Convolve each R0
k with a chosen Gaussian kernel.

3. ∀k, t do: if R0
k(t) > R0

j (t), ∀j 	= k then set R0
k(t) = 1, otherwise set R0

k(t) = 0.

The iterations in Esedoglu and Tsai’s fast level-set evolution scheme [11, 10],
given a segmentation {Rm

k }K
k=1 at iteration m, proceed as follows.

1. ∀k, t do:
(a) Estimate Pk(z(t)) nonparametrically, as described in Section 4.
(b) R′

k(t) = Rm
k (t) + β

(
log Pk(z(t)) + 1

Tk

∑
s∈Tk

Gn(z(s)−z(t),Ψn)
Pk(z(s))

)
2. Compute R′′

k = R′
k ⊗ N(0, γ2), where ⊗ denotes convolution and N(0, γ2) is

a Gaussian kernel with zero mean and standard deviation γ.
3. ∀k, t do: if R′′

k(t) > R′′
j (t), ∀j 	= k then set Rm+1

k (t) = 1, otherwise set
Rm+1

k (t) = 0.
4. Stop upon convergence, i.e. when ‖ Rm+1

k − Rm
k ‖2< δ, a small threshold.

For a detailed discussion on the relationship between the new parameters γ, β,
and the parameter α in the traditional level-set framework, we refer the reader
to [11, 10]. In short, increasing β corresponds to increasing the PDE-driven force
on the level-set evolution and increasing γ results in smoother region boundaries.

6 Important Implementation Issues

This section discusses several practical issues that are crucial for the effectiveness
of the entropy reduction scheme. The work in [1] presents a detailed discussion
on these issues.

Data-driven choice for the Parzen-window kernel width: Using appro-
priate values of the Parzen-window parameters is important for success, and that
can be especially difficult in the high-dimensional spaces associated with higher-
order statistics. The best choice depends on a variety of factors including the
sample size |Ak,t| and the natural variability in the data. To address this issue
we fall back on our previous work for automatically choosing the optimal values
[1]. In that work, which focused on image restoration, we choose σ to minimize
the entropy of the associated PDF via a Newton-Raphson optimization scheme.
We have found that such a σ, i.e. one minimizing the entropy of Z, can be too
discriminative for the purpose of texture segmentation, splitting the image into
many more regions than what may be appropriate. Hence, in this paper, we set
σ to be 10 times as large. The choice of the precise value of this multiplicative
factor is not critical and we have found that the algorithm is quite robust to
small changes in this parameter.
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Data-driven choice for the Parzen-window sample size: Our experiments
show [1] that for sufficiently large |Ak,t| additional samples do not significantly
affect the estimates of entropy and σ, and thus |Ak,t| can also be selected auto-
matically from the input data. For the Parzen-windowing scheme we choose 500
samples, i.e. |Ak,t| = 500, uniformly distributed over each region.

Neighborhood size and shape: The quality of the results also depend on
the neighborhood size. We choose the size relative to the size of the textures in
the image. Bigger neighborhoods are generally more effective but increase the
computational cost. To obtain rotationally invariant neighborhoods, we use a
metric in the feature space that controls the influence of each neighborhood pixel
so that the distances in this space are less sensitive to neighborhood rotations
[1]. In this way, feature space dimensions close to the corners of the square
neighborhood shrink so that they do not significantly influence the filtering.
Likewise, image boundaries are handled through such anisotropic metrics so
that they do not distort the neighborhood statistics of the image.

7 Experiments and Results

This section presents results from experiments with real and synthetic data. The
number of regions K is a user parameter and should be chosen appropriately. The
neighborhood size, in the current implementation, is also a user parameter. This
can be improved by using a multi-resolution scheme for the image representation
and constitutes an important area of future work. We use 9 × 9 neighborhoods,
β = 2, and γ = 3 for all examples, unless stated otherwise. Each iteration of the
proposed method takes about 3 minutes for a 256 × 256 image on a standard
Pentium workstation. Figure 2(a) shows a level-set initialization {R0

k}K
k=1 as a

randomly generated image with K = 2 regions.

(a) (b) (c)

Fig. 2. Two-texture segmentation. (a) Random initial segmentation for an image hav-
ing two Brodatz textures for grass and straw. The black and white intensities denote
the two regions. (b) Segmentation after stage 1; global samples only (see text). (c) Seg-
mentation after stage 2; local and global samples (see text).
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(a) (b) (c)

Fig. 3. Multiple-texture segmentation. (a) Random initial segmentation containing
three regions for the image in (b). (b) Final segmentation for an image with three
Brodatz textures, including both irregular and regular textures. (c) Final segmentation
for an image with four Brodatz textures.

The level-set scheme using threshold dynamics, coupled with the global-
sampling strategy as explained in Section 4, makes the level sets evolve very
fast towards the optimal segmentation. We have found that, starting from the
random initialization, just a few iterations (less than 10) are sufficient to reach
an almost-optimal segmentation. However, this sampling strategy is sometimes
unable to give very accurate boundaries. This is because, in practice, the texture
boundaries present neighborhoods overlapping both textures and exhibiting sub-
tleties that may not be captured by the global sampling. Moreover, the joining
of intricate textures may inherently make the boundary location significantly
fuzzy so that it may be impossible even for humans to define the true segmenta-
tion. Figure 2(b) depicts this behavior. In this case, for each point ti, selecting
a larger portion of the samples in Ak,t from a region close to ti would help.
Hence, we propose a second stage of level-set evolution that incorporates local
sampling, in addition to global sampling, and is initialized with the segmenta-
tion resulting from the first stage. We found that such a scheme consistently
yields better segmentations. Figure 2(c) shows the final segmentation. We have
used about 250 local samples taken from a Gaussian distribution, with a vari-
ance of 900, centered at the concerned pixel. Furthermore, we have found that
the method performs well for any choice of the variance such that the Gaussian
distribution encompasses more than several hundred pixels. Note that given this
variance, both |Ak,t| and the Parzen-window σ are computed automatically in a
data-driven manner, as explained before in Section 6.

Figure 3 gives examples dealing with multiple-texture segmentation. Fig-
ure 3(a) shows a randomly generated initialization with three regions that leads
to the final segmentation in Figure 3(b). In this case the proposed algorithm
uses a multi-phase extension of the fast threshold-dynamics based scheme [11,
10]. Figure 3(c) shows another multiple-texture segmentation with four textures.

Figure 4 shows electron-microscopy images of cellular structures. Because
the original images severely lacked contrast, we preprocessed them using adap-
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(a) (b) (c)

Fig. 4. Final segmentations for electron-microscopy images of rabbit retinal cells for
(a),(b) the two-texture case, and (c) the three-texture case.

tive histogram equalization before applying the proposed texture-segmentation
method. Figure 4 shows the enhanced images. These images are challenging to
segment using edge or intensity information because of reduced textural homo-
geneity in the regions. The discriminating feature for these cell types is their
subtle textures formed by the arrangements of sub-cellular structures. To cap-
ture the large-scale structures in the images we used larger neighborhood sizes
of 13 × 13. We combine this with a higher γ for increased boundary regular-

(a) (b) (c)

Fig. 5. Final segmentations for real images of Zebras.
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(a) (b)

Fig. 6. Final segmentations for real images of Leopards. Note: The segmentation out-
line for image (b) is shown in gray.

ization. Figure 4(a) demonstrates a successful segmentation. In Figure 4(b) the
two cell types are segmented to a good degree of accuracy; however, notice that
the membranes between the cells are grouped together with the middle cell. A
third texture region could be used for the membrane, but this is not a trivial
extension due to the thin, elongated geometric structure of the membrane and
the associated difficulties in the Parzen-window sampling. The hole in the region
on the top left forms precisely because the region contains a large elliptical patch
that is identical to such patches in the other cell. Figure 4(c) shows a successful
three-texture segmentation for another image.

Figure 5(a) shows a zebra example that occurs quite often in the texture-
segmentation literature, e.g. [23, 22]. Figures 5(b) and 5(c) show other zebras.
Here, the proposed method performs well to differentiate the striped patterns,
with varying orientations and scales, from the irregular grass texture. The grass
texture depicts homogeneous statistics. The striped patterns on the Zebras’
body, although incorporating many variations, change gradually from one part
of the body to another. Hence, neighborhoods from these patterns form one con-
tinuous manifold in the associated high-dimensional space, which is captured by
the method as a single texture class.

Figure 6(a) shows the successful segmentation of the Leopard with the ran-
dom sand texture in the background. Figure 6(b) shows an image that actually
contains three different kinds of textures, where the background is split into two
textures. Because we constrained the number of regions to be two, the method
grouped two of the background textures into the same region.

8 Conclusions and Discussion

This paper presents a novel approach for texture segmentation exploiting the
higher-order image statistics that principally define texture. The proposed method
adaptively learns the image statistics via nonparametric density estimation and
does not rely on specific texture descriptors. It relies on the information content
of input data for setting important parameters, and does not require signifi-
cant parameter tuning. Moreover, it does not rely on any kind of training and,
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hence, is easily applicable to a wide spectrum of texture segmentation tasks. The
paper applies the proposed method to segment different cell types in electron-
microscopy medical images, giving successful segmentations. It also demonstrates
the effectiveness of the method on real images of Zebras and Leopards, as well
as numerous examples with Brodatz textures. The method incorporates a very
fast multiphase level-set evolution framework using threshold dynamics [11, 10].

The algorithmic complexity of the method is O(K|T ||Ak,t|SD) where D is
the image dimension and S is the extent of the neighborhood along a dimen-
sion. This grows exponentially with D, and our current results are limited to 2D
images. The literature suggests some improvements, e.g. reduction in the com-
putational complexity via the improved fast-gauss transform [33]. In the current
implementation, the neighborhood size is chosen manually and this is a limita-
tion. This can be improved by defining a feature space comprising neighborhoods
at multiple scales. These are important areas for future work.
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