
1

Hexahedral Mesh Generation Constraints

Jason F. Shepherd

UUSCI-2006-010

Scientific Computing and Imaging Institute
University of Utah

Salt Lake City, UT 84112 USA

February 13, 2006

Abstract:

Hexahedral finite element meshes have historically offered some mathematical benefit over tetrahe-
dral finite element meshes in terms of reduced error, smaller element counts, and improved reliabil-
ity, especially with respect to finite element analyses within highly elastic, and plastic, structural
domains. However, hexahedral finite element mesh generation continues to be extremely difficult to
perform and automate, with hexahedral mesh generation taking several orders of magnitude longer
in time to complete over current tetrahedral mesh generators. In this paper, I focus on delineating
the known constraints associated with hexahedral meshes, formulating these constraints utilizing
the dual of the hexahedral mesh. Utilizing these constraints, it will be possible to highlight areas
where better knowledge and incorporation of these constraints can augment existing algorithms,
predict failure of specific methods, and suggest some additional methods for extending the class of
geometries which can be hexahedrally meshed.



Hexahedral Mesh Generation Constraints

Jason F. Shepherd1

Scientific Computing and Imaging Institute, Salt Lake City, UT
jfsheph@sci.utah.edu

Hexahedral finite element meshes have historically offered some mathemati-
cal benefit over tetrahedral finite element meshes in terms of reduced error,
smaller element counts, and improved reliability, especially with respect to
finite element analyses within highly elastic, and plastic, structural domains.
However, hexahedral finite element mesh generation continues to be extremely
difficult to perform and automate, with hexahedral mesh generation taking
several orders of magnitude longer in time to complete over current tetrahedral
mesh generators. In this paper, I focus on delineating the known constraints
associated with hexahedral meshes, formulating these constraints utilizing the
dual of the hexahedral mesh. Utilizing these constraints, it will be possible to
highlight areas where better knowledge and incorporation of these constraints
can augment existing algorithms, predict failure of specific methods, and sug-
gest some additional methods for extending the class of geometries which can
be hexahedrally meshed.

1 Introduction

Numerical approximation methods, including finite element, finite difference,
and finite volume methods, are mathematical methods used to model var-
ious scientific and engineering phenomena for a wide variety of disciplines,
including structural mechanics, dynamics, heat transfer, and computational
fluid dynamics. Because of the flexibility of these methods, the problems to
which they can be applied to obtain solutions is growing and expanding daily,
and is currently being utilized in fields as diverse as cellular microbiology and
quantum chromodynamics to star and galaxy formation studies (for example,
see [17, 21, 18]).

From problem formulation to final solution, a numerical approximation is
typically separated into three distinct steps, i.e. model creation, simulation or
analysis, and result visualization. In the scientific community, these three areas
receive a great amount of attention from various research groups according to



2 Jason F. Shepherd

specific difficulties associated with each area. In model creation, a great deal
of effort is currently placed on geometric creation and mesh generation. The
meshes produced are transformed into a set of matrix equations to ‘simulate’
the physics of the phenomena being modeled. These matrices are solved uti-
lizing better and faster numerical solvers, and produce voluminous amounts of
data. This resultant data is processed using a variety of complex data-mining
and visualization techniques in an effort to derive useful conclusions from the
model.

In this paper, we will be targeting the mesh generation area associated
with the various numerical approximation methods. For example, to perform
a finite element analysis, the problem domain is first discretized into a finite
set of sub-domains, where each sub-domain is known as an element and are
typically one, two, or three dimensional entities. Taken together, the set of
finite elements over the problem domain is known as a ‘mesh’. This descrip-
tion of a finite element mesh is also similar for many of the other numerical
approximation methods.

The most common forms of elements utilized in numerical approximations
are triangles or quadrilaterals in two-dimensions, and tetrahedral or hexahe-
dral elements in three-dimensions. While some approximation methods allow
mixtures of theses element types, homogenous meshes are typically preferred,
where possible.

To reduce the amount of time to prepare a model, automated meshing
algorithms have been developed for creating triangular, quadrilateral, and
tetrahedral meshes for a very generalized class of geometries. In the case
of tetrahedral meshing, algorithms are available which can generate greater
than 400 thousand tetrahedra per minute [16]. Automated hexahedral mesh
generation algorithms, however, are available for only a very limited class of
geometries.

Despite the availability of an automated hexahedral mesh generation algo-
rithm, hexahedral meshes are often preferred over tetrahedral meshes, when
available, for a variety of reasons:

1. Tetrahedral meshes typically require 4-10 times more elements than a
hexahedral mesh to obtain the same level of accuracy [32, 11].

2. In some types of numerical approximations (i.e. high deformation struc-
tural finite element analysis), tetrahedral elements will be mathematically
‘stiffer’ due to a reduced number of degrees of freedom associated with a
tetrahedral element [1, 10]. This problem is also known as ‘tet-locking’.

3. There is also a preference by many analysts to utilize a hexahedral mesh,
when available.

Because of the limited class of geometries for which hexahedral meshes can
be built, a great deal of time to generate a hex mesh involves decomposing
(cutting up) a model into pieces for which a known hexahedral mesh genera-
tion algorithm will succeed. The processing of geometry for hexahedral mesh



Hexahedral Mesh Generation Constraints 3

can take several months for a generalized model, whereas tetrahedral meshes
can often be created in a matter of hours or days [33, 34].

Because of the ongoing need and desire for hexahedral meshes, developing
a better understanding of the underlying constraints which make hexahedral
meshing difficult could result in dramatic reductions in the amount of time
necessary to prepare a hexahedral finite element model for analysis.

2 Background

Numerous algorithms exist for producing hexahedral meshes. However, no one
algorithm is completely successful at generating provably correct and robust
hexahedral meshes. The most basic form of a hexahedral mesh generation
algorithm stems from the mesh of a cuboid (i.e. subdivisions of a single hexa-
hedral element). For complex geometries, meshes can be obtained by decom-
posing the initial geometry into a collection of cuboids. For geometries that
are encountered frequently, the decomposition can be retained, or stored, as a
‘primitive’ decomposition, and when the common shape is encountered again
meshing can be nearly automatic [7].

Because decomposition of a model into cuboids and/or primitive shapes
can be tedious, complex, and difficult to automate, alternative algorithms
were sought which did not require geometric decomposition. One particular
algorithm for hexahedral mesh generation, plastering [6], was modeled after
the successful ‘paving’ quadrilateral mesh generation algorithm [4]. Paving
generates unstructured quadrilateral meshes without first requiring geometric
decomposition of the surface.

Following the approach taken in paving, plastering utilizes and advanc-
ing front approach of inserting hexahedron into the interior of a solid in the
following manner. Given a solid with a prescribed quadrilateral mesh on its
boundary, insert a hexahedral element interior to the solid where one of more
boundary faces of the inserted hex contains at least one of the quadrilaterals
on the solid’s boundary. The boundary of the solid is updated such that the
new boundary takes into account the inserted hex. This process is repeated
iteratively, advancing the boundary of the solid inward until closure can be
obtained.

One of the difficulties encountered with the plastering method is that as
the advancing front begins to close, matching faces on the front with other
faces can be combinatorially difficult, or impossible, resulting in solids with
void regions left in the mesh where the boundary did not close. Finding a
hexahedral mesh for these void regions can be an extremely difficult task.

2.1 The Dual of a Hexahedral Mesh

In late 1993, hexahedral mesh generation for these types of difficult problems
were viewed as a topological problem by Murdoch [24, 25] and Thurston [30].



4 Jason F. Shepherd

They realized that utilizing the dual subdivision of a hexahedral mesh yields a
structure of surfaces (sheets), where the structure of the sheets determines the
structure of the hexahedral mesh (and vice versa) according to some specific
topological requirements. The structure of these dual sheets was dubbed the
“Spatial Twist Continuum” by Murdoch in his doctoral dissertation [24].

For a given quadrilateral mesh on a surface (disk), the dual of the mesh is
created by drawing a line segment across each quadrilateral and connecting
the opposite edges of the quadrilateral. For a quadrilateral, there are two such
line segments, one for each of the opposite pairs of edges on a quadrilateral
element. By iterating on this process for an entire surface mesh, it is soon
realized that each of line segments from a quadrilateral connect neighbor to
neighbor until the line segments form either a closed curve, or the resulting
curve has end points at the surface boundary. Each curve in the dual is dubbed
a ‘chord’ in the quadrilateral mesh. An example of a mesh (also known as the
‘primal’), with its dual, is shown in Figure 1.

Fig. 1. A quadrilateral mesh on a circular disk (left). The dual of a quadrilateral
mesh is created by line segments (chords) connecting opposite edges of an individual
quad, and traversing all of the edges of all of the quads on the mesh (middle). The
intersection of two chords is called a centroid and is dual to a quadrilateral. The
complete dual is on the right.

Several important items to note can be gleaned from the dual representa-
tion of the quadrilateral mesh:

1. The intersection point of two chords is known as a ‘centroid’, and a cen-
troid is dual to a quadrilateral in primal space.

2. Each chord represents a ‘stack’ of quadrilaterals in the primal mesh.
3. All chords must either have endpoints on the boundary of the surface, or

they must form a closed curve within the boundary of the surface. (I.e.
there is no chord with an endpoint in the interior of the surface.)

4. All chords intersect at nearly orthogonal angles to one another.
5. Chords cannot be tangent to other chords.



Hexahedral Mesh Generation Constraints 5

6. The ‘size’ of the primal mesh and the number of elements local to an area
of the surface is a function of the density of chords and chord intersections
relative to that locale on the surface.

7. Due to observation 3 above, the parity of the edges around a surface
admitting a quadrilateral mesh must be even.

Extending these observations of quadrilateral meshes to hexahedral meshes,
we can formulate the dual of a hexahedral mesh. Since each hexahedral el-
ement will consists of three pairs of opposing quadrilaterals (similar to the
two opposing edges for quadrilateral elements), we can draw a line segment
between the centers of each of the opposing faces of the hexahedra. For the
dual of a single hex, we can already begin to draw several conclusions:

1. The three line segments within a hexahedral element intersect at a single
point, which again is known as a centroid. A centroid in a 3D mesh is dual
to a hex element in the primal mesh.

2. The three segments intersect nearly orthogonally to each other.

By incorporating additional hexes adjacent to this single hexahedron, we
observe that there are some additional interactions occurring within the dual
space that are not readily apparent with just the chords and centroids. As
more hexahedra are added to the mesh, we observe that, in similar fashion
to the chords of a quadrilateral mesh, the chords within a hexahedral mesh
define a stack of hexahedra. However, we also observe that these stacks now
interact in two directions resulting in ‘layers’ of elements. A layer of elements
corresponds to a surface in the dual space of the mesh. This dual surface has
been referred to as a ‘sheet’ [22], an ‘interior surface’ [12], or as a ‘twist plane’
[25, 24]. For the purposes of this paper, we will utilize the term ‘sheet’ to
apply to these dual surfaces. An example dual subdivision of a hexahedral
mesh is shown in Figure 2 for clarity.

Fig. 2. Example of a cylinder meshed with hexahedra (left). The picture in the
middle shows the hex mesh with its dual subdivision in red. The sheets of the mesh
are shown on the right.



6 Jason F. Shepherd

Incorporating the sheets into the dual space of a hexahedral mesh, we
observe the following interactions:

1. There are no instances of more than three sheets intersecting at a single
point. An intersection of three sheets at a single point is called a ‘centroid’.
A centroid is the dual form of a single hexahedron in primal space.

2. Each sheet in the dual space represents a ‘layer’ of hexahedral elements
in the primal mesh.

3. All sheets either form a closed shell within the mesh space, or have ter-
minating edges around the boundary of the mesh (i.e. there is no sheet
which terminates in the interior of the hexahedral mesh.)

4. All sheets intersect nearly orthogonally with any other sheet.
5. Sheets cannot be tangent to other sheets.
6. The ‘size’ of the primal mesh and the number of elements local to an

area of the surface is a function of the density of sheets and the triple
intersections of sheets relative to that locale within the mesh.

7. There exists a mapping for each sheet within the hexahedral mesh to
a quadrilateral mesh on that sheet. Utilizing observation 3 above, and
observation 7 from quadrilateral duals, it is apparent that the parity of
quadrilaterals on the boundary of the hexahedral mesh must be even. (A
proof of this can be found in [22])

Utilizing these observations with the theorems of topology, Thurston the-
orized [30] that for a given solid, any quadrilateral mesh composed of an even
number of quadrilaterals should admit a compatible hexahedral mesh within
the solid. This theory was later proved by Mitchell in [22], and shown to have
linear complexity by Eppstein in [12]. These proofs, however, have not resulted
in any practical algorithms for generating hexahedral meshes in an arbitrary
solid which will be suitable for analytic use.

So, while it is true that, topologically speaking, any solid on whose bound-
ary contains a quadrilateral mesh with even parity will admit a compatible
hexahedral mesh, there must also exist some geometric and quality require-
ments which must be satisfied to enable a hexahedral mesh to be usable for
analytic methods, such as finite element analysis.

3 Methods

In this section, we will explore and derive some of the constraints for hexahe-
dral mesh generation. By understanding the constraints, we can propose some
possible extensions to existing algorithms, along with some new approaches,
to enhance the class of geometries for which these hexahedral meshing algo-
rithms are applicable. The last part of this section will highlight some algo-
rithms which may be utilized to help satisfy some of the constraints for various
situations.



Hexahedral Mesh Generation Constraints 7

3.1 Hexahedral Mesh Constraints

Topologic Constraints

In delineating the topological requirements of a hexahedral mesh, we will uti-
lize the constraints given by Mitchell in his proof of hexahedral mesh existence
[22]. While his proof started by considering a solid homeomorphic to a ball
with an even-parity quadrilateral mesh on the boundary, it should be recog-
nized that the constraints given will also apply to any arrangement of sheets
within a solid where no boundary mesh on that solid has been specified. That
is, if we start with an arrangement of sheets and place these sheets interior to
a solid, the topological constraints enumerated below will still hold with only
minor concessions to incorporate the boundary of the solid which does not
contain a quadrilateral mesh. The requirements for sheets near the geometric
boundary will be discussed in the next section.

Before outlining the topological constraints, we will define some additional
needed terminology. First, let us clarify our definition of sheet to be the fol-
lowing: For a given problem domain in <3 (where the boundary of the space
is defined by the boundary of the solid(s) to be meshed), a sheet is a homo-
topic surface which effectively divides the problem domain into two separate
regions. This corresponds to the observation made earlier that a sheet must
either be closed within the boundary of the mesh space, or else it must span
the mesh space. Utilizing the above definition for a sheet, a collection of sheets
will intersect to form the following collection of sub-entities, as follows (see
also Figure 3):

• A centroid (i.e. a 0D element) occurs at the intersection (local) of 3 sheets.
(It is possible that a single sheet may self-intersect, such that a single sheet
is effectively 2 (or all 3) of the local sheets needed to form a centroid.)

• A chord (i.e. a 1D element) is produced along the intersection (local) of 2
sheets.

• A 2-cell (i.e. a 2D element) is a polytope on a sheet resulting from an
intersection with 1, or more, other sheets, where the polytope boundary
are the chords produced by the sheet intersection.

• A 3-cell (i.e. a 3D element) is a volumetric polytope resulting from the
division of the original space by one, or more, sheets, where the boundary
of the 3-cell are the 2-cells enclosing the sub-space.

Utilizing the above definitions, the topological requirements, from Mitchell
[22], for a given arrangement of sheets to produce a hex mesh are as follows:

1. Each internal 2-cell is contained in exactly two distinct 3-cells.
2. Each face contains at least one lower dimensional face (excepting cen-

troids).
3. Each chord segment must contain two distinct centroids.
4. Every internal cell contains at most one surface cell of one lower dimension.



8 Jason F. Shepherd

Fig. 3. Entities in the Dual

5. Each internal chord segment must be contained in exactly four distinct
2-cells.

6. Each centroid is contained in six chord segments. Note, also, that each
chord segment at a centroid is paired with another chord segment belong-
ing to the same chord.

7. Two 3-cells have, at most, one 2-cell in common.

When any of the conditions above are violated, the result will be either a
degeneracy or void regions in the resulting hexahedral mesh. Proofs for each
individual requirement can be found in [22].

For purposes of aiding the reader’s intuition, these constraints can in most
cases be viewed as:

1. Only three sheets can intersect at any given centroid.
2. Sheets cannot be tangent with another sheet.
3. Sheets must span the space, or form a closed surface within the space.
4. When traversing the centroids along a single chord, consecutive instances

of a single centroid are not permitted.

Boundary Constraints

In outlining the topological constraints of sheets for hexahedral meshes, we
paid very little attention to the geometric boundary of the space, or solid.
In this section, we make several observations regarding the geometric bound-
ary of solids and formulate the additional requirements necessary to ensure
compatibility of the interior sheets with the geometric boundary of a space.



Hexahedral Mesh Generation Constraints 9

For clarity, we need to define what is meant by a solid geometry into
which we will be placing a mesh. A solid geometry consists of five main entity
types, namely vertices, curves, surfaces, solids (or volumes), and collections of
volumes (these may be referred to as an ‘assembly’). These entities are often
arranged in a hierarchical structure, as shown in Table 1. This hierarchical
structure is often referred to as the topology of the solid geometry. (Please
note the distinction between the mesh topology and the geometric topology
of the solid.)

While there may be special cases to the hierarchy shown in the table (i.e.
curves without endpoints, surfaces without curves, etc.), most of these special
cases can be ignored, or remedied by introducing the necessary entities to
match the definitions shown in the table without affecting the solid geometry
representation.

Geometric Entity Bounding Entities

Vertex None
Curve Two Vertices
Surface One or more Curves
Volume One or more Surfaces

Table 1. Hierarchical arrangement of geometric entities.

Understanding the interaction between these entity types is important
to understanding how the geometric constraints on hexahedral meshes help
to capture the geometric entities. For instance, in order to mesh a surface,
the mesh topology of the surface must somehow incorporate the curves and
vertices ‘owned’ by that surface. For many solid geometries, it may be easy to
capture the geometric shape of the object, but can be very difficult to capture
the geometric topology of the object.

One other item that we should identify is the distinction between mesh en-
tities and geometric entities. We will utilize the following terminology, shown
in Table 2, in order to distinguish between mesh entities and geometric en-
tities. From this table, we can also note the hierarchical relationship inherit
in the mesh entities, which is similar to the relationship between geometric
entities noted earlier.

Dimensionality Geometric Entity Mesh Entity

0D Vertex Node
1D Curve Edge
2D Surface Quadrilateral (or Triangle, etc.)
3D Volume Hexahedron (or Tetrahedron, etc.)

Table 2. Relationships between geometric entities and mesh entities.



10 Jason F. Shepherd

At this point, we can also construct a table (Table 3) indicating entity
correspondence between the dual and primal spaces for hexahedral meshes.

Primal Entity Dimension Dual Entity Dimension

Hex 3 Centroid 0
Quad 2 Chord 1
Edge 1 2-Cell 2
Node 0 3-Cell 3

Table 3. Conversions between dual and primal entities.

Geometric Surface Constraints

A couple of interesting observations can be made from Table 3. First, note
that a chord is dual to a quadrilateral. Since chords were drawn between
hexahedra, the chord between two centroids was dual to the quad shared
by these two hexahedra. Therefore, in some sense the chord can be viewed
as an approximation to the normal of the quadrilateral between two hexes.
At the boundary of our geometry, we will want to align the chords with
the local surface normals to obtain a reasonable quadrilateral mesh on the
boundary surface. Otherwise, the resulting quadrilaterals on the surface will
not appropriately approximate the geometry.

The second interesting observation is that since there are 3 pairs of chords
associated with each centroid, a chord whose endpoint is on the geometric
boundary is roughly orthogonal to the other two chords. By definition, a chord
can only be contained in at most two sheets. Because one chord approximates
the normal, the other two chords emanating from the centroid must exist
within a single sheet. Therefore, in an area which is local to our original chord
resides a single sheet which is geometrically similar to the boundary surface
but is offset by the length of the boundary terminating chord. Utilizing this
observation, we can formulate the following constraint (see Figure 4) .

For each surface of our solid, there exists one sheet within the solid
which is geometrically similar to the local boundary surface but offset
a distance which is a function of the size of the mesh local to that
boundary (i.e. the local chord length).

Geometric Curve Constraints

With respect to curves on the boundary, we can make a similar deduction
that for each curve on the boundary, there must be one or more chords which,
in a local sense, are geometrically similar to the boundary curve, but offset a
distance which is again a function of the mesh size in the boundary curve’s
locale. Since each chord is created from the intersection of two sheets, we can
infer the following constraint (see Figure 5):



Hexahedral Mesh Generation Constraints 11

Fig. 4. Image showing how a sheet captures the geometric boundary. The picture
on the right shows a single sheet capturing the cylindrical surface, while the picture
on the left (of a different mesh) shows the same surface being captured with multiple
sheets.

There will be one intersecting sheet pairs within the solid correspond-
ing locally to each curve on the boundary, which are offset a distance
related to the mesh size local to the curve.

Geometric Vertex Constraints

Continuing the arguments from above as we move down the element hierarchy
to determine the constraints for each vertex on our boundary, we can show
that a vertex on the boundary will correspond to a centroid which is offset
from the vertex by a distance related to the local mesh size. However, there
is a complicating difference with vertices, in that there it is not necessary for
a vertex to correspond to a single centroid. Rather, a vertex may correspond
to many centroids within a single solid.

We can re-write this observation in terms of sheets, such that, for each cen-
troid, there exist a local, triple-set of sheets whose intersection form a centroid
which corresponds to a vertex. However, because a vertex on the boundary
can correspond to one or more centroids, there will be cases when this vertex
will correspond to more than one triple-sheet pairing. A few examples are
shown in Figure 6.

Our constraint in relation to geometric vertices is:

There will be at least one triple-sheet pairing which corresponds to
each vertex on the boundary. This triple-sheet pair is equivalent to a
centroid, and is offset a distance related to the mesh size local to the
vertex.



12 Jason F. Shepherd

Fig. 5. Capturing a curve utilizing an offset chord (from the intersection of two
sheets).

In this case, utilizing the sheets in meeting this constraint is helpful instead
of the centroids because there are usually geometric curves emanating from
each of the vertices. The sheets utilized to capture the geometric surfaces and
curves will also be the same sheets which capture the vertices. The convergence
of many sheets around some vertices must be handled with care to maintain
the topological constraints local to a vertex (i.e. Only three sheets can intersect
at a single point, etc.).

Quality Constraints

Specifying constraints in relation to the quality of the mesh is often difficult
because a complete understanding of how mesh quality affects analysis error
is largely unkown. The only consistent constraint placed on mesh generation
is that the jacobian (scaled) of each mesh element must be positive (i.e. non-
inverted). In this section, we will consider how the geometric properties of a
sheet affect the overall quality of the resulting hex mesh, while the ultimate
goal will be to determine the necessary conditions on a sheet to have a result-
ing non-inverted mesh. We will begin by first discussing the sheets relating to
the ideal mesh as developed for finite elements, and then by discussing how ge-
ometric and topologic modifications to the ideal sheets change the underlying
quality of the resulting hexahedral meshes.



Hexahedral Mesh Generation Constraints 13

Fig. 6. At least three sheets are necessary to capture a geometric vertex in a given
mesh topology (A). However, more than one triple-pair of sheets is not exclusive for
each vertex. For geometric vertices whose valence is higher than three, more than
one triple pair is necessary to capture the all of the geometric features related to the
vertex. A four-sided pyramid (B) requires four sheets (creating two distinct centroids,
or two triple-pairs) and a five-sided pyramid (C) requires five sheets (creating three
distinct centroids, or three triple-pairs) to succinctly capture the geometric features
associated with the vertex. In (B), there are two red sheets, one green, and one
yellow shown. In (C), there are two red, two green and one yellow sheet shown.

Quality Considerations

In terms of hexahedra, the ideal element for which finite element basis func-
tions are formulated is a cube of six quadrilaterals of equal area, with eight
edges of equal length, and which are mutually orthogonal to each other. Such
cubes are easily subdivided by dividing each edge by two and each quadrilat-
eral into four smaller, but mutually equivalent quadrilaterals. The arrange-
ment of the sheets in dual space for such an ideal mesh is simply a collection
of Cartesian planes which subdivide the mesh as described earlier in the dual
construction of a mesh (see Figure 7).

We can, again, make some general observations on this arrangement of
sheets as compared to other possible arrangements, as follows:

1. From the topological constraints earlier, we know that at most three sheets
can intersect at a single point. From the ideal mesh, it is apparent that a
perfectly orthogonal intersection of the three sheets is desired. Deviations
from orthogonal intersections of the sheets will produce ‘skewing’ of the
sheets (see Figure 8).

2. Element sizing information is determined directionally as a function of the
local density of the sheets in an area. To increase the element size in one
direction, decrease the density of locally parallel arrangement of sheets.



14 Jason F. Shepherd

Fig. 7. The ideal mesh (left) with the induced sheet arrangements at two differ-
ent mesh sizes (the sheet arrangement on the right is twice as dense as the sheet
arrangement in the middle).

Fig. 8. As sheet intersections deviate from orthogonality, the skew of the mesh
increases.

A dramatic transition in the density of sheets is undesirable for quality
reasons (see Figure 9).

Fig. 9. Note that as the sheet density increases in one direction only, the element
aspect ratio increases as can be seen in this figure.

3. The ideal mesh contains perfectly planar sheets. Therefore, we desire the
local curvature of a sheet to have as maximal an absolute value as possible.



Hexahedral Mesh Generation Constraints 15

Curvature of the sheets causes ‘keystoning’ of the elements, where the
length of one edge is substantially different than it’s opposite edge. This
phenomenon can be readily seen in Figure 10, as we increase the curvature
of a single sheet of elements.

Fig. 10. Increasing the curvature of a single sheet results in ‘keystoning’ of elements
where one edge shrinks in size while the other grows as the curvature of the sheet
increases.

4. With the exception of self-intersecting curves connecting self-intersection
point along the boundary of a sheet, sheets are not allowed to self-intersect
internally within the mesh space.

5. The regular topological arrangement of the sheets, as shown in the ideal
mesh, is also desirable (and is essentially required in finite difference calcu-
lations). In finite element methods this requirement has some flexibility,
but maintenance of this regular topology, where possible, has some ad-
ditional benefits from several algorithmic standpoints including element
numbering, matrix formulation, compression, etc. Additionally, alterna-
tive topological structures have a tendency to interfere with the ability
to obtain optimal quality values for constraints 1 and 3 above, although



16 Jason F. Shepherd

it is possible to use alternative topological arrangements (and may be
necessary for some classes of solids) with acceptable quality results.

Determining Quality Constraints

The quality of a hexahedral mesh, as determined from its dual subdivision, is
largely unexplored. From the quality considerations enumerated earlier, it is
known that there exists a correlation between the conformation of the sheet
and the ultimate quality of the hexahedral mesh. However, it is unknown
what interactions are allowable to obtain a non-inverted mesh. While, the
final constraints are not currently known, some case studies are may be of
value in determining some of the necessary conditions for producing quality
hexahedral meshes.

• Low sheet curvature is important for high quality - Figure 11 shows a
sheet from a volume which was meshed via the whisker weaving algorithm
[13]. At the base of the trough in this sheet is a collection of inverted
elements which are currently untangle-able [15, 31]. Mesh smoothing can
only improve the sheet conformation in a limited fashion due to how this
sheet must interact with the surrounding sheets. Some efforts involving
mesh topology reconfiguration (for instance, mesh-flipping [2, 3, 29]) may
aid our ability to untangle these meshes, but the underlying constraint
involved with how this particular configuration prohibits untangling of
the mesh is unknown.

Fig. 11. Two views of a sheet with a high curvature trough in a solid. The high
curvature at the trough of the sheet shown corresponds to hex elements which cannot
be untangled in the resulting mesh.



Hexahedral Mesh Generation Constraints 17

• The surface mesh is important for high quality - In some algorithms, the
boundary of a sheet is defined by the dual cycle of a quadrilateral mesh
on a surface. Some of the boundaries defined by arbitrary quadrilateral
meshes imply extremely complex geometric definitions for the resulting
sheet that corresponds to the defined boundary. One such boundary is
shown in Figure 12, where the dual cycle wraps around itself several times
in one area of the solid. Because of current inability to untangle the re-
sulting mesh in this object, there must be a quality constraint which is
not being enforced in the generation of this particular mesh topology.

Fig. 12. The surface mesh (shown on the left) has a dual cycle which spirals up
to the top of the image. The resulting hex mesh, generated with WhiskerWeaving,
cannot be untangled. The sheet generated by WhiskerWeaving is shown on the right.

• The mesh approximates the sheet - Recent work done by Suzuki, et al. [27]
has explicitly defined the sheets interior to a solid. By generating an inte-
rior surface for the dual cycle of Schneider’s pyramid [26] and subsequently
satisfying all necessary topologic constraints for a hex mesh, it was felt that
a reasonable quality mesh would result. However, the resulting mesh had
elements which were untangle-able. Comparing the sheet defined by the
hex elements with the sheet created by the authors showed a very rought
approximation of the desired interior surface (see Figure 13. Increasing the
number of elements subsequently improved some areas of quality, but the
underlying constraint to direct where to place more elements to guarantee
a non-inverted mesh is still missing.

These case studies indicate that there is still a great deal of information
which is not currently understood with regards to generation of quality (or,
at least, non-inverted) hexahedral meshes. The considerations listed at the
beginning of this section will play an important role in understanding the
necessary hexahedral quality constraints, however, a broader understanding
of these considerations with the interaction of multiple sheets is still not well



18 Jason F. Shepherd

Fig. 13. The boundary and interior surface, shown in (A), correspond to the bound-
ary and an interior surface for Schneider’s pyramid [26]. The resulting hex mesh has
a sheet (B) which approximates the surface in (A), but the facets tend to flatten
the intended sheet conformation. By increasing the resolution (via dicing [20]) the
approximation of the surface is better and has fewer regions of negative jacobian
elements (some negative jacobian elements are shown in the image).

understood. A better understanding of these interactions will be useful in
directing current and on-going research.

Algorithmic Constraints

In a presentation to attendees at the 9th International Meshing Roundtable,
Blacker [5] re-iterated several algorithmic considerations which are utilized
in evaluating the performance of a hexahedral mesh generation algorithms.
These considerations can be viewed as additional constraints on a hexahedral
mesh generation algorithm, because failure to satisfy any of these constraints
would result in an algorithm which would not be utilized. These additional
constraints are, for the most part, similar to the constraints listed above;
however, because some additional practical constraints are also present, we
will list the considerations in their entirety.

• Geometric Generality - “The algorithm should handle a large class of ge-
ometries with arbitrary complexity and detail.”
This consideration questions how well an algorithm incorporates the re-
quirements listed in the previous three sections. In hexahedral mesh gen-
eration, most algorithms will assume that one set of constraints are fixed
and then work to optimize the other two constraint sets. By fixing one
set of constraints, an algorithm will only work for the geometric set of
problems for which the constraint set is fixed.

• Geometric Matching - “The algorithm should contain the geometric fea-
tures identified in the solid being meshed.”
In some sense, this consideration asks how well an algorithm satisfies the
geometric constraints of a hexahedral mesh. In some cases, an algorithm



Hexahedral Mesh Generation Constraints 19

working under the assumption of a fixed mesh topology may have difficulty
capturing specific geometric features since the mesh topology utilized will
not be readily homeomorphic to the geometric boundary.

• Boundary Sensitivity - “The algorithm should produce high-quality ele-
ments at the domain boundary.”
Historically, this consideration dealt with the regularity of the mesh topol-
ogy at the boundary coupled with the how nearly orthogonal the sheets
at the local boundary locations are with respect to the boundary surface.

• Orientation Insensitivity - “The orientation of the geometry should not
affect the mesh generated by the algorithm.”
Another way of saying this would be: “The algorithm should produce iden-
tically (or nearly so) meshes despite rigid body transformations of the ge-
ometry.” This consideration can normally be satisfied by anchoring the
mesh topology to the geometry.

• Bad Geometry Tolerant - “The algorithm should be able to operate despite
gaps, overlaps, holes, etc. in the geometry.”
Upon determination of a mesh topology which generally satisfies the ge-
ometric and quality constraints, a general operation in most algorithms
is to assign each individual mesh entity to an owning geometric entity.
With ‘bad geometry’ these assignments can be ambiguous at times. The
algorithms ability to deal with these ambiguities is the subject of this
consideration.

• Size Control - “The algorithm should match the desired element sizing
constraints throughout the domain.”
Because of the topological constraints of hexahedral mesh generation re-
quire a sheet to span the mesh space; at times it can be difficult to control
the sheet density in local areas while still satisfying the mesh quality con-
straints. This consideration pertains to how well an algorithm is able to
balance these oft-times conflicting requirements.

• Speed - Generate reasonably large meshes (>1M elements) in ‘interactive’
time. Tetrahedral meshing speeds are desirable.
Tetrahedral mesh generation algorithms are currently available which are
generating on the order of millions of elements per minute on single proces-
sor machines. A desirable hexahedral algorithm would be able to generate
hexes in the same order of time, while still adequately meeting the previous
algorithmic considerations for its operation class of geometries.

3.2 Constraint-satisfying Methods

Over the years, several methods have been developed which make it possible
to improve the flexibility of existing hexahedral meshing algorithms. In this
section, we will highlight some of these methods and show how they help to
satisfy some of the fundamental constraints for hexahedral meshing of solid
models. In particular, we will discuss methods for inserting and extracting



20 Jason F. Shepherd

sheets in existing mesh topologies. The methods we will highlight are pillowing
[23], dicing [20, 19], mesh-cutting [9], grafting [14], and sheet extraction [8].

Inserting Sheets

Pillowing

During the development of the whisker weaving algorithm [28, 13], Mitchell et
al. consistently encountered meshes where two neighboring hexes shared two
faces, called a ‘doublet’ (see Figure 14). This situation is undesirable because
it is practically impossible to move the nodal locations in such meshes to
generate a reasonable jacobian values within the mesh for subsequent analyses.
A simple, but powerful, technique called ‘pillowing’ [23] was developed to
locate and place a mesh refinement that effectively removed the doublets
from the mesh. In terms of the dual of the mesh, pillowing is essentially
a sheet insertion operation, where a new sheet is inserted which effectively
splits the doublet hexes into multiple hexes, and eliminating the problematic
mesh topology.

Fig. 14. A quadrilateral doublet, where two adjacet quadrilaterals share two edges.
Similar types of doublets occur in 3D with adjacent hexes sharing two or more
quadrilaterals. The scaled jacobian for both elements, as shown, is zero, and while
node movement strategies can improve the jacobian value for one of the two quadri-
laterals, simultaneous improvement of the jacobian value for both quadrilaterals is
not possible.

The pillowing method turns out to be powerful, not for it’s ability to
remove doublets, rather it provides a fairly straight-forward approach to insert
sheets into existing meshes. The sheets can be inserted utilizing the primal
elements of an existing mesh, and without explicitly creating a geometric
definition for the sheet and calculating the intersections with the other local
sheets in the space.

The basic pillowing algorithm is as follows:



Hexahedral Mesh Generation Constraints 21

Fig. 15. A basic pillowing operation starts with an initial mesh (A) from which a
subset of elements is defined to create a shrink set. The shrink set is separated from
the original mesh and ‘shrunk’ (B), and a new layer of elements (i.e. a dual sheet)
is inserted (C) to fill the void left by the shrinking process.

1. Define a shrink set - For our purposes, this step involves dividing the
existing mesh into two sets of elements: one set for each of the half-spaces
defined by the sheet to be inserted. One of these two sets of hexahedral
elements comprises the shrink set. The choice of which one should be the
shrink set is arbitrary, although the best algorithmic choice will be the set
with the fewest number of elements.

2. Shrink the shrink set - This step essentially creates a gap region between
the two previous element sets (see Figure 15. The difficulty in this step
involves splitting the shared nodes, edges, and quads in the existing mesh,
while maintaining the appropriate correspondence of the mesh entities
with the geometric topology.

3. Connect with a layer of elements - This step results in a fully-conformal
mesh with the new sheet inserted between the original two element sets.
To complete this step, an edge is inserted between each node that was
separated during the ‘shrinking’ operation. Utilizing the quadrilaterals on
the boundary between the two sets of hexes, along with these new edges, it
is fairly straight-forward to determine the connectivity of all of the hexes
in this new layer.

It is often desirable to perform a smoothing operation on the resulting
mesh after the new sheet has been inserted to obtain better nodal placement
and higher quality elements. The speed of the pillowing algorithm is largely
dependent on the time needed to find the shrink set. The number of new hex-
ahedra created will be equal to the number of quadrilaterals on the boundary
of the shrink set.



22 Jason F. Shepherd

Dicing

The dicing algorithm [20, 19] was created to very efficiently generate very
large, refined meshes from existing coarse meshes. The generation of these
very large, refined meshes is accomplished by copying the existing sheets and
placing them in a parallel configuration to the sheet being copied. The basic
method for dicing is as follows:

1. Define the sheet to be diced - An edge in a hexahedral mesh can only
correspond to a single sheet in the dual. Utilizing one edge, the opposite
edges of the hexahedron can be deduced as belonging to the same sheet
via the definition of the dual of the hexahedral mesh. It is then possible
to iterate until all of the edges associated with a single sheet in the dual
are found.

2. Dice the edges - With the list of edges found in the previous step, dicing
then splits (dices) all of these edges the specified number of times. If for
instance, we wish to copy the sheet one time, then each of the edges is
split once resulting in two new edges.

3. Form the new sheets - With each of the edges associated with the hex-
ahedral sheet split, we can again utilize the idea that an edge can be
associate with a single sheet in the mesh and form a new layer of hex-
ahedra for each split in the original set of edges, where the hexahedral
connectivity is similar to the original hexahedral layer before the edges
were split.

Fig. 16. The original mesh (left) contains 1805 hex elements before dicing. Each
sheet in the original mesh is copied three times resulting in a mesh that is 33 larger,
with 48735 hex elements.

Utilizing the dicing method, the number of elements increases as the cube
of the dicing value. For instance, if an existing mesh is diced four times (i.e.
each of the sheets in the existing mesh is copied four times), the resulting mesh



Hexahedral Mesh Generation Constraints 23

would have 64X as many elements as the original mesh. Because all search
operations can be performed directly, the dicing algorithm can produce large
meshes at very efficient speeds (see Figure 16).

Geometric Capture with Sheets

Mesh Cutting

The mesh-cutting [9] method is an effective approach for capturing geometric
surfaces within an existing mesh topology. The mesh-cutting method utilizes
the pillowing and dicing methods mentioned previously to insert two sheets
which are geometrically similar to the surface to be captured. By utilizing two
sheets, the result is a layer of quadrilaterals, shared by the hexes in the two
sheets, which can be viewed as a set of facets geometrically approximating
the surface. The mesh-cutting method entails the following steps:

Fig. 17. Meshcutting utilizes an existing mesh and inserts new sheets to capture a
geometric surface(the existing mesh is shown in (A) where the red, spherical surface
is the surface to be captured.) The reulting mesh after meshcutting is shown in (B),
with a close-up of the quadrilaterals on the captured surface being shown in (C).

1. Define the pillowing shrink set - Utilizing the surface that is to be captured
in the mesh, we divide the existing mesh into two sets of elements. One of
these element sets will be the shrink set, and a sheet (pillow) is inserted
between the two sets of elements.

2. Dice the new sheet - We split the newly inserted sheet into two sheets
utilizing an approach similar to dicing.

3. Move the shared quadrilaterals to the surface - With two new sheets de-
fined in the mesh topology, we can find all of the quadrilateral which are



24 Jason F. Shepherd

shared by the hexes between the two sheets. These quadrilaterals become
the mesh on the surface we are attempting to capture (see Figure 17).

A caveat with this method is that the existing mesh topology must be
fine enough to capture the detail of the surface to be inserted. Because the
resulting quadrilaterals only approximate the inserted surface, if the result-
ing quadrilateral mesh is too coarse, the surface may not be approximated
adequately enough to be resolved.

One other item to remember with this method is that since a geometric
surface is being utilized to define a sheet within the mesh space it may be
necessary to have the ability to extend the geometric surface in some fashion
such that it meets the requirements on a sheet that it divide the mesh space.
If the geometric surface is trimmed, for instance, the trimmed surface may
not adequately divide the space being meshed making it necessary to provide
a continuation to the surface definition to the boundary of the mesh space.

Grafting

The term ‘grafting’ is derived from the process of grafting a branch from
one tree into the stem, or trunk, of another tree. In meshing, the grafting
method was initially to be utilized for allowing a branch mesh to be inserted
into the linking surface of a previously hexahedrally swept volume [14]. The
grafting method would then offer a reasonably generalized approach to multi-
axis sweeping.

In reality, grafting is a method which essentially captures geometric curves
on previously meshed surfaces. Assuming that a hexahedral mesh exists which
captures to geometry of the surface where you would like a closed set of curves
placed, the method for creating a graft (i.e. capturing the geometric curve)
can be outlined as follows (see also Figure 18):

1. Create a pillowing shrink set - In the case of grafting, the shrink set is
typically defined as the set of hexes which have one quadrilateral owned
by the surface and which are interior to the closed set of curves (with
respect to the surface).

2. Insert the pillow (sheet) - By inserting the second sheet, we have essentially
satisfied the hexahedral constraint for capturing a geometric curve. That
is, we now have two sheets which generate a chord in the mesh which is
offset from the set of curves which were the input to the grafting algorithm.

At this point, there is often some database adjustments also necessary to
ensure that the new mesh entities are associated with the correct geometric
entities, but the curve is essentially capture when the second sheet is inserted
in conjunction with the initial set of sheets that captured the geometric sur-
face. A similar method can be used to capture a single curve, rather than a set
of curves, but it is still necessary that the sheet that is inserted to capture the
curve must satisfy the definition of a sheet. That is, the sheet must completely
divide the mesh space into two regions.



Hexahedral Mesh Generation Constraints 25

Fig. 18. In grafting, a shrink set on a existing meshed volume is defined (A) and
a new sheet is inserted via a pillowing operation (B). Once the new sheet has been
inserted, the nodes are positioned along the curve to be captured via a smoothing
operation (C). Additional pillows can also be inserted to remove any doublet hexes
that may have been created (C). The resulting mesh topology captures the geometric
curve (D).

One caveat with this method: because there is no explicit steps taken to
capture the geometric vertices associated with each of the curves being grafted,
there is a requirement that the resolution of the trunk mesh be fine enough to
be able to capture all of the curve’s endpoints by moving existing nodes in the
final mesh to the vertex locations. The movement of the nodes to the vertex
locations must be done intelligently to avoid destroying the required mesh
topology necessary to correctly capture the curve. While other sheets may
be added to avoid this problem, the addition of more sheets to capture the
vertices may have the negative effect of locally refining the mesh sizes and/or
mesh topologies that are not as aesthetically pleasing as may be desired.

Removing Sheets

Sheet Extraction

One of the nicest things about working with the sheets in hexahedral meshing,
is that all of the processes are easily reversible. It is just as easy (or easier) to



26 Jason F. Shepherd

insert a sheet as it is to remove a sheet completely from the mesh. A method
for extracting a sheet is detailed in [8], where the basic steps can be outlined
as follows:

Fig. 19. Original mesh, shown on left, with 1805 hex elements. After removing
approximately half of the sheets in the original mesh, the resulting mesh (right) has
342 hex elements.

1. Define the sheet to be extracted - Because an edge in a hexahedral mesh
can only correspond to a single sheet in the dual, this step can be easily
accomplished by specifying a single edge in the mesh. From this single
edge, the primal mesh can be iteratively traversed to determine all of the
edges which correspond to the sheet to be extracted.

2. Collapse the edges - With the list of edges found in the previous step, the
nodes of each of the edges can be merged, effectively removing the sheet
from the mesh.

There are some special circumstances that must be avoided when extract-
ing sheets in order to avoid either degenerating the mesh or producing a mesh
which is no longer conformal with the geometric topology. These situations
can be avoided by checking to ensure that one of the edges to be collapsed is
not the only edge on a curve, or that the nodes in an edge are not owned by
different curves, etc.

4 Conclusion

A thorough understanding of the constraints associated with hexahedral mesh
generation may provide the insight necessary to dramatically reduce the time
required to generate these types of meshes for use in finite element analyses.
Hexahedral meshes are currently necessary in many engineering analyses, most
specifically highly elastic and plastic structural analyses where tetrahedral



Hexahedral Mesh Generation Constraints 27

meshes suffer tet-locking. Due to the difficulty and complexity of generating
hexahedral meshes, however, tetrahedral meshes are often the only means
available to perform the finite element analysis.

In this paper, we have outlined many of the necessary constraints for
generating a hexahedral mesh as derived from the dual representation. By
incorporating methods to satisfy ignored, or overlooked, constraints in existing
hexahedral mesh generation algorithms, we can extend the class of geometries
for which these algorithms might be applied. Several existing methods for
satisfying individual constraints are also highlighted.

We propose several research areas to be explored to validate the list of
constraints. These research tasks demonstrate application to new areas, aug-
mentation of existing algorithms, and development of new algorithms for hex-
ahedral mesh generation. A timeline for completing these research tasks was
outlined for completion of the doctoral dissertation.

References

1. S. E. Benzley, E. Perry, K. Merkley, and B. Clark. A comparison of all hexagonal
and all tetrahedral finite element meshes for elastic and elasto-plastic analysis.
In Proceedings, 4th International Meshing Roundtable, pages 179–191. Sandia
National Laboratories, October 1995.

2. M. Bern and D. Eppstein. Flipping cubical meshes. In Proceedings, 10th In-
ternational Meshing Roundtable, pages 19–29. Sandia National Laboratories,
October 2001.

3. M. Bern, D. Eppstein, and J. Erickson. Flipping cubical meshes. Engineering
with Computers, 18(3):173–187, 2002.

4. T. D. Blacker. Paving: A new approach to automated quadrilateral mesh gener-
ation. International Journal for Numerical Methods in Engineering, 32:811–847,
1991.

5. T. D. Blacker. Meeting the challenge for automated conformal hexahedral mesh-
ing. In Proceedings, 9th International Meshing Roundtable, pages 11–19. Sandia
National Laboratories, October 2000.

6. T. D. Blacker and R. J. Meyers. Seams and wedges in plastering: A 3d hex-
ahedral mesh generation algorithm. Engineering With Computers, 2(9):83–93,
1993.

7. T. D. Blacker, J. L. Mitchiner, L. R. Phillips, and Y. Lin. Knowledge system
approach to automated two-dimensional quadrilateral mesh generation. Com-
puters in Engineering, 3:153–162, 1988.

8. M. J. Borden, S. E. Benzley, and J. F. Shepherd. Coarsening and sheet ex-
traction for all-hexahedral meshes. In Proceedings, 11th International Meshing
Roundtable, pages 147–152. Sandia National Laboratories, September 2002.

9. M. J. Borden, J. F. Shepherd, and S. E. Benzley. Mesh cutting: Fitting simple
all-hexahedral meshes to complex geometries. In Proceedings, 8th International
Society of Grid Generation Conference, 2002.

10. M. L. Bussler and A. Ramesh. The eight-node hexahedral elements in fea of
part designs. Foundry Management and Technology, pages 26–28, November
1993.



28 Jason F. Shepherd

11. A. O. Cifuentes and A. Kalbag. A performance study of tetrahedral and hex-
ahedral elements in 3-d finite element structural analysis. Finite Elements in
Analysis and Design, 12(3-4):313–318, 1992.

12. D. Eppstein. Linear complexity hexahedral mesh generation. In 12th ACM
Symposium on Computational Geometry, pages 58–67. ACM, 1996.

13. N. T. Folwell and S. A. Mitchell. Reliable whisker weaving via curve contraction.
Engineering With Computers, 15:292–302, 1999.

14. S. R. Jankovich, S. E. Benzley, J. F. Shepherd, and S. A. Mitchell. The graft
tool: An all-hexahedral transition algorithm for creating multi-directional swept
volume mesh. In Proceedings, 8th International Meshing Roundtable, pages 387–
392. Sandia National Laboratories, October 1999.

15. P. Knupp and S. A. Mitchell. Integration of mesh optimization with 3d all-hex
mesh generation, ldrd subcase 3504340000, final report. SAND 99-2852, October
1999.

16. M. Loriot. Tetmesh-ghs3d v3.1 the fast, reliable, high quality tetrahedral
mesh generator and optimiser (see http://www.simulog.fr/mesh/tetmesh3p1d-
wp.pdf).

17. S. Means, A. J. Smith, J. F. Shepherd, J. Shadid, J. Fowler, R. Wojcikiewicz,
T. Mazel, G. D. Smith, and B. S. Wilson. Impact of geometry on spatial dis-
tributions of intralumenal endoplasmic reticulum calcium under variant ip3r
channel distributions. to appear.

18. D. L. Meier. Multidimensional astrophysical structural and dynamical analysis.
i. development of a nonlinear finite element approach. Astrophys. J., 518:788–
813, 1999.

19. D. J. Melander. Generation of Multi-Million Element Meshes for Solid Model-
Based Geometries: The Dicer Algorithm. Published Master’s Thesis, Brigham
Young University, April 1997.

20. D. J. Melander, T. J. Tautges, and S. E. Benzley. Generation of multi-million
element meshes for solid model-based geometries: The dicer algorithm. AMD -
Trends in Unstructured Mesh Generation, 220:131–135, July 1997.

21. K. A. Milton. Finite-element quantum field theory. In Proceedings of the XIVth
International Symposium on Lattice Field Theory, volume Nucl. Phys. B(Proc.
Suppl.) 53 (1997), pages 847–849, 1996.

22. S. A. Mitchell. A characterization of the quadrilateral meshes of a surface which
admit a compatible hexahedral mesh of the enclosed volumes. In 13th Annual
Symposium on Theoretical Aspects of Computer Science, volume Lecture Notes
in Computer Science: 1046, pages 465–476, 1996.

23. S. A. Mitchell and T. J. Tautges. Pillowing doublets: Refining a mesh to ensure
that faces share at most one edge. In Proceedings, 4th International Meshing
Roundtable, pages 231–240. Sandia National Laboratories, October 1995.

24. P. J. Murdoch. The Spatial Twist Continuum: A Dual Representation of the All
Hexahedral Finite Element Mesh. Published Doctoral Dissertation, Brigham
Young University, December 1995.

25. P. J. Murdoch and S. E. Benzley. The spatial twist continuum. In Proceedings,
4th International Meshing Roundtable, pages 243–251. Sandia National Labora-
tories, October 1995.

26. Schneiders Pyramid Open Problem, http://www-users.informatik.rwth-
aachen.de/ roberts/open.html.



Hexahedral Mesh Generation Constraints 29

27. T. Suzuki, S. Takahashi, and J. F. Shepherd. Practical interior surface gen-
eration method for all-hexahedral meshing. In Proceedings, 14th International
Meshing Roundtable, pages 377–397. Sandia National Laboratories, September
2005.

28. T. J. Tautges, T. D. Blacker, and S. A. Mitchell. Whisker weaving:
A connectivity-based method for constructing all-hexahedral finite element
meshes. International Journal for Numerical Methods in Engineering, 39:3327–
3349, 1996.

29. T. J. Tautges and S. Knoop. Topology modification of hexahedral meshes us-
ing atomic dual-based operations. In Proceedings, 12th International Meshing
Roundtable, pages 415–423. Sandia National Laboratories, September 2003.

30. B. Thurston. Geometry in action: Hexahedral decomposition of polyhedra (avail-
able from http://www.ics.uci.edu/ eppstein/gina/thurston-hexahedra), October
1993.

31. P. Vachal, R. V. Garimella, and M. J. Shashkov. Mesh untangling. LAU-UR-
02-7271, T-7 Summer Report 2002.

32. V. I. Weingarten. The controversy over hex or tet meshing. Machine Design,
pages 74–78, April 18, 1994.

33. D. R. White, R. W. Leland, S. Saigal, and S. J. Owen. The meshing complexity of
a solid: An introduction. In Proceedings, 10th International Meshing Roundtable,
pages 373–384. Sandia National Laboratories, October 2001.

34. D. R. White, S. Saigal, and S. J. Owen. Meshing complexity of single part cad
models. In Proceedings, 12th International Meshing Roundtable, pages 121–134.
Sandia National Laboratories, September 2003.


