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Abstract
Though a large variety of efficiency structures for ray tracing exist, kd-trees today seem to slowly become the
method of choice. In particular, kd-trees built with cost estimation functions such as a surface area heuristic (SAH)
seem to be important for reaching high performance. Unfortunately, most algorithms for building such trees have
a time complexity of O(N log2 N), or even O(N2). In this paper, we analyze the state of the art in building
good kd-trees for ray tracing, and eventually propose an algorithm that builds SAH kd-trees in O(N log N), the
theoretical lower bound.

1. Introduction

Over the last two decades, ray tracing has become a mature
field of research, and a large variety of different schemes
for acceleration ray tracing have been proposed. This in-
cludes Octrees, Bounding Volume Hierarchies (BVHs), dif-
ferent variants of grids, BSP trees, kd-trees, etc. (see,
e.g., [Gla89, Hav01]).

Though all these techniques have their merits, kd-trees re-
cently seem to establish themselves as the most widely used
technique. In particular since the appearance of fast – and
kd-tree-based – coherent packet tracing [WSBW01, Wal04]
and frustum traversal [RSH05] kd-trees are increasingly be-
lieved to be the “best known method” for fast ray trac-
ing [Sto05]. Both concepts become particularly interesting
if the kd-tree is built to minimize the number of traver-
sal and intersection steps, which today is usually done us-
ing a heuristic cost estimate, the Surface Area Heuristic
(SAH) [MB90]. Kd-trees have recently received lots of at-
tention, and today are well understood in building them to
be efficient, in traversing them quickly, and even in how to
optimize low-level implementation and memory layout.

So far however, research on using kd-trees in ray trac-
ing has almost exclusively concentrated on traversing them
quickly, as well as on building them to be efficient, i.e., such
that they minimize the expected number of intersections and
traversal steps during rendering. The related question – the
cost and complexity of building them – has been widely
ignored. Construction time has historically been insignifi-
cant compared to rendering time, and was mostly ignored.
However, this lack of fast construction algorithms now be-
comes a problem, as in particular good kd-trees take con-

siderable time to build, and often have a time complexity of
O(N log2 N) or even O(N2). Despite growing CPU perfor-
mance, this becomes problematic given the current trend to-
wards more and more realistic – and more complex – scenes.

1.1. Contributions

In this paper, we focus on three contributions:

1. A comprehensive recap of building good kd-trees using
a Surface Area Heuristic. We will not introduce any new
techniques, but combine the often scattered knowledge
on kd-tree construction in a coherent, concise and consis-
tent form.

2. A discussion of three schemes for building SAH-
optimized kd-trees, and an analysis of their computa-
tional complexity.

3. A algorithm that builds an SAH kd-tree in O(N log N),
the asymptotic lower bound for building kd-trees.

While we do not (yet) target interactive kd-tree building, we
present a efficient, simple, and practical method for quickly
building good kd-trees, which we believe have a wide range
of applications.

2. Building KD-Trees for Ray Tracing

Before discussing the details of our O(N log N) construc-
tion algorithm, we will first summarize the state of the art
in building good kd-trees. This provides the background for
the rest of the paper, and will introduce the concepts and ter-
minology used later on.

In the following, we will consider a scene S made up of N
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triangles. A kd-tree† over S is a binary tree that recursively
subdivides the space covered by S: The root corresponds to
the axis-aligned bounding box (AABB) of S; interior nodes
represent planes pk,ξ(x) : xk = ξ that recursively subdivide
space perpendicular to the coordinate axis; leaf nodes store
references to all the triangles overlapping the corresponding
voxel. Essentially, all kd-tree construction schemes follow
the same recursive scheme:

Algorithm 1 Recursive KD-tree build
function RecBuild(triangles T , voxel V ) returns node

if Terminate(T,V) then
return new leaf node(T )

p = FindP lane(T, V ) {Find a “good” plane p to split
V }
(VL, VR) = Split V with p
TL = {t ∈ T |(t ∩ VL) 6= ∅
TR = {t ∈ T |(t ∩ VR) 6= ∅
return new node(p, RecBuild(TL, VL), RecBuild(TR, VR))

function BuildKDTree(triangles[] T) returns root node
V = B(T ) {start with full scene}
return RecBuild(T ,V )

Obviously, the structure of a given kd-tree – i.e., where ex-
actly the planes are placed, and when voxels are created –
directly influences how many traversal steps and triangle in-
tersections the ray tracer has to perform. With today’s fast
ray tracers, the difference between a “good” and a naı̈vely
built kd-tree is often a factor of two or more [Wal04]. For the
recently proposed hierarchical traversal schemes, well built
kd-trees are even reported to be up to (quote) “several times
faster than a mediocre kd-tree” (see [Sto05]).

2.1. Naı̈ve, “spatial median” KD-Trees

Eventually, all the intelligence in a kd-tree construction
scheme lies in where to place the splitting plane p, and in de-
termining when to stop the recursion. One of the most trivial
- and thus, quite often used - methods for building kd-trees
is the so called “spatial median splitting”, in which the di-
mension pk is chosen in round robin fashion, and the plane
is positioned at the spatial median of the voxel,

pk = D(V ) mod 3 and pξ =
1

2
(Vmin,pk + Vmax,pk ),

where D(V ) is the current subdivision depth.

Usually, subdivision is performed until either the number
of triangles falls below a certain threshold KminTris, or un-
til the subdivision depth exceeds a certain maximum depth
KmaxDepth:

Terminate(T, V ) = |T | ≤ KtriTarget∨D(V ) ≥ KmaxDepth.

† KD-Trees had originally been introduced as “KDB
trees” [GG98], but in graphics are commonly called kd-trees.

3. The Surface Area Heuristic (SAH)
Spatial median splitting is quite simplistic, and an abundance
of heuristic, ad-hoc techniques to build better kd-trees is
available (see, e.g., [Hav01, Hai05]. In particular techniques
that maximize “empty space” – preferably close to the root
of the tree – seem to be most successful. Nevertheless, apply-
ing these techniques in practice is often problematic: First,
they require scene-specific “magic constants” to work well;
second, in many situations different heuristics disagree on
what to do, and choosing the right one is non-trivial.

To remedy this, several researchers [GS87, MB90]
[Sub90, Hav01] have investigated the factors that influence
the performance of hierarchical spatial subdivision, and have
derived a more profound approach, the surface area heuristic
(SAH). Essentially, the SAH considers the geometry of split-
ting a voxel V with plane p – i.e., the resulting child voxel
VL and VR, as well as the numbers NL and NR overlapping
these two, respectively – and estimates the expected cost of
traversing the such-split voxel. Therefore, the SAH makes
several assumptions:

(i) That rays are uniformly distributed, infinite lines; i.e., that
they are uniformly distributed, and neither start, nor ter-
minate, nor get blocked inside a voxel.

(ii) That the cost for both a traversal step and for a triangle
intersection are known, and are KT and KI , respectively.

(iii) That the cost of intersecting N triangles is roughly NKI .

Using these assumptions then allows for expressing the cost
of a given configuration: For uniform distributed lines and
convex voxels, geometric probability theory [San02] tells us
that for a ray known to hit a voxel V the conditional proba-
bility P of also hitting a sub-voxel Vsub ⊂ V is

P[Vsub|V ] =
SA(Vsub)

SA(V )
, (1)

where SA(V ) is the surface area of V . The expected cost
CV (p) for a given plane p then is one traversal step, plus the
expected cost of intersecting the two children,

CV (p) = KT + P[Vl|V ]C(Vl) + P[Vr|V ]C(Vr). (2)

3.1. Local Greedy SAH Heuristic

Expanding (2), the cost of a complete tree T is

C(T ) =
X

n∈nodes

SA(Vn)

SA(VS)
KT +

X
l∈leaves

SA(Vl)

SA(VS)
KI , (3)

where VS is the AABB of the complete scene S. The best kd-
tree T for a scene S would be the one for which equation 3
is minimal. The number of possible trees, however, rapidly
grows with scene size, and finding the globally optimal tree
today is considered infeasible except for trivial scenes.

Instead of a globally optimal solution, one therefore uses
a “locally greedy approximation”, where the cost of subdi-
viding V with p is computed as if both resulting children
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would be made leaves,

CV (p) ≈ KT + P[VL|V ]|TL|KI + P[VR|V ]|TR|KI (4)

= KT +KI

„
SA(VL)

SA(V )
|TL|+

SA(VR)

SA(V )
|TR|

«
.(5)

This is a gross simplification, and tends to overestimate the
correct cost, as TL and TR are likely to be further subdi-
vided, and will thus have lower cost than assumed. Neverthe-
less, in practice this approximation works well, and – though
many theoretically better approximation have been tried – so
far no consistently better approximation could be found.

3.2. Automatic Termination Criterion

Apart from a method for estimating the cost of any potential
split p, the SAH also provides an elegant and stable way of
determining when to stop subdivision: As the cost of leaf can
be well modeled as CasLeaf = KI |T |, further subdivision
does not pay off if even the best split is more costly then not
splitting at all, i.e.,

Terminate(V, T ) =

(
true ; minp CV (p) > KI |T |
false ; otherwise

(6)

This local approximation can easily get stuck in a local min-
imum: As the local greedy SAH overestimates CV (p), it
might stop subdivision even if the correct cost would have
indicated further subdivision. Several modifications have
been proposed to compensate for this [Mac88, Hav01], but
the impact of these improvements has usually been quite
limited; indicating once more that the local greedy SAH is
reasonably accurate.

3.3. Modifications and Extensions

In practice, most of the assumptions used in deriving equa-
tion 5 are at least questionable: Rays will usually not pass
unoccluded through populated voxels; the ray density will
usually not be uniform; the cost of the left and right half
should not be linear (but rather logarithmic); memory, cache,
or CPU-specific effects (SIMD) are gravely neglected; etc.

Nevertheless, in practice the basic SAH – local greedy
plane selection and automatic termination criterion – often
works best, and few only few modifications are known to
consistently yield better improvements. Among those, the
most common is to favor splits that cut off empty space by
biasing the cost function; if either NL or NR gets zero, the
expected cost of the split is reduced by a constant factor. I.e.,
the expected costs get multiplied by

λ(p) =

(
80% ; |TL| = 0 ∨ |TR| = 0

1 ; otherwise
(7)

If the ray tracer supports “termination ob-
jects” [Hav01, RSH05], a similar bias can also be used

for those cases where the split plane is entirely covered
by triangles, which however works almost exclusively for
certain architectural scenes.

To remove the probability of the automatic termination
criterion getting stuck in a local minimum,, it has also been
reported to help if subdivision is continued for a certain num-
ber of steps even though the termination criterion would ad-
vise not to [Hav01, Res05]. This, however, has proven to be
quite hard to master for general scenes. Finally, instead of
only using the cost-based termination criterion some imple-
mentations additionally use the maximum depth criterion,
usually to reduce memory usage.

3.4. Split Candidates and Perfect Splits

So far, we have defined the actual procedure for estimating
the cost of p once NL, NR, VL and VR are known. As there
are infinitely many potential planes p, one needs a more con-
structive approach: For any pair of planes (p0, p1) between
which NL and NR do not change, C(p) is linear in the po-
sition xp of p. Thus, C(p) can have its minima only at those
- finitely many - planes where NL and NR change [Hav01].
As we are only interested in these minima, we will in the
following refer to these planes as “split candidates”.

One simple choice of split candidates is to use the 6 planes
defining the triangle’s AABB B(t). Though this is easiest to
code and fastest to build, it is also inaccurate, as it may sort
triangles into voxels that the triangle itself does not actu-
ally overlap. The intuitive fix of performing some a-posterior
triangle-voxel overlap test does not work, either: For small
voxels it frequently happens that the voxel is completely en-
closed in B(t), and thus no split candidate could be found
at all. The accurate way of determining the candidate planes
thus is to first clip the triangle t to the voxel V , and use
the sides of the clipped triangle’s AABB B(t ∩ V ) (also
see [HKRS02, Hav01]). As this is significantly more accu-
rate then the AABB, the candidates such produced are also
often called “perfect splits” ‡. During clipping, special care
has to be taken to correctly handle special cases like “flat”
(i.e., zero-volume) cells, or cases where numerical inaccu-
racies may occur (e.g., for cells that are very thin compared
to the size of the triangle). For example, we must make sure
not to “clip away” triangles lying in a flat cell. Note that such
cases are not rare exceptions, but are in fact encouraged by
the SAH, as they often produce minimal expected cost.

3.5. Accurate Determination of NL and NR

To compute equation 5, for each potential split p we have
to compute the number of triangles NL and NR for VL and
VR, respectively. Here as well, a careful implementation is

‡ In [HB02], this technique is reported to give an average speedup
of 9%, and up to 35% in certain cases.
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required. For example, an axis-aligned triangle in the middle
of a voxel should result in two splits, generating two empty
voxels and one flat, nonempty cell. This in fact is the perfect
solution, but requires special care to handle correctly during
both build and traversal. For flat cells, we must make sure
not to miss any triangles that are lying exactly in the flat cell,
but must make sure that non-parallel triangles just touching
or penetrating it will get culled (as in the latter case t∩p has
zero area, and cannot yield an intersection).

Quite generally, determining NL and NR via a standard
triangle-voxel overlap test may result in sorting triangles into
a voxel even if they overlap in only a line or a point, and
triangles lying in in the plane p may be sorted into both
halves. Both cases are not actually wrong, but inefficient.
Thus, the most exact solution requires to actually split T into
three sets, TL, TR, TP , the triangles having non-zero overlap
for VL \ p, VR \ p, and p,

TL = {t ∈ T |Area(t ∩ (Vl \ p)) > 0} (8)

TR = {t ∈ T |Area(t ∩ (Vr \ p)) > 0} (9)

TP = {t ∈ T |Area(t ∩ p) > 0}. (10)

Once these sets are known, we can evaluate eq. 5 twice –
once putting TP with TL, and once with TR – and select the
one with lowest cost (see algorithm 2).

Algorithm 2 Final cost heuristic for a given configuration.
function C(PL, PR, NL, NR) returns (CV (p))

return λ(p)(KT +KI(PLNL + PRNR))

function SAH(p,V ,NL,NR,NP ) returns (Cp, pside)
(VL, VR) = SplitBox(V, p)

PL = SA(VL)
SA(V )

; PR = SA(VR)
SA(V )

cp→L = C(PL, PR, NL + Np, NR)
cp→R = C(PL, PR, NL, NR + NP )
if cp→l < cp→l then

return (cp→L,LEFT)
else

return (cp→R,RIGHT)

4. On building SAH-based KD-Trees

In the preceding sections, we have defined the surface area
heuristic, including what split candidates to evaluate, how to
compute NL, NR, NP , and CV , and how to greedily chose
the plane. In this section, we present three different algo-
rithms to build a tree using this heuristic, and will analyze
their performance. All three algorithms build the same trees,
and differ only in their efficiency in doing that.

All construction schemes will make use of recursion, so
we will need some assumptions on how that recursion be-
haves. In absence of any more explicit knowledge, we will
use the – quite gross – assumptions that subdividing N trian-
gles yields two lists of roughly the size N

2
, and that recursion

proceeds until N = 1. As an example, let us first consider

the original median-split kd-tree: The cost T (N) for build-
ing a tree over N = |T | triangles requires O(N) operations
for sorting T into TL and TR, plus the cost for recursively
building the two children, 2T (N

2
). Expansion yields

T (N) = N + 2T (
N

2
) = · · · =

log NX
i=1

2i N

2i
= N log N.

Note that due to its relation to sorting, O(N log N) is also
the theoretical lower bounds for kd-tree construction.

4.1. Naı̈ve O(N2) Plane Selection

For spatial medial splitting, determining the split plane is
trivial, and costs O(1). For a SAH-based kd-tree however,
finding the split plane is significantly more complex, as each
voxel V can contain up to 6N potential split candidates. For
each of these we have to determine NL, NR, and NP . In
its most trivial form, this can be done by iterating over each
triangle t, determining all its split candidates Ct, and – for
each – determine NL, NR, and NP by computing TL, TR,
and TP according to Section 3.5 (see Algorithm 3).

Algorithm 3 Algorithm for naı̈ve O(N2) plane selection

function PerfectSplits(t, V) returns {p0, p1, ...}
B = Clip t to V {consider “perfect” splits}
return

S
k=1..3((k, Bmin,k) ∪ (k, Bmax,k))

function Classify(T, VL,VR,p) returns (TL, TR, TP )
Tl = Tr = Tp = ∅
for all t ∈ T

if t lies in plane p ∧Area(p ∩ V ) > 0 then
TP = TP ∪ t

else
if Area(t ∩ (VL \ p)) > 0 then TL = TL ∪ t
if Area(t ∩ (VR \ p)) > 0 then TR = TR ∪ t

function Naı̈veSAH::Partition(T, V) returns (p,Tl,Tr)
for all t ∈ T

(Ĉ, p̂side) = (∞, ∅) {search for best node:}
for all p ∈ PerfectSplits(t, V )

(VL, VR) = split V with p
(TL, TR, TP ) = Classify(T, VL, VR, p)
(C, pside) = SAH(V, p, |TL|, |TR|, |TP |)
if C < Ĉ then

(Ĉ, p̂side) = (C, pside)
(Tl, Tr, Tp) = Classify(T, Vl, Vr, p)
if (p̂side = LEFT ) then

return (p̂, Tl ∪ Tp, Tr)
else

return (p̂, Tl, Tr ∪ Tp)

Unfortunately, classifying N triangles costs O(N), which,
when calling it for |C| ∈ O(N) potential split planes
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amounts to a cost of O(N2) in each partitioning step. During
the recursion, this O(N2) partitioning cost amounts to

T (N) = N2 + 2T (
N

2
) =

logNX
i=1

2i

„
N

2i

«2

= N2
X

2−i ∈ O(N2).

4.2. O(N log2 N) Construction

Nevertheless, O(N2) algorithms are usually impractical ex-
cept for trivially small N . Fortunately, however, algorithms
for building the same tree in O(N log2 N) are also avail-
able, and widely known (see, e.g., [PH04, Szé03], the latter
even including source code). Though this algorithm is suf-
ficiently describe in these publications, we will also derive
it here in detail. Our final O(N log N) will be derived from
this O(N log2 N) algorithm, and will share much of the no-
tation, assumptions, and explanations. it can thus be best ex-
plained side by side with the O(N log2 N) algorithm.

Since the O(N2) cost of the naı̈ve variant is mainly due
to the cost of computing NL, NR, and NP , improving upon
the complexity requires to compute these values more effi-
ciently. As mentioned before, these values only change at
the split candidate planes. For each such plane p = (pk, pξ),
there is a certain number of triangles starting, ending, or ly-
ing in that plane, respectively. In the following, we will call
these numbers p+, p−, and p|, respectively.

Let us consider that these p+, p−, and p| are known for all p.
Let us further consider only one fixed k, and assume that all
p’s are sorted in ascending order with respect to pk. Then,
all NL, NR, and NP can be computed incrementally by
“sweeping” the potential split plane over all possible plane
positions pi: For the first plane p0, by definition no planes
will be to the left of p0, p

|
0 triangles will lie on p0, and all

others to the right of it, i.e.,

N
(0)
l = 0 N (0)

p = p
|
0 N (0)

r = N − p
|
0.

From pi−1 to pi, NL, NR, and NP will change as follows:

1. The new NP will be p
|
i; these p

|
i triangles will no longer

be in VR. The triangles on plane p
|
i−1 will now be in VL

2. Those triangles having started at pi−1 now overlap VL.
3. Those triangles ending at pi will no longer overlap VR.

For NL, NR, and NP , this yields three simple update rules:

N
(i)
L = N

(i−1)
L + p

|
i−1 + p+

i−1 (11)

N
(i)
R = N

(i−1)
R − p

|
i − p−i (12)

N
(i)
P = p

|
i−1 (13)

To implement this incremental update scheme, for each
pi we need to know p+

i , p−i , and p
|
i. First, we fix a dimen-

sion k. For this k, we then iterate over all triangles t, gen-
erate t’s perfect splits (by computing B = B(t ∩ V ), see

Section 3.4), and store the “events” that would happen if
a plane is swept over t: If the triangle is perpendicular to
k, it generates a “planar event” (t, Bk,min, |), otherwise it
generates a “start event” (t, Bk,min, +) and a “end event”
(t, Bk,max,−). Each event e = (et, eξ, etype) consists of
a reference to the triangle having generated it, the position
eξ of the plane, and a flag etype specifying whether t starts,
ends, or is planar at that plane.

Once all events for all triangles have been generated, we
sort this event list E by ascending plane position, and such
that for equal plane position the end events precede the pla-
nar events, which themselves precede the start events. For
two events a and b this yields the ordering

a <E b =

(
true ; (ax < bx) ∨ (ax = bx ∧ τ(a) < τ(b))

false ; otherwise,

where τ(etype) is 0 for end events, 1 for planar events, and
2 for start events, respectively.

When iterating over this <E-sorted E, by construction we
first visit all events concerning p0, then all those concern-
ing p1, etc. Furthermore, for a given sequence of pi-related
events we first visit all ending events, then all planar events,
and finally all starting events. Thus, p+

i , p|i, and p
|
i can be de-

termined simply by counting how many events for the same
type and plane one has encountered. Now, all that has to be
done is to run this algorithm for every dimension k, and keep
track of the best split found, p̂ (see Algorithm 4).

This algorithm initializes N0
L,N0

R, and N0
P differently from

the way explained above. This is due to some slight opti-
mization in when the plane is evaluated and in when the vari-
ables are updated. This optimization allows for not having to
keep track of the previous plane’s parameters, but otherwise
proceeds exactly as explained above. Thought he explana-
tion above is more intuitive, the code is cleaner with these
optimizations applied.

As mentioned before, we have tagged each event with the
ID of the triangle that it belongs to. This is not actually re-
quired for finding the best plane, but allows for using a mod-
ified “Classify” code that splits T into TL, TP , and TR after
the best split has been found: A triangle that ends “before”
p̂ must be in TL only, and similar arguments hold for Tr and
Tp. Thus, once the best plane p̂ is found, we iterate once
more over E to classify the triangles.

4.2.1. Complexity Analysis

The inner loop of the plane sweep algorithm performs |P | ∈
O(N) calls to SAH(. . . ), and performs |E| ∈ O(N) op-
erations for computing the p+,p−, and p| values. There are
also O(N) clipping operations, and running the loop for all
three dimensions just adds a constant factor as well. Simi-
larly, the classification step after p̂ has been found (omitted
above) also cost O(N). Thus, the complexity is dominated

SCI Institute, University of Utah. Technical Report Number UUSCI-2006-009



6 Ingo Wald and Vlastimil Havran / Efficient kd-tree construction

Algorithm 4 Incremental sweep to find p̂.
function PlaneSweep::FindPlane(T, V) returns best p̂

(Ĉ, p̂) = (∞, ∅) {initialize search for best node}
{consider all K dimensions in turn:}
for k = 1..3
{first, compute sorted event list:}
eventlist E = ∅
for all t ∈ T

B = ClipTriangleToBox(t, V )
if B is planar then

E = E ∪ (t, Bmin,k, |)
else

E = E ∪ (t, Bmin,k, +) ∪ (t, Bmax,k,−)
sort(E,<E) {sort all planes according to <E}

{iteratively “sweep” plane over all split candidates:}
Nl = 0, Np = 0, Nr = |T | { start with all tris on
the right}
for i = 0; i < |E|;

p = Ei,p, p+ = p− = p| = 0
while i < |E| ∧ Ei,ξ = pξ ∧ Ei,type = −

inc p−; inc i
while i < |E| ∧ Ei,ξ = pξ ∧ Ei,type = |

inc p|; inc i
while i < |E| ∧ Ei,ξ = pξ ∧ Ei,type = +

inc p+; inc i
{now, found next plane p with p+,p− and p|...}
{move plane onto p}
NP = p|, NR–=p|, NR–=p−

(C, pside) = SAH(V, p, NL, NR, NP )
if C < p̂C then

(Ĉ, p̂, p̂side) = (C, p, pside)
NL+=p+, NL+=p|, NP = 0 {move plane over p}

return (p̂, p̂side)

by the cost for sorting, which is O(N log N). The accumu-
lated cost during recursion then becomes

T (N) = N log N + 2T (
N

2
) = · · · = N

log NX
i=1

log
N

2i
.

Since N = 2log N , this can be further simplified to

T (N) = N

log NX
i=1

log
N

2i
= N

log NX
i=1

log 2log N−i = N

log NX
i=1

i

= N
log N(log N + 1)

2
∈ O(N log2 N).

The resulting O(N log2 N) complexity is a significant im-
provement over the naı̈ve algorithm’s O(N2) complexity,
but is still significantly higher than the lower bound of
O(N log N).

4.3. O(NlogN) Build using Sort-free Sweeping

In the the previous section’s plane sweep algorithm, the main
cost factor in each partitioning no longer is the number of
plane evaluations, but the O(N log N) cost for sorting. If
that sorting could be avoided, the entire partitioning could
be performed in O(N), yielding a recursive cost of only
O(N log N).

Obviously, this per-partition sorting could be avoided if
we could devise an algorithm that would sort the event list
only once at the beginning, and later on perform the par-
titioning in a way that the sort order is maintained during
both plane selection and partitioning. To do this, two prob-
lems have to be solved: First, we have to take the sorting out
of the inner loop of the “FindPlane” algorithm, and make it
work on a single, pre-sorted list. Second, we have to devise
a means of generating the two children’s sorted event lists
from the current node’s event list without re-sorting.

As neither can be achieved as long as we sort individ-
ually for each k, we first generate one event list contain-
ing all events from all dimensions. This obviously requires
to additionally tag each event with the dimension k that it
corresponds to. As we now consider all dimensions in one
loop, we keep a separate copy of NL, NR, and NP for
each dimension, N

(k)
L , N

(k)
R , and N

(k)
P . Then, each e =

(eξ, ek, etype, eID) only affects the N ’s of its associated di-
mension ek, and none other. For these three values, the same
incremental operations are performed as in Section 4.2.

Like in the previous Section, we need to quickly deter-
mine the number of end (p−), in-plane (p|), and start (p+)

Algorithm 5 Finding the best plane in O(N).
pre: E is <E-sorted
function Partition::FindPlane(N , V , E) returns p̂

for all k ∈ K
{start: all tris will be right side only, for each k}
NL,k = 0, NP,k = 0, NR,k = N

{now, iterate over all plane candidates}
for i = 0; i < |E|;

p = (Ei,p, Ei,k); p+=p−=p|=0
while i < |E|∧Ei,k = pk∧Ei,ξ = pξ∧Ei,τ = −

inc p−; inc i
while i < |E| ∧Ei,k = pk ∧Ei,ξ = pξ ∧Ei,τ = |

inc p|; inc i
while i < |E|∧Ei,k = pk∧Ei,ξ = pξ∧Ei,τ = +

inc p+; inc i
{now, found the next plane p with p+,p− and p|...}
NP,k = p|, NR,k–=p|, NR,k–=p−

(C, pside) = SAH(V, p, Nl, Nr, Np)
if C < Ĉ then

(Ĉ, p̂, p̂side) = (C, p, pside)
NL+=p+, NL+=p|, NP = 0

return p̂
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events for a given split p = (pk, pξ). Thus, as primary sort-
ing criterion, we again pick the plane position pξ. Note that
this is independent of dimension pk, so planes of different
dimensions are stored in an interleaved fashion. For those
events with same pξ, we want to have them stored such that
events with the same dimension (and thus, the same actual
plane) lie together. For each of these consecutive events for
the same plane, we then again use the same sort order as
above: End events first, then planar events, then start events.

Assuming that the input set is already sorted, the mod-
ified plane finding algorithm is essentially a variant of al-
gorithm 4, in which the three iterations over k have been
merged into one.

4.3.1. Splicing and Merging to Maintain Sort Order

As this partitioning depends on a pre-sorted event list E, we
now have to find a way of – given E and p̂ – computing the
EL and ER (for VL and VR) without having to sort those
explicitly. Though we obviously have to sort the list once at
the beginning, during recursion we cannot afford the sorting,
thus now – after each p̂ is found – have to perform the actual
classification and building of the two children’s sub-lists EL

and ER without performing any sorting.

Fortunately, however, we can make several observations:

• We can iterate over T and E several times and still stay in
O(N), if the number of iterations is a constant.

• Classifying all triangles to be in TL and/or TR can be done
in O(N) (see Algorithm 6).

• Since E is sorted, any sub-list of E will be sorted as well.
• Two sorted lists of length O(N) can be merged to a new

sorted list in O(N) using a single mergesort iteration.
• Triangles that are completely on one side of the plane

will have the same events as in the current node (see Fig-
ure 1a).

• Triangles overlapping p generate events for both EL and
ER. These triangles have to be re-clipped (see Figure 1),
and thus generate new splits that have not been in E.

• For reasonable scenes [dKvV02], there will be (at most)
O(
√

N) triangles overlapping p.

With these observations, we can now devise an algorithm for
building the sorted EL and ER lists.

Figure 1: Triangles completely to one side of a splitting
plane will maintain exactly the same set of events as without
the split plane, all of which belong exclusively to the side the
triangle is in. Triangles straddling the splitting plane have
to be re-clipped to both sides, generating new potential split
events for each side.

Step 1: Classification: After p̂ is found, for each triangle
we first have to determine whether it belongs to TL, TR, or
both (by now, we know where to put TP ). For a triangle t to
be in TL only, it must either end left of or on the split plane
(i.e., ∃e = (t, p̂k, eξ,−) : eξ ≤ p̂ξ)); or it is planar and lies
left of the plane (i.e., ∃e = (t, p̂k, eξ, |) : eξ < p̂ξ), or the
triangle is in TP (∃e = (t, p̂k, p̂ξ, |)), and p̂side = LEFT .
For the right side, the criteria are symmetric; triangles fulfill-
ing neither of these conditions must be on both sides. This
leads to a simple classification algorithm: We first conserva-
tively mark each triangle as being on both sides, then iterate
once over all events, and – if that event matches any of the
classification criteria above – mark its associated triangle to
be only on the respective side only (see algorithm 6).

Algorithm 6 Given E and p̂, classify triangles to be either
left of, right of, or overlapping p̂ in a single sweep over E.

function ClassifyLeftRightBoth(T, E, p̂)
for all t ∈ T

tside = Both;
for all e ∈ E

if etype = − ∧ ek = p̂k ∧ eξ ≤ p̂ξ then
t[et]side = LeftOnly

else if etype = + ∧ ek = p̂k ∧ eξ ≥ p̂ξ then
t[et]side = RightOnly

else if etype = | ∧ ek = p̂k then
if (eξ < p̂ξ ∨ (eξ = p̂ξ ∧ p̂side = LEFT )) then

t[et]side = LeftOnly
if (eξ > p̂ξ ∨ (eξ = p̂ξ ∧ p̂side = RIGHT ))
then

t[et]side = RightOnly

Step 2: Splicing E into ELO and ERO: Triangles that do
not overlap p̂ contribute their events to their own side, and
none to the other. Having already classified all triangles, we
iterate over E again, and “splice” it by putting all events cor-
responding to a “left only” triangle into ELO , and all those
for “right only” triangles into ERO; events for “both sides”
triangles get discarded. Both ELO and ERO are sub-lists of
E, and thus automatically <E-sorted.

Step 3: Generating new events EBL and EBR for trian-
gles overlapping p: Those triangles that do overlap p̂ con-
tribute (new) events to both sides. We generate these by clip-
ping t to VL and VR, respectively (also see Figure 1), and put
the generated events to EBL and EBR, respectively. Since
the clipping generates new events in unknown order, neither
of these is sorted.

Step 4: Merging the four strains: The events for EL and
ER are now each scattered over two separate lists, ELO

and EBL for EL, and ERO and EBR for ER, respec-
tively. These now have to be merged to EL and ER. To
do this, we first sort EBL and EBR. Assuming that only
O(
√

N) triangles overlap p̂, sorting these two lists will cost
O(|ELO| log |ELO|) = O(

√
N log

√
N) ⊂ O(

√
N ×√

N) = O(N). Since now all ELO , ERO , EBL, and EBR
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are sorted, we can easily merge them to EL and ER in
O(N).

Both EL and ER are now sorted, and recursion can proceed.

4.3.2. Complexity Analysis

Before we can call the recursive partitioning for the first
time, we first have to build and sort the initial event list. This
costs O(N log N), but has to be performed only once.

During recursion, in the algorithm just outlined all steps
- finding the best plane, classifying triangles, splicing, new
event generation, and list merging – are in the order of
O(N). Thus, even though there are several passes over T
and E each, the total complexity of one partitioning is still
O(N), yielding a total complexity of

T (N) = N + 2T (
N

2
) = · · · = N log N.

This is once again the desired complexity of O(N log N),
the same complexity as a Kaplan-style build, and the theo-
retical lower bound.

4.3.3. Experimental Validation

To validate our theoretical analysis of the O(N log N) com-
plexity, we have performed extensive experiments, in which
the number of SAH evaluations for different models have
been measured. To abstract from the model’s shape, we have
taken several models, and generated multiple resolutions of
each via up- and down-sampling: Down-sampling has been
done via QSlim [Gar99]; up-sampling via randomly splitting
triangles into four sub-triangles.

In particular for architectural or CAD-style models, mesh
simplification is a non-trivial task, and tends to change the
structure of the model (in particular, smaller triangles dis-
appear faster than large ones). Thus, we have decided to not
include such models, but have only included scanned meshes
from the Stanford Model Repository. In particular, we have
used the bunny, buddha, blade, armadillo, and dragon mod-
els, which cover a wide range of original model complexity
(see Table 1). For each of these models, we have generated
100 reduced resolutions (in 1% steps), and have upsampled

model #tris exp.cost #CV eval.’s time (sec)

bunny 69k 82.3 19.3 M 4.8 sec
armadillo 346k 73.5 24.0 M 8.0 sec
dragon 863k 116.5 81.0 M 23.9 sec
buddha 1.07M 127.2 111.0 M 32.2 sec
blade 1.76M 151.3 94.0 M 33.7 sec
thaiStatue 10M 112.3 2,602.4 M 61.0 sec

Table 1: Expected global cost (according to eq. 3, using
KI = 1.5,KT = 1), number of plane evaluations to build
tree, and absolute build time, for the original resolution of
each of our test models.

each to up to 4 million triangles. For each resolution, we
have counted the number of SAH evaluations (see Figure 2).

To give a rough impression on absolute timings, Table 1
also gives the original size for each model, as well as the ab-
solute time to build the kd-tree on a 2.6 GHz Opteron desk-
top PC with 6 GB RAM. To allow for easily reproducing
our results, Table 1 also gives the number of split candidates
evaluated (i.e., the number of evaluations of the SAH func-
tion), as well as the expected global cost according to equa-
tion 3 (using KI = 1.5 and KT = 1).

In addition, Table 2 gives some statistical data on the kd-
trees generated for each of the basic models, such as total
number of nodes, leaves, and non-empty leaves, as well as
expected number of inner-node traversal steps, leaf visits,
and triangle intersections. The expected number of traver-
sals, leaf-visits, and triangle intersections have been com-
puted with the surface area metaphor explained for equa-
tion 3. In particular, the expected number of traversal steps
ET , expected number of visited leaves EL, and expected
number of triangle intersections ET are

ET = E[#traversal steps] =
X

n∈nodes

SA(Vn)

SA(VS)
,

EL = E[#leaves visited] =
X

n∈leaves

SA(Vn)

SA(VS)
, and

EI = E[#tris intersected] =
X

n∈leaves

Nn
SA(Vn)

SA(VS)
,

where Vn is the spatial region associated to a kd-tree node
n, and Nn is the number of trianlges in a give leaf node n.

For all tested models Figure 2 show a noticeable peak
for the down-sampled models, at around half the original
model size. Though we first suspected an error in our im-
plementation, it turns out that this peak is due to the simpli-
fication process used to generate the sub-sampled models:
While the original meshes contains roughly equally sized

model NL NNE NAT ET EL EI

bunny 349k 183k 2.50 52.3 14.7 7.1
armadillo 471k 274k 2.36 49.7 13.9 4.4
dragon 1.41M 812k 2.64 76.7 20.8 8.4
buddha 1.9M 1.07M 2.67 82.9 22.5 9.6
blade 1.98M 1.1M 2.16 101.1 27.6 9.9
thaiStatue 36M 19.8M 2.85 67.7 18.4 7.5

Table 2: Statistical data describing our generated kd-trees,
for the original resolution of each model: The number of
leaf nodes NL (total nodes are 2NL − 1), non-empty leaf
nodes NNE , as well as the average number NAT of tri-
angles per non-emtpy leaf, the expected number of inner-
node traversals ET = E[#travsteps], leaf visits EL =
E[#leavesvisited], and ray-triangle intersections EI =
E[#trisintersected], for a random ray, where E[X] de-
notes the expected value of event X .
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Figure 2: The number of evaluations of the “SAH” function
for various resolutions of our example models.

and “fat” triangles (according to [dKvV02]), the simplifica-
tion process automatically generates more “slivery” triangles
– which have a higher chance of overlapping the split plane,
and thus generate more events.

Except for this effect, Figure 2 nicely validates the ex-
pected O(N log N) behavior. Though in fact rising with
O(N log N), for as large N the impact of the log N factor is
hardly noticeable in the graphs. Note that the O(N log2 N)
algorithm would show exactly the same number of plane
evaluations, as its higher complexity is only due to the ris-
ing cost for sorting. For comparisons, we would have liked
to also show the graphs for the O(N2) build. These how-
ever became infeasible to compute for models with N in the
range of four million – for which the difference between N2

and N log N is roughly five orders of magnitude.

5. Summary and Discussion

In this paper, we have first summarized today’s knowledge
on building good kd-trees for ray tracing. Based on that, we
have described – and analyzed – three different algorithms
for building such trees: A naı̈ve O(N2) build, a more effi-
cient O(N log2 N) algorithm, and a variant with asymptot-
ically optimal O(N log N) complexity.

None of these algorithms are completely new: In
fact, the O(N2) and O(N log2 N) algorithms are well
known [PH04, Szé03], and even quite similar O(N log N)
schemes have been used before: For example, for point
data and range queries, similar O(N log N) algorithms
are already known, both in computational geometry (see,
e.g., Vaidya [Vai89]), and also in photon mapping (see,
e.g. [WGS04]). Even in ray tracing, the algorithm is known
to at least a few researchers for quite some time. For exam-
ple, it already is at least hinted at in [Hav01]. Still, we believe
this to be the first time that this algorithm has been fully and
in detail described – and theoretically analyzed – with all its
peculiarities for triangular data.

Another issue worth mentioning is that the theoretical
complexity outlined above strongly depends on the assump-

tion of having a “well behaved” scene as one is likely to
encounter in practice (see, e.g., the definitions and discus-
sion in [dKvV02]), as it is clearly possible to devise special
cases for which the above assumption of – on average – hav-
ing less than O(

√
N) triangles overlapping the plane will be

violated.

Similarly, the complexity analysis depends on the as-
sumption that the complexity of sorting is O(N log N),
which is not necessarily true for our setting of bounded and
“mostly sorted” sets of numbers. For these cases, radix sort-
like algorithms exist that achieve asymptotically linear com-
plexity [Knu98, Sed98]. A binning strategy can also help in
reducing the number of planes to be sorted [Res05]. If - us-
ing any of these techniques - the sorting could be done in
near-linear time, then even the theoretically O(N log2 N)
algorithm from Section 4.2 would show O(N log N) behav-
ior. Finally, even for as large N as used in our experiments,
the difference between N log2 N and N log N is only about
an order of magnitude. Thus, in practice the relative perfor-
mance of these two algorithms will mostly depend on their
“constants”, i.e., on how well they can be implemented.

Even with all these improvements in asymptotic complex-
ity, the cost for building kd-trees with these methods is still
quite high, and certainly far from real-time except for triv-
ially simple models. In this paper, we have not considered
low-level improvements in faster building, and have totally
neglected constants factors.

Nevertheless, we have shown that a viable algorithm with
O(N log N) complexity exists, and that this algorithm is
both simple, stable, and elegant. The presented algorithm is
already being used in a production renderer, and since its in-
troduction there has impressed through its robustness, in par-
ticular for numerically challenging cases for which several
of its preceding, ad-hoc implementations had failed. The al-
gorithm has been used extensively in many different scenes,
including as large scenes as the 350 million triangle Boeing
data set, for which an O(N2) approach is infeasible.

A specially optimized implementation of the presented al-
gorithm – and which, amongst others, ignores perfect splits
and only operates on the AABBs – is now also being used
in a two-level approach to dynamic scenes in the spirit
of [WBS03]. Though not originally designed for real-time
rebuilds, at least for several hundred to a few thousand ob-
jects the O(N log N) SAH algorithm allows interactive re-
builds, while at the same time enabling superior ray tracing
performance than its (non-SAH based) predecessor. In par-
ticular in light of the rising model complexity seen today,
together with the more wide-spread use of kd-tree based ray
tracers, we believe the proposed algorithm to be an interest-
ing contribution towards making ray tracing more efficient,
and more practical.
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