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1 ICE Algorithm for Scalar Advection

We describe and implement Bucky’s ICE algorithm for scalar conservation
laws, see [Kas00, pp. 27–29]. This scheme turns to be almost equivalent
to Davis’ scheme [Dav87], however, it produces better results than those
reported in [Liv05] for the Davis scheme. In §1.1 we define the equation.

1.1 The Equations

We consider a general one dimensional scalar advection equation,

qt + f(q)x = qt + (f ′(q))qx = 0, (1)

defined over an infinite domain, or for x ∈ [0, 1] with periodic boundary
conditions. The convective velocity is denoted by u = u(x) = f(q(x)).

1.2 Discretization

We use a finite volume discretization on a uniform grid with meshsize ∆x.
The discrete {qj}j are defined at cell centers xj = j∆x; the numerical fluxes
{fj+ 1

2

}j are defined at face centers, xj+ 1

2

= (j + 1
2)∆x; the fluxing velocities

u∗

j+ 1

2

are defined at face centers. See Fig. 1.

q j+1q j−1 q j

u j−0.5
* u j+0.5

*

Figure 1: Cell-centered discretization of (1). The discrete state variables qj

are defined at cell centers j (“x”). Cell faces j + 1
2 are marked by “|”, where

f and u are defined.

1.3 Advection Scheme

The ICE algorithm timestep for computing q(n+1) at time tn+1 at all cell
centers j from q = qn at all cell centers consists of the following steps:
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1. Compute the numerical flux: compute the fluxing velocity u∗

j+ 1

2

at all

faces using an averaged Jacobian from neighboring cell centers Jaco-
bians.

u∗

j+ 1

2

= 0.5
(

f ′ (qj) + f ′(qj+1)
)

∀j. (2)

2. Compute the numerical flux: compute the gradient-limited fluxes at
cell faces j + 1

2 :

r+
j = (qj+2 − qj+1)/(qj+1 − qj) (3)

r−j = (qj − qj−1)/(qj+1 − qj) (4)

φj = 2 − max
{

0, min
{

1, 2r+
j

}}

− max
{

0, min
{

1, 2r−j

}}

(5)

∆∗tj = 0.5

(

(1 − φj)∆t + φj∆x/u∗

j+ 1

2

)

(6)

fj+ 1

2

= u∗

j+ 1

2

(

0.5(qj + qj+1) −

(

u∗

j+ 1

2

∆∗tj/∆x

)

(qj+1 − qj)

)

(7)

3. Advect and advance in time:

qn+1
j = qn

j −
∆t

∆x

(

fj+ 1

2

− fj− 1

2

)

∀j. (8)

4. Compute ∆t: the global ∆t should satisfy |u∗

j+ 1

2

|∆t/∆x ≤ 1 for all j

[Kas00, p. 29], hence we choose

∆t = min
j







CFL · ∆x

|u∗

j+ 1

2

| + ε







, (9)

where ε = 10−30 is a small number, and 0 < CFL < 1 is a prescribed
desired Courant number.

1.4 Numerical Results

We define two scalar model problems,

(A) Advection: f(q) = qu, where u = 1 is a constant speed propagation
(wave propagates to the right).

(B) Burgers: f(q) = q2/2. Here the speed propagation is f ′(q) = q. A
shock may develop; sonic points occur when q = 0.

We test them for two initial conditions at t = 0:
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(1) Positive square wave:

q(x) :=







0, if 0 ≤ x < 0.3,
1, if 0.3 < x < 0.5,
0, if 0.5 < x ≤ 1.

(10)

(2) Square wave: identical to (1), except a shift by 0.5 so that q crosses
zero at two points (initially at x = 0.3, 0.5).

q(x) :=







−0.5, if 0 ≤ x < 0.3,
0.5, if 0.3 < x < 0.5,
0.5, if 0.5 < x ≤ 1.

(11)

Sonic points occur only for the case (B2). The profile q(x) after 100
timesteps for each of the four cases (A1),(A2),(B1),(B2) is shown in
Fig. 2.

We discretize in space using N = 100 points over the interval [0, 1], hence
∆x = 0.01. We use a CFL number of 0.2.

The ICE algorithm performs well for cases (A1),(A2) and (B1). It ex-
hibits poor results in (B2), due to the sonic points: in (2) with f ′(qj),
f ′(qj+1) ≈ 0, u∗

j+ 1

2

may be close to zero, and when we divide by it in (6),

we may get absurd values for ∆∗t. A “sonic point fix” (adding artificial
viscosity in these cases) is required, as indicated in [Dav87, pp. 8–9].
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Figure 2: Results of Kashiwa ICE algorithm for scalar equations, (A1)–(B2),
after 100 timesteps with 100 gridpoints and CFL of 0.2. Top line: constant
advection; bottom line: Burger’s equation. Left column: positive square
wave initial data; left column: square wave initial data.
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2 Uintah ICE Algorithm for Euler

We describe the ICE algorithm currently implemented in Uintah for the 1D
compressible Euler equations.

2.1 The Equations

Because the Euler equations have many formulations, we specify the un-
knowns and the conservation equations they satisfy. The unknowns consist
of a state vector Q := (ρ, ρu, ρi)T (ρ is the density, u is the velocity, i is the
specific internal energy), and the pressure p. To set boundary conditions,
we first translate these variables into (ρ, u, T ) and p, set B.C. for those, and
translates back to the state variables Q. This is a separate issue that will
not be investigated here. The equations are

Qt + C(Q)x = −P (Q), Q :=







ρ
ρu
ρi






, C(Q) :=







uρ
uρu
uρi






, S(Q) :=







0
px

pux






.

(12)
The Equation Of State (EOS) assumes an ideal gas model,

p = (γ − 1)ρe (13)

where γ = 1.4. In (12), C is the advection flux (convective term) and P
represents sources due to pressure. Notice that P is not in flux form.

2.2 Discretization

We define all state vector at cell centers. Intermediate values inside the
timestep are calculated at the faces for p and u. See Fig. 3.

We assume an infinite (or periodic) grid to avoid treating boundary
conditions.

2.3 Advection Scheme

The ICE algorithm timestep for computing the quantities at time tn+1

(denoted Q(n+1)) from quantities at time n (denoted Q, omitting the n-
superscript) consists of the following steps:

1. Compute pressure: compute pj from the EOS at all cell centers j,

pj = (γ − 1)ρjij , ∀j. (14)
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U j+1U j−1 U j

u j−0.5
* u j+0.5

*

*p j−0.5
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Figure 3: Cell-centered discretization of (12). The discrete state variables
Qj are defined at cell centers j (“x”). Cell faces j + 1

2 are marked by “|”.

Then compute the speed of sound,

cj =

(
√

∂p

∂ρ
+

∂p

∂i

p

ρ2

)

j

=

√

√

√

√(γ − 1)

(

ij +
pj

ρj

)

, ∀j. (15)

2. Compute the face-centered velocities: we denote them by u∗

j+ 1

2

, at all

faces j + 1
2 .

u∗

j+ 1

2

=
ρjuj + ρj+1uj+1

ρj + ρj+1
− ∆∗

ut
1

2

(

1

ρj
+

1

ρj+1

)

pj+1 − pj

∆x
, ∀j.

(16)
In production ICE, ∆∗

ut = ∆t. For other local timestepping methods,
see §2.6.

3. Compute pressure correction and update pressure. Note that the cor-
rection is defined at cell centers.

(∆P )j = −∆tc2
jρjADV (vol, u∗)j , ∀j. (17)

pj = pj + (∆P )j , ∀j. (18)

Here vol is the volume fraction of the material, defined at each cell
center. In this setting, we have one material, so vol ≡ 1. The notation
ADV (a, u∗) is the discrete advection operator of the function a = a(x)
using the velocities u∗ at the faces. It will be further explained later
on.
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4. Compute the face-centered pressure: denoted by p∗
j+ 1

2

, and computed

at all faces j + 1
2 as averages of the cell-centered pressure.

p∗
j+ 1

2

=
ρj+1pj + ρjpj+1

ρj + ρj+1
. (19)

5. Compute Lagrangian quantities: these values seem to be the values of
the cell-centered state variables, which are advected along the charac-
teristics of the system.

ρL
j = ρj (20)

(ρu)L
j = ρjuj − ∆t

p∗
j+ 1

2

− p∗
j− 1

2

∆x
(21)

(ρi)L
j = ρjij − ∆tpjADV (vol, u∗)j (22)

for all cell centers j.

6. Advect and advance in time: we pass back from the Lagrangian coor-
dinate system to the cell centers at time n + 1.

ρn+1
j = ρL

j − ∆tADV (ρL, u∗)j (23)

(ρu)n+1
j = (ρu)L

j − ∆tADV ((ρu)L, u∗)j (24)

(ρi)n+1
j = (ρi)L

j − ∆tADV ((ρi)L, u∗)j . (25)

(26)

for all cell centers j.

7. Compute ∆t: the next timestep is computed similarly to (9). Based
on a user-specified Courant number 0 < CFL < 1,

∆t = min
j







CFL · ∆x

|u∗

j+ 1

2

+ cj | + ε







, (27)

where ε = 10−30 is a small number.

2.3.1 The ADV operator

This section is based on the Uintah code. It turns out that it contradicts
the description in [Kas00]. As we will see, it is probable that the paper is
wrong and the code is correct.
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The advection operator ADV (q, u∗) takes cell centered values {qj}j of
an advected quantity q = q(x), and returns a correction defined at cell
centers. When this correction is multiplied by ∆t and subtracted, we obtain

{q
(n+1)
j }j . ADV requires the face-centered velocities {u∗

j+ 1

2

}j . ADV (q, u∗)j

can be interpreted as discrete divergence operator centered at cell j.

• Viewpoint 1: moving “slabs”. Geometrically, we can approximate the
amount of volume advected in and out every cell during a ∆t time
interval; the volumes depend on ∆x, ∆t and the u∗’s, but independent

of {qj}j . Then, we approximate the average of q on each slab to get
the total in-flux and out-flux of q to/from cell j. The resulting formula
can thus be applied to all state variables (substituted for q).

Thus, ADV is given by

ADV (q, u∗)j := −
1

∆x∆t
(qinVin − qoutVout) , (28)

where Vin is the slab volume advected into cell j, qin is an average of
q over this in-slab, Vout is the slab volume advected outside cell j, and
qout is the average of q over the out-slab.

Fig. 4 illustrates the case where u∗

j− 1

2

> 0, u∗

j+ 1

2

> 0. The in-slab is

a volume of cell j − 1 entering cell j, and the out-slab is a volume of
cell j leaving cell j and entering cell j + 1. Assuming that u∗

j+ 1

2

is

the average velocity at the face j + 1
2 over the time period [tn, tn+1],

Vin,j = ∆tu∗

j− 1

2

and Vou,jt = ∆tu∗

j− 1

2

; if u∗

j+ 1

2

is a velocity value at the

face at tn + 1
2∆t, the slab volumes are exact to O(∆t2). The average

of q over Vin is approximated to O(∆x2) by the value qS
j of q in the

middle of the slab.

In general, the in-flux is a summation of the in-flux through face j− 1
2

and j + 1
2 . If we define

u+
j+ 1

2

:= max

{

u∗

j+ 1

2

, 0

}

, u−

j+ 1

2

:= min

{

u∗

j+ 1

2

, 0

}

(29)

then

Vin,j = qS
j−1∆tu+

j− 1

2

− qS
j+1∆tu−

j+ 1

2

(30)

Vout,j = −qS
j ∆tu−

j− 1

2

+ qS
j ∆tu+

j+ 1

2

. (31)

(32)



OREN E. LIVNE: SHOCKTUBE STATUS REPORT 4 11

q j+1q j−1

q j+1q jq j−1

q j

u j−0.5
* u j+0.5

*

q j
Sq j−1

n+1 n+1 n+1

S

Figure 4: The in-slab and out-slab of cell j for the case of u∗

j− 1

2

> 0, u∗
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2

>

0.
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Substituting into (28) gives

ADV (q, u∗)j = −
1

∆x

(

qS
j−1u

+
j− 1

2

− qS
j+1u

−

j+ 1

2

+

qS
j u−

j− 1

2

− qS
j u+

j+ 1

2

)

. (33)

• Viewpoint 2: conservation form. As in (8), we can rearrange (33) in
terms of face j − 1

2 , j + 1
2 contributions rather than “in” and “out”

contributions. Namely, if

ADV (q, u∗) =
1

∆x

(

C∗

j+ 1

2

− C∗

j− 1

2

)

, (34)

where the numerical flux is

C∗

j+ 1

2

:= qS
j u+

j+ 1

2

+ qS
j+1u

−

j+ 1

2

. (35)

Note that when q ≡ 1, C∗

j+ 1

2

= u+
j+ 1

2

+u−

j+ 1

2

= u∗

j+ 1

2

, and ADV becomes

the discrete divergence operator.
The advantage of viewpoint 1 is that the same ADV operator (except

for the limiter) applies to all state variables in the Euler equations, as they
are all advected with the same velocity u∗. The only quantities that need
to be computed for each new variable are the slab averages {qS

j }j .
The advantage of viewpoint 2 is that it allows a direct relation to schemes

based on Riemann solvers. (35) is a special case of a flux-vector splitting
[Lev02, p. 83, (4.56)].

We now describe the choice of qS
j .

• First order. Here
qS
j := qj . (36)

Thus (35) is an upwind flux [Lev02, p. 75, (4.33)]. More generally, it
can be viewed as a Godunov method, where qS

j represents the value
solution q̂ of the Riemann problem with piecewise constant initial data
qj−1, qj on the left and the right of the face j+ 1

2 , evaluated at mid-time
(i.e., qS

j = q̂((j + 1
2)∆x, (n + 1

2)∆t)).

• Second order. Here we use

qS
j := qj + rj

qj+1 − qj−1

2∆x
, (37)
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where rj := |∆x/2 − u∗

j+ 1

2

∆t/2| is the “centroid” vector, that is, the

vector pointing from the cell center to the slab center. Following the
derivation of [KV98] and [Lev02, §6.4], we see that (35) is equivalent
to a Godunov method based on piecewise linear reconstruction of q.
(37) is a second-order approximation to the value of q at the center of
the slab.

• Limited. This combines the first and second order methods using

qS
j := qj + rjφj

qj+1 − qj−1

2∆x
, (38)

φj is either a van-Leer gradient limiter, when advecting volume fraction
and density, or a compatible flux limiter [KV98], for all other advected
quantities.

2.4 Scheme Analysis

We reformulate ICE in terms of the state variables Q only. The target is
to find the operator transforming Qn into Qn+1. The ICE timestep can be
rewritten as follows.

1. Advance pressure to time n using the EOS (pn).

2. Compute half-space, [locally] time advanced quantities u∗, p∗. Let

A(q)j+ 1

2

:=
1

2
(qj+1 + qj) (39)

D(q)j+ 1

2

:=
1

2
(qj+1 − qj) ; (40)

for all j; then in vector form,

u∗ =
A(ρu)

A(ρ)
− ∆tA

(

1

ρ

)

D(pn) (41)

∆p = −∆tc2ρ

[

D

(

A(ρu)

A(ρ)

)

− ∆tD

(

A

(

1

ρ

)

D(pn)

)]

(42)

pn+1 = pn − ∆tc2ρD

(

A(ρu)

A(ρ)

)

+ ∆t2c2ρD

(

A

(

1

ρ

)

D(pn)

)

(43)

p∗ =
1

A
(

1
ρ

)

[

A

(

pn

ρ

)

− ∆tc2D

(

A(ρu)

A(ρ)

)

+ ∆t2c2D

(

A

(

1

ρ

)

D(pn)

)]

.(44)
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3. Lagrangian phase: Advance in time based on the sources,

QL = Qn − ∆tLAG(Qn, u∗, p∗) (45)

4. Eulerian phase: advect forward in time. The advection operator is
based on the already-computed Lagrangian values.

Qn+1 = QL − ∆tADV (QL, u∗) (46)

The Lagrangian operator advances Q using the equation Qt = −S(Q) (with-
out advection). Discretizing S (see (12)) at cell centers (using differencing
of the face-centered u∗, p∗, we define

LAG(Q)j :=













0
p∗

j+1
2

−p∗
j− 1

2

∆x

pn+1
j

(

u∗

j+ 1

2

− u∗

j− 1

2

)

j













. (47)

Note that LAG contains two pressures: face-centered p∗ and cell-centered
pn+1. Both are time-advanced. In ICE we are not really conforming to
Bucky’s page-29 scheme for p∗, rather, we average time-n+1 pressure values
(equivalent to ∆∗

pt = ∆t and taking the average over the entire right-hand-
side for the p∗ equation on page 29).

2.5 Numerical Results

Our initial data is the shock tube piecewise constant data depicted in Fig. 5.

We tested the ICE algorithm using CFL = 0.45 and an initial ∆t = 10−6

for the first timestep (subsequent timesteps are computed using (27)). We
discretize in space using N = 100 points over the interval [0, 1], hence ∆x =
0.01. The state variable profiles after 100 timesteps are depicted in Fig. 6.
We tested the same algorithm with first order advection (36). The results
are depicted in Fig. 7.

Note that

• All state variables have oscillations near the shocks, for first order
advection. I cannot explain this result - shouldn’t the first order ad-
vection operator ADV be monotone (even though it’s a system of
equations, not a scalar conservation law)?

• First order advection is much more diffusive, which is to be expected.
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Figure 5: Initial data for the compressible Euler equations (shock tube prob-
lem).
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Figure 6: Results of Kashiwa ICE algorithm for the shock tube problem
with a limiter, after 100 timesteps with 100 gridpoints and CFL of 0.45.
The top two lines show ρ, u1 ≡ u, T and p vs. x. The last line shows the
internal variables ∆P and the speed of sound c vs. x.
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Figure 7: The same as Fig. 6, for first order advection in ADV .
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• The oscillation appear also for the second order limited case, thus we
might be led to thinking that the limiter is not working properly. But
even if it would reduce the advection order to first near shocks, as we
already saw, oscillations still occur. So the limiter might not be the
problem, although we do not know for sure before we resolve the first
order oscillations issue.

2.6 Local Timestepping Method Comparison

We compare production ICE with three other methods of local timestepping:

• Method 1: production ICE. This is a second order method. Here
∆∗

ut = ∆t and ∆∗

pt = ∆t.

• Method 2: Godunov sonic approximation in u∗. This is a first order
method. Here ∆∗

utj+ 1

2

= ∆x/c∗
j+ 1

2

for the face velocity u∗

j+ 1

2

, and

∆∗

pt = ∆t. c∗
j+ 1

2

is the face-centered speed of sound, defined by the
average

c∗
j+ 1

2

= (0.5 (cj + cj+1))
1

2 , ∀j. (48)

• Method 3: No-pressure-gradient-in-u∗. This is a second order method.
Here ∆∗

ut = 0 and ∆∗

pt = ∆t.

• Method 4: Lax-Wendroff (L-W). This is a second order method. Here
∆∗

ut = 0.5∆t and ∆∗

pt = 0.5∆t.

Our initial data is the shock tube piecewise constant data depicted in Fig. 5.
We first tested ICE with each method for 100 timesteps, and obtained that
the minimum timestep over all times, and over all methods, is bounded
below by 6 · 10−6 (except the initial timestep ∆t = 10−6). Then, we tested
all four methods fixing ∆t = 6·10−6 (except the initial timestep ∆t = 10−6).
The density and velocity profiles after 100 timesteps are compared in Fig. 8.

Note that the only scheme that does not produce severe oscillations near
the shock is the Godunov scheme. Thus, we plan to use a limiter for ∆∗

ut
that will reduce the scheme to Godunov scheme near discontinuities, and
production ICE (von-Neumann-Richtmyer with q = 0, 1950) second order
scheme, for from discontinuities.
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Figure 8: Local-timestepping method comparison. Upper figure: density
profile near the shock. Lower figure: velocity profile near the shock.
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3 Conservative ICE Algorithm for Euler

3.1 The Equations

The difference between the algorithm in this section and the ICE algorithm
in §2 is the formulation of the energy equation. We use the conservative
form of the Euler system, replacing i (specific internal energy) by e (specific
energy), where e = i + 1

2u2. We do not deal here with the implications of
this change on the boundary conditions. Working in this form allows us to
compare ICE to the very similar Zha-Bilgen flux vector splitting described
in [ZB93].

The equations are

Qt + F (Q)x = 0, Q :=







ρ
ρu
ρe






, F (Q) :=







uρ
ρu2 + p

(ρe + p)u






, (49)

The Equation Of State (EOS) assumes an ideal gas model,

p = (γ − 1)ρ

(

e −
1

2
u2
)

(50)

where γ = 1.4. The eigenvalues of the Jacobian ∂F/∂Q has three real
eigenvalues, u, u+ c, u− c, where c =

√

γp/ρ is the speed of sound. We split
F as in [ZB93, eq. (7)],

F = C + P, C := u







ρ
ρu
ρe






, P :=







0
p
pu






. (51)

In (51), F is total flux, C is the convective flux and P is the pressure term,
now in flux form (compare with (12)). The eigenvalues of C are u, u, u and
P ’s eigenvalues are 0, c,−c.

3.2 Discretization

Q and p are defined at cell centers. We will again use u∗ and p∗ at the face
centers. We assume an infinite (or periodic) grid to avoid treating boundary
conditions.
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3.3 Advection Scheme

In this case we can write ICE in discrete conservative form. ICE’s operator
splitting consists of the stages

pn = p (Q)) (Evaluate EOS) (52)

Compute u∗, pn+1, p∗ (53)

QL = Qn − ∆tLAG(Qn, u∗, p∗) (Lagrangian phase) (54)

Qn+1 = QL − ∆tADV (QL, u∗) (Eulerian phase) (55)

u∗, pn+1, p∗ are computed as in the Uintah ICE algorithm. The Lagrangian
phase is now cast in terms of (ρ, ρu, ρe) rather than (ρ, ρu, ρi). Instead of
(21)–(22) we have

ρL
j = ρj (56)

(ρu)L
j = ρjuj − ∆t

p∗
j+ 1

2

− p∗
j− 1

2

∆x
(57)

(ρe)L
j = ρjej − ∆tADV (p(n+1), u∗)j . (58)

Thus, the Lagrangian phase now has the numerical flux form

LAG(Q, u∗) =
1

∆x

(

P ∗

j+ 1

2

− P ∗

j− 1

2

)

, (59)

P ∗

j+ 1

2

:=









0
p∗

j+ 1

2

u+
j+ 1

2

pn+1,S + u−

j+ 1

2

pn+1,S









. (60)

The convective numerical flux is given as before (see (35)) by

ADV (Q, u∗) =
1

∆x

(

C∗

j+ 1

2

− C∗

j− 1

2

)

, (61)

C∗

j+ 1

2

:= u+
j+ 1

2

QS
j + u−

j+ 1

2

QS
j+1. (62)

Thus, the total numerical flux of the scheme is

F ∗

j+ 1

2

= C∗

j+ 1

2

+ P ∗

j+ 1

2

= u+
j+ 1

2







ρS
j

(ρu)S
j

(ρe)S
j






+ u−

j+ 1

2







ρS
j+1

(ρu)S
j+1

(ρe)S
j+1







+









0
p∗

j+ 1

2

u+
j+ 1

2

pn+1,S + u−

j+ 1

2

pn+1,S









. (63)
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3.4 Numerical Results

Our initial data is the shock tube piecewise constant data depicted in Fig. 5.
We tested the ICE algorithm using CFL = 0.45 and an initial ∆t = 10−6

for the first timestep (subsequent timesteps are computed using (27)). We
discretize in space using N = 100 points over the interval [0, 1], hence ∆x =
0.01. The state variable profiles after 100 timesteps are depicted in Fig. 6.
We tested first order advection only. The results are depicted in Fig. 9.
These are initial results only. The same wiggles occur in here as in Uintah
ICE. However, the velocity profile seems to be wrong, unlike the Uintah
results.
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Figure 9: The same as Fig. 6, for first order advection in ADV .
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4 Concluding Remarks and Questions for Bucky

• The scalar ICE algorithm works, except near sonic points, where we
have to add more diffusion. This action item can be treated separately
of the rest of the “machinery”.

• First order advection in ICE produces oscillations. Can we show that
it must be monotone? If not, what is the point of using a limiter to
reduce the advection order from second to first in non-smooth regions,
if we cannot anyway obtain a monotone profile using first order?

• The precise role of u∗ and p∗ from [Kas00, p. 29] in the ICE advection
scheme is still not part of the description of this report and should
be added as soon as possible as it might be the key to the questions
above.

• Should p∗ be based on old pressures (time n) or new pressure averages
(time n + 1)? Bucky has an old pressure average when ∆∗pt = 0 pn
page 29, and again uses pL = p for explicit timestepping on pages
41 − 42, which are averaged to give p∗.

• Can the entire ICE algorithm be written in conservation form (i.e.,
a grand numerical flux combining both the Lagrangian and Eulerian
phases)?
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