
1

ICE Algorithm and the Davis Advection Scheme

Oren E. Livne

UUSCI-2006-006

Scientific Computing and Imaging Institute
University of Utah

Salt Lake City, UT 84112 USA

January 23, 2006

Abstract:

As an intermediate step towards understanding Kashiwas full ICE algorithm for the Euler equations,
we start by implementing and analyzing Davis scheme [Dav87] upon which ICE is based [Kas00].
We describe the algorithm and the results for a linear advection equation, a non-linear advection
equation, and for the Euler equations (Sods shocktube problem).



ICE Algorithm and the Davis Advection Scheme

Oren E. Livne ∗

January 23, 2006

Abstract

As an intermediate step towards understanding Kashiwa’s full ICE
algorithm for the Euler equations, we start by implementing and an-
alyzing Davis’ scheme [Dav87] upon which ICE is based [Kas00]. We
describe the algorithm and the results for a linear advection equation,
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1 Introduction

We consider the system of conservation laws

Ut + (F (U))x = 0 (1)

where U and F are vectors of length m. The Davis scheme is a modified
MacCormack Scheme [Lan98, p. 360]. Instead of having plane second-order
spatial accuracy everywhere at the cost of oscillations near shock fronts,
Davis adds to the numerical flux a dissipative term controlled by a slope
limiter φ(r), where r is the approximate local ratio of neighboring solution
slopes. In smooth regions, we use φ = 1 to obtain the second-order Mac-
Cormack scheme. When r is small, we expect a discontinuity and reduce
to a first-order upwind method, which is less accurate, but preserves mono-
tonicity (or quite equivalently, preserves positivity) of the solution profile;
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this is obtained by φ = 0. In general, changing φ can be utilized to make
the transition from a smooth region to a shock viscinity.

The paper [Dav87] describes an algorithm for time-integration of con-
servation laws. The algorithm applies to scalar equations and to systems of
conservation laws in virtually the same way (except some minor treatment
of the local Courant number used by the scheme). We will describe and
analyze the algorithm for systems. For simplicity we restrict ourselves to
one space dimension. A future report will discuss extensions to two and
three space dimensions.

The report is organized as follows. The algorithm of the Davis Scheme is
described in §2. We analyze the numerical flux and monotonicity properties
of the scheme in §3. Numerical results for a linear advection equation are
presented in §4. We compare two second-order base methods (MacCormack
and Richmyer) inside the Davis scheme in §4.1. We compare two limiters
(Davis and van-Leer) in §4.2. Results for a non-linear advection equation
(Burgers’) are discussed in §5. Sod’s shocktube problem (compressible Euler
equations) is considered in §6. We summarize our findings in §7.

2 Davis’ Scheme: Algorithm

In what follows we ignore boundary conditions. We assume a periodic or
infinite domain. The system (1) is discretized on a uniform grid with mesh-
size ∆x in space, and a uniform grid with timestep ∆t in time. Nodes are
defined at grid cell centers. The solution at time n and point j is denoted by
Un

j . When the superscript is omitted, we refer to time tn (for instance, Uj

refers to Un
j ). “Points” j refer to spatial locations j∆x; similarly n refers to

time tn = n∆t. Half-indices (j+ 1
2 and n+ 1

2) refer to mid-grid-cell locations
and mid-times, respectively.

Davis’ algorithm is an explicit time-integrator. From previously com-
puted values {Un

j }j , we compute Un+1
j for all j using the following steps

[Dav87, p. 11]. Some of Davis’ notation have been modified for clarity.

1. Compute the solution differences

∆Uj+ 1

2

← Uj+1 − Uj , ∀j. (2)

2. Prepare the dissipation terms. For all j, compute

Dj+ 1

2

← 0.5C(νj)
(

2− φ
(

r+
j

)

− φ
(

r−j+1

))

∆Uj+ 1

2

, (3)
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where

C(ν) := min{ν(1− ν), 0.25}, ν := ρ(A(Uj))λ, λ :=
∆t

∆x
, (4)

A(U) is the Jacobian matrix of F , and ρ(A(U)) is its spectral radius.
Note that explcitly computing A(U) is not always necessary. In many
cases, the eigenvalues of A(U) are known (e.g., for the Euler equa-
tions). Finally, the slope ratios

r+
j :=

(

∆Uj− 1

2

, ∆Uj+ 1

2

)

(

∆Uj+ 1

2

, ∆Uj+ 1

2

) , r−j :=

(

∆Uj+ 1

2

, ∆Uj− 1

2

)

(

∆Uj− 1

2

, ∆Uj− 1

2

) , (5)

control the amount of artificial viscosity generated by D through a
limiter of choice. The notation (·, ·) represents an inner product on
R

m, namely,

(A, B) :=
m
∑

k=1

A(k)B(k), ∀A, B ∈ R
m (6)

(A(k) refers to the kth component of the vector A). We use Davis’
limiter

φ(r) :=

{

min{1, 2r}, if r > 0,
0, if r ≤ 0

(7)

as a default. Another choice of interest is the van Leer limiter,

φ(r) :=
r + |r|

1 + |r|
. (8)

3. Compute a provisional solution using the MacCormack method (or in
general, a base second-order method such as Lax-Wendroff, Richtmyer,
etc.). This is a predictor-corrector method [Lan98, p.356], that first
computes a mid-time solution

U
(1)
j ← Uj − λ [F (Uj)− F (Uj−1)] (9)

for all j, and then uses it to find its final result,

U
(2)
j ← 0.5

{

Uj + U
(1)
j − λ

[

F
(

U
(1)
j+1

)

− F
(

U
(1)
j

)]}

(10)

for all j.
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4. Add the dissipative terms to the provisional solution to get the final
result of Davis’ scheme,

Un+1
j ← U

(2)
j +

(

Dj+ 1

2

−Dj− 1

2

)

. (11)

Notice that Un+1
j depends on a five-point stencil at time n, namely,

Uj−2, . . . , Uj+2. Only three points are used in the basic second-order scheme
in the next step, but r±j involve gradients that depends on five points.

3 Analysis of the Scheme

To analyze the effect of the limiter, consider first the scalar linear advection
equation

ut + aux = 0, 0 ≤ x ≤ 1, t > 0. (12)

we write Davis’ scheme in conservative form,

Un+1
j = Uj +

∆t

∆x

(

Fj+ 1

2

− Fj− 1

2

)

, (13)

where

Fj+ 1

2

:= aUj +
a(1− |ν|)

2

(

φ
(

r+
j

)

+ φ
(

r−j+1

)

− 1
)

. (14)

The first term corresponds to first order upwind scheme. The second term
becomes the Lax-Wendroff correction term that makes the entire scheme
second order, if φ ≡ 1.

4 Results for Linear Advection

To obtain a first idea on how the Davis scheme works, we reproduce his
result for the scalar linear advection equation (12). Here a = 1, U = u and
F (u) = u. The initial data is the square wave

u(x) :=







0, if 0 ≤ x < 0.1,
1, if 0.1 < x < 0.3,
0, if 0.3 < x ≤ 1.

(15)

We discretize in space using N = 100 points and ∆x = 0.01, and advance
in time, but stop before any boundary effects enter.
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4.1 Choice of Base Scheme

The “base scheme” for Davis’ algorithm is the second-order scheme in step 3.
We compare the default choice of MacCormack’s scheme with the Richtmyer
scheme [Lan98, p. 360], that computes a provisional solution from Un as
follows.

U
n+ 1

2

j+ 1

2

←
1

2
(Uj+1 + Uj)−

λ

2
(F (Uj+1)− F (Uj)) , ∀j (16)

Un+1
j ← Ui − λ

(

F

(

U
n+ 1

2

j+ 1

2

)

− F

(

U
n+ 1

2

j− 1

2

))

, ∀j. (17)

We first test a MacCormack base scheme with Davis’ limiter (7). Figs. 3-4
show the solution profile at different times, for a quite large CFL = 0.7
(CFL = 0.9 reported in Davis to be stable with the Lax-Wendroff scheme,
appears undestable in our experiments with the MacCormack scheme. The
largest stable CFL seems to be ≈ 0.75). The figures look identical to the
result [Dav87, Fig. 2c], hence we can assume the implementation is correct
and the scheme works for scalar linear advection. Note that the solution
profile does not have oscillations; the scheme automatically switches to a
first-order method, and some smearing occurs near the shock locations, in-
stead of the “wiggles” normally produced by a stand-alone MacCormack
scheme, presented in Figs. 1–2.

Next, we compare the MacCormack base scheme with a Richtmyer base
scheme (16)–(17). We use the same limiter (Davis); see Figs. 5–6. The
results are indistinguishable from the MacCormack results, hence we can
use either one. For consistency with Davis’ paper, we will use MacCormack
scheme from here on.

4.2 Choice of Limiter

We now compare two limiters with the MacCormack base scheme inside
Davis’ algorithm: the Davis limiter (7), and the van Leer limiter (8). The
first one was already demonstrated in Figs. 3-4. The same scheme with van
Leer’s limiter is depicted in Figs. 7-8.

Notice that the solution has new local extrema, noticably near the right
shock front, which the Davis limiter results did not exhibit. This is because
the Davis scheme is positivity preserving only for the first limiter. The rest
of this section is devoted to finding conditions on the limiter for which the
scheme is positivity preserving.
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Figure 1: Results of the plain MacCormack scheme for linear scalar advec-
tion (12). Here CFL = 0.7, so ∆t = 0.7∆x = 0.07. (a) Initial data at t = 0.
(b) Solution after 10 timesteps.
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Figure 2: Results of the plain MacCormack scheme for linear scalar advec-
tion (12). Here CFL = 0.7, so ∆t = 0.7∆x = 0.07 (continued from Fig. 1).
(c) Solution after 50 timesteps. (d) Solution after 100 timesteps.
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Figure 3: Results of the Davis scheme for linear scalar advection (12), with
the MacCormack scheme and Davis limiter. Here CFL = 0.7, so ∆t =
0.7∆x = 0.07. (a) Initial data at t = 0. (b) Solution after 10 timesteps.
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Figure 4: Results of the Davis scheme for linear scalar advection (12), with
the MacCormack scheme and Davis limiter. Here CFL = 0.7, so ∆t =
0.7∆x = 0.07 (continued from Fig. 1). (c) Solution after 50 timesteps. (d)
Solution after 100 timesteps.
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Figure 5: Results of the Davis scheme for linear scalar advection (12), with
the Richtmyer scheme and Davis limiter. Here CFL = 0.7, so ∆t = 0.7∆x =
0.07. (a) Initial data at t = 0. (b) Solution after 10 timesteps.
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Figure 6: Results of the Davis scheme for linear scalar advection (12), with
the Richtmyer scheme and Davis limiter. Here CFL = 0.7, so ∆t = 0.7∆x =
0.07 (continued from Fig. 1). (c) Solution after 50 timesteps. (d) Solution
after 100 timesteps.
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Figure 7: Results of the Davis scheme for linear scalar advection (12), with
the MacCormack scheme and van Leer limiter. Here CFL = 0.7, so ∆t =
0.7∆x = 0.07. (a) Initial data at t = 0. (b) Solution after 10 timesteps.
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Figure 8: Results of the Davis scheme for linear scalar advection (12), with
the MacCormack scheme and van Leer limiter. Here CFL = 0.7, so ∆t =
0.7∆x = 0.07 (continued from Fig. 1). (c) Solution after 50 timesteps. (d)
Solution after 100 timesteps.
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5 Results for Burgers’ Equation

We now test a non-linear scalar advection example, the Burger’s equation

ut +

(

u2

2

)

x

= 0, (18)

with the same initial data (15) as for linear advection. The results of the
Davis scheme (MacCormack base, Davis limiter) are depicted in Figs. 9-10.
Again, they are in line with [Dav87, Fig. 3c] and there are even no “gliches”
as in the upwind-dependent variant of Davis’ scheme [Dav87, Fig. 3b].

Corresponding experiments with the van Leer limiter show spikes near
the right shock front (corresponding to large r, see §4.2), which however are
of bounded magnitude. See Figs. 11-12.

Note, however, that even for Davis’ limiter, the scheme generates a new
extremum near x = 0.1 (on the left of the rarefraction shock). This is a
matter of concern, because the scheme can probably be shown to be positive
for Burgers’ equation, just like for the linear advection case, and this should
not happen.

6 Results for Sod’s Shocktube Problem

Compressible Euler equations, see Figs. 13-14.

7 Conclusions
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Figure 9: Results of the Davis scheme for for Burgers’ equation (18) with the
MacCormack scheme and Davis limiter. Here CFL = 0.5, so ∆t = 0.5∆x =
0.05. (a) Initial data at t = 0. (b) Solution after 10 timesteps.
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Figure 10: Results of the Davis scheme for Burgers’ equation (18) with the
MacCormack scheme and Davis limiter. Here CFL = 0.5, so ∆t = 0.5∆x =
0.05 (continued from Fig. 9). (c) Solution after 50 timesteps. (d) Solution
after 100 timesteps.
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Figure 11: Results of the Davis scheme for for Burgers’ equation (18) with
the MacCormack scheme and van Leer limiter. Here CFL = 0.5, so ∆t =
0.5∆x = 0.05. (a) Initial data at t = 0. (b) Solution after 10 timesteps.
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Figure 12: Results of the Davis scheme for Burgers’ equation (18) with
the MacCormack scheme and van Leer limiter. Here CFL = 0.5, so ∆t =
0.5∆x = 0.05 (continued from Fig. 11). (c) Solution after 50 timesteps. (d)
Solution after 100 timesteps.
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Figure 13: Results of the Davis scheme for for Euler equations (??) with the
MacCormack scheme and Davis limiter. Here CFL = 0.1. (a) Initial data
at t = 0. (b) Solution after 50 timesteps.



OREN E. LIVNE: SHOCKTUBE STATUS REPORT 3 20

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

Density ρ

ρ

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

Velocity u

u

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

x

Energy E

E

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

Pressure p

p

(c)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

Density ρ

ρ

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

Velocity u

u

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

x

Energy E

E

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

Pressure p

p

(d)

Figure 14: Results of the Davis scheme for for Euler equations (??) with
the MacCormack scheme and Davis limiter. Here CFL = 0.1. (c) Solution
after 100 timesteps. (d) Solution after 200 timesteps.


