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1 Introduction

Reports 1–3 discussed the Berger-Rigoustos (BR) algorithm [BR91] for clus-
tering cells that are flagged by a time-stepping code as “needing refinement”.
The advantage of the BR approach is patch efficiency: patches tightly bound
the areas of flagged cells. However, a multi-level implementation of BR is
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quite involved, it does not update patches efficiently over time-steps, and
would be as wasteful as any other AMR approach that uses rectilinear patches
only, in the presence of thin shock fronts that do not align with the original
grid.

In this report we present an alternative approach, that uses a hierarchy of
refinement level. Many papers have been devoted to such approaches (e.g.,
[Ber86], [Nee96]). In our case, every level is a union of patches. A patch can
exist only at certain alignments and can have a prescribed size. The levels
are organized so that each patch can be dissected into the next-finer level
patches. This approach is easier to implement for multi-level refinement,
naturally supports updates of patches over time-steps, and should not have
a much smaller efficiency than BR in most scenarios, let alone thin shock
fronts.

Our necessary requirements of the AMR level hierarchy are as follows.

1. Objective 1 - Maximum efficiency: the ratio of the number of flagged
cells to the total patch area, should be as close to 1 as possible. We
would like to minimize the wasted “blank space” by the rectangles: the
total work and storage of the patches in the actual solver is proportional
to the total patch area.

2. Objective 2 - Minimum flag distance from patch boundary: because
we are not sure whether flagged cells are due to effects in neighboring
cells, and because of the reason for Objective 4 below, we want to keep
several “layers of cells” between the flagged cells and patch boundaries,
at any level.

3. Objective 3 - Minimum distance between boundaries of patches at con-

secutive levels: because of the ICE’s computational framework, the
boundary of a fine level (k + 1) patch should be separated from coarse
level (k) patch boundary by at least one layer of cell at a coarse level
cells (otherwise, there are problems in defining the boundary conditions
at levels k + 1).

4. Objective 4 - Fast update: if the flagged cells describe a moving shock
front, we would like to use the patch covering from the previous timestep,
and make minor modifications to it to fit it to the new timestep’s flagged
cells. This is in fact another way of looking at Objective 3; but it also
relates to the time required to generate the updated AMR levels at a
new timestep, from an AMR hierarchy at the previous timestep.
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5. Objective 5 - Maximum patch volume: patches that are 323 or 64×64×8
are equivalent in terms of memory and cost, but we would not want
very large patch volumes in light of a worse load balancing between
processors, in a parallel processing framework.

6. Objective 6 - cell alignment: cell boundaries at level k + 1 must align
with cell boundaries at the coarser level k. and cost, but we would
not want very large patch volumes in light of a worse load balancing
between processors, in a parallel processing framework.

In addition, we would like to have the following objectives, which are
however not to be strictly enforced:

7. Objective 7 - Minimum patch size: the smallest patch should not be
less than (say) 4 cells in every direction. Otherwise, there would be a
large overhead that would not justify the use of such patches.

8. Objective 8 - Minimum patch mutual-boundary area: to minimize pro-
cessor communication, we would like the patches to have as low mutual
edges as possible. One way to indirectly achieve this is by trying to
construct more “cubic” patches than “thin” ones, thereby reducing the
edge area of each patch (independently of the other patches’ edge area,
though).

All of Objectives 1–8 are address by the hierarchical approach described
in this report. Thus, it seems that this is a good approach that we should
next implement in the Uintah framework.

This report is organized as follows. In §2 we list the measures by which
we measure the algorithm’s result. In §2.1 we describe the griding algorithm.
§3 contains a MATLAB implementation of the two main routines of our code.
In §4, we study the algorithm’s efficiency and updating efficiency statistics
(e.g., how many timesteps can use the same patches without re-griding). We
summarize our findings and discuss future work in §5.

2 Indicators

We assess the quality of the time-dependent constructed set of patches by
the following measures. The measures are naturally related to the objectives
listed in §1.
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1. Global indicators (computed versus time):

(a) Total number of active patches at all levels.

(b) Total number of active cell at all levels.

(c) Total number of patch creations at all levels.

(d) Total number of patch deletions at all levels.

2. Level-dependent indicators (computed versus time):

(a) Number of active patches.

(b) Number of active cells.

(c) Percent of active patches out of all possible patches.

(d) Average patch efficiency: ratio of the number of flagged cells to the
patch volume, averaged over patches (this may also be viewed as
the level efficiency, as most patches have equal volume; see §2.1).

(e) Median patch efficiency.

(f) Maximum patch efficiency (it better be close to 1).

(g) Number of empty patches (patches with no flagged cells in them).

(h) Number of patch creations.

(i) Number of patch deletions.

2.1 The Hierarchical Griding Algorithm

The hierarchical griding algorithm is easily incorporated as a module of time-
stepping. Prior to time-stepping, we initialize a structure of max-levels

levels. At each time, we loop over levels from coarsest (level o) to one-
before-the-finest (level max − levels + o − 2), and determine the patches
of the next-finer levels, if there are flagged cells in them; or, if they are
needed for keeping Objectives 3–5. This strategy is described in the following
pseudo-code. The function levels-create initializes levels; mark-patches
determines the patches of the next-finer levels from the given flagged cells
Lk.cell − err at level k (denoted Lk). In the process of creating level k, all
levels coarser than k (i.e. l with o ≥ l < k) can change.
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levels-create(max-levels); % Initialize levels

for timestep = 0:num-tsteps-1,

Advance to time t;

for k = o:max-levels+o-2 % Mark patches for refinement at all levels

% RENDERING AND MARKING PATCHES FOR REFINEMENT, LEVEL K

Get input: flagged cells array L{k}.cell-err at this level & time

dilate L{k}.cell-err as required;

mark-patches(k); % Mark patches that need refinement

end

Accumulate statistics;

end

2.2 Level Definition: Lattice

The input for the algorithm is the coarsest grid Lo, defined in the Uintah
framework. Lo is uniform and extends over the entire physical domain. We
will restrict ourselves to a 2D description for simplicity; however, the code
and concepts work in any dimension. Let n1 × n2 be the size in cells of Lo.
To address Objectives 5 and 7, we also assume that we are given a patch size
p1 × p2 (cells). If ni is not divisible by pi, the last patch is slightly bigger
(if the remainder is less than pi/2) or slightly smaller (if the remainder is
greater or equal to pi/2) in direction i, i = 1, 2. Each patch is processed by
a different processor, thus it is up to the user to define patch size to comply
with the minimum/maximum size requirements.

Unlike standard bisection algorithms, we allow a more general framework
for refining each patch. We assume to be given an input “lattice resolution”
m1 × m2, that determines the size of the next-level (Lo+1) patches. The
Uintah framework requires that Lo+1 cells align with Lo cells (Objective 6).
Thus, if the cell refinement ration between levels o and o+1 is denoted by ri

in direction i, ripi/mi must be an integer, for i = 1, 2. {ri}i is also assumed
to be an input to our algorithm. The inputs discussed here (m, p, r and the
size of Li) are assumed to be given for the entire level hierarchy, and remain
unchanged over timesteps. Fig. 1 illustrates a possible Lo and its lattice. Note
that m, p, r control the patch size and cell size at all levels. These numbers
have to be coordinates by the user to avoid level cell mis-alignments, or too
small/too big patches.

The reason for this generalized dissection strategy, as opposed to the
bisection strategy, stems from complexity considerations. With bisection
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and a 1 : 2 cell refinement ratio between each two consecutive levels, each
patch of Lk+1 has the same number of cells as in a patch of Lk. Hence,
when refining a singularity at a corner, we would have (say) one patch per
level, and the total work would be unbounded when the number of levels
would be increased. A finer lattice than 2× 2 (per patch) makes the work at
Lk+1 patch smaller than a coarser patch, but the number of cells in a patch
decreases when k increases. This means that at a certain level we would
have patches of size 1 × 1 cells that cannot be further sub-divided, which
forces us to go back to the 2 × 2 bisection lattice from that point on; but at
least, that happens at a fine grid, whose associated complexity is (hopefully)
equivalent to few percents of the complexity of processing the coarsest level.
By limiting the number of levels to the reasonable number usually permitted
by the other considerations of the ICE framework, bisecting from that point
on would not accumulate to as much work as with bisection at all levels.

2.3 The Dilation Operation

Given a set of flagged cells on a grid (or equivalently, a binary image that has
1 for flagged cells, 0 otherwise), a dilated list is a convolution with a filter
that determines “which neighbors count” for the dilation. This convolution
may be applied n times to obtain n “safety layers” from the original list of
cells. An example of a convolution with a 5-point (nearest neighbors) and a
9-point filter is given in Fig. 2.

2.4 Level Refinement

At a fixed timestep, we loop over all levels (coarsest to one-before-the-finest).
At each level (k), we keep a list of coordinates of the active patches. The
lower-left corner patch of the lattice is numbered (0, 0) for simplicity. The
process of level refinement marks which sub-patches of each Lk-patch will
be active at Lk+1 (these will be called sub-patches that are “marked for
refinement”).

We keep four lists of flagged cells: (a) the original one; (b) dilated one
for creating patches; (c) dilated for deleting patches’ and (d) dilated list for
keeping fine patches from boundaries of coarse patches. (b) is a dilation by
typically 2 − 5 cell layers of (a). If there exists a cell of (b) in a sub-patch,
it is marked for refinement. (c) is typically a larger dilation (5 − 10 layers).
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Figure 1: An example of the coarsest level Lo. Here Lo has 17 × 17 cells
(the blue lines), divided into four patches 1 − 4 (the size of the “standard”
patch is 8 × 8 cells; the thick blue lines). Each patch may be divided into
4 × 4 sub-patches of size 2 × 2 Lo-cells (the red lines). For instance, Lo+1

can consist of all the highlighted patches. If Lo+1 is twice finer, each of its
patches is 4 × 4 cells, except near the boundaries of the physical domain.
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Figure 2: An example of a dilation. (a) The original list of flagged cells. (b)
Dilation with a 5-point (“star”) filter - diagonal neighbors don’t count. (c)
Dilation with a 9-point (“box”) filter - diagonal neighbors count.
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If there exists a cell of (c) in a sub-patch, it is not deleted (even if there are
no cells of (b) in it). (b) and (c) determine Lk+1.

Once Lk+1 has been computed, (d) is defined as a dilation by one or few
cell layers of the all cells encompassed by existing Lk+1, after it is determined
by (b) and (c). If there exists a cell of d that is not covered by a Lk-patch,
this patch is added to level k. Then we compute a similar (d)-list for Lk−1

and possibly expand its patches to cover it, and so on, until the coarsest grid
(that already extends over the full domain).

3 Full MATLAB Code

In this section we include two routines: test-movement and mark-patches.
The first is a driver that loops over timesteps and moves a certain (synthetic)
object in a certain direction inside the domain of the coarse grid in ICE. The
second routine is the main code for refining level k into level k + 1, possibly
updating all levels coarser than k + 1 in the process.

%function tout = test-movement(tin)

%TEST-MOVEMENT Driver for moving objects and creating moving patch collections around them.

% TOUT = TEST-MOVEMENT(TIN) is a driver for CREATE-CLUSTER and UPDATE-CLUSTER functions,

% that takes shapes of flagged cells (e.g., circles, boxes) and their direction of movement,

% and moves them over a domain as in "time-stepping". The objects and their movements are

% specified by the structure TIN, that can be prepared by the function TEST-CASE. For each

% timestep, we generate the boxes around the flagged cells by MARK-PATCHES.

% Statistics on how many re-boxing are actually needed, etc.,

% are printed and plotted at the end of the run. A sample of timestep configurations

% of the cells and their covering boxes, is also plotted. The statistics and original

% parameters of TIN are output in the structure TOUT.

%

% See also MARK-PATCHES, OBJECT-RENDER, TEST-CASE.

%%%%% Set and print parameters

global-params;

o = 1; % List offset for MATLAB; this is the coarsest grid index

tin = test-case(’ball-x’); %---------- Load parameters of this test case ----------

fprintf(’<<<<<<<<<<<<<< TEST-MOVEMENT: moving flagged and boxes around them >>>>>>>>>>>>>>\n’);

if (tin.print)

fprintf(’Parameters:\n’); % Print parameters

fprintf(’\tTest case title : %s\n’,tin.title); % Title string

fprintf(’\tDomain size\t\t= ’);

print-vector(tin.domain,’x’,’float’);

fprintf(’\n’);

fprintf(’\tNumber of timesteps\t= %d\n’ ,tin.num-tsteps);

fprintf(’\tInitial time\t\t= %f [sec]\n’,tin.init-t);

fprintf(’\tDelta-t\t\t\t= %f [sec]\n’,tin.dt);

fprintf(’\n’);

fprintf(’\t# safety layers, boundary= %d [cell]\n’,tin.safe-bdry);

fprintf(’\t# safety layers, create\t= %d [cell]\n’,tin.safe-create);

fprintf(’\t# safety layers, delete\t= %d [cell]\n’,tin.safe-delete);

fprintf(’\n’);

fprintf(’\t# processors\t\t= %d\n’,tin.num-procs);

fprintf(’\tMin. patch side length\t= %d [cell] \n’,tin.min-side);

fprintf(’\tMax. patch volume\t= %d [cell^d]\n’,tin.max-volume);

fprintf(’\n’);

fprintf(’\tPlot flag\t\t= %d\n’ ,tin.plot);

fprintf(’\tPrint flag\t\t= %d\n’ ,tin.print);

fprintf(’\tDelay time\t\t= %f [sec]\n’ ,tin.delay);

fprintf(’\n’);

fprintf(’\tMax. # levels\t\t= %d\n’ ,tin.max-levels);

fprintf(’-----------------------------------------------------------------------------------------\n’);

fprintf(’\n’);
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end

%%%%% Create the list of levels and init stats array (tout)

dim = length(tin.domain); % Dimension of the problem

L = cell(tin.max-levels,1); % List of levels; L{o} is the coarsest, L{o+1}-finer, etc.

levels-create(tin.max-levels); % Init levels o..max-levels+o-1

print-level-info;

tout = [];

tout.in = tin; % Save input parameters in the output data

tout.t = zeros(tin.num-tsteps,1);

tout.tstep = zeros(tin.num-tsteps,1);

tout.data = zeros(tin.num-tsteps,length(L),9);

tout.sum-data = zeros(tin.num-tsteps,4);

%%%%% Main loop over time steps

for count = [0:tin.num-tsteps-1],

t = tin.init-t+count*tin.dt;

fprintf(’Time step = %d, Time = %f [sec]\n’,count+o,t);

for k = o:length(L)+o-1 % Initialize some counters

L{k}.num-created = 0;

L{k}.num-deleted = 0;

end

for k = o:length(L)+o-2 % Mark patches for refinement at all levels

fprintf(’---- Level %d: RENDERING AND MARKING PATCHES FOR REFINEMENT ----\n’,k);

L{k}.cell-err = object-render(t,k); % Synthesize the flagged cells array at this level

L{k}.cell-err-create = dilate-list(L{k}.cell-num,...

L{k}.cell-err,tin.safe-create); % Dilate by a big amount when creating patches

L{k}.cell-err-delete = dilate-list(L{k}.cell-num,...

L{k}.cell-err,tin.safe-delete); % Dilate by a small amount when checking patches

if (tin.plot >= 2)

fprintf(’Before marking\n’);

for l = o:length(L)+o-1 % Display all finer grids

plot-grid(l);

end

% pause

end

mark-patches(k); % Mark patches that need refinement, based on L{k}.flagged

if (tin.plot >= 2)

fprintf(’After marking\n’);

for l = o:length(L)+o-1 % Display all finer grids

plot-grid(l);

end

% pause

end

end

%%%%% Accumulate statistics, printout

plot-composite-grid(t);

if (tin.plot >= 1)

if (ismember(count+o,tin.tsteps-save))

fprintf(’Saving grid\n’);

eval(sprintf(’print -depsc %s-grid-t%d.eps’,tin.title,count+o));

end

end

if (tin.print >= 2)

print-level-info;

end

tout.t(count+o) = t;

tout.tstep(count+o) = count+o;

tout.data(count+o,:,:) = levels-stats;

tout.sum-data(count+o,:) = sum(squeeze(tout.data(count+o,:,[1 2 8 9])),1); % Sum over levels the following columns of tout.data: 1. #patches 2. #cells

fprintf(’###########################################################################################\n’);

end

%%%%% Final plots, prepare output structure

eval(sprintf(’save %s-data.mat tout’,tin.title));

final-plots(tout);

function mark-patches(k)

%MARCH-PATCHES Mark patches for refinement.

% MARK-PATCHES(K) marks patches for refinement at level K, based on the flagged

% cells that are stored at L{K} based on the information from TOUT and object

% rendering (movement) information.

%

% See also OBJECT-RENDER, TEST-MOVEMENT.
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global-params;

dim = length(L{k}.cell-num); % Dimension of the problem

b = box-list(zeros(1,dim),L{k}.rat-patch); % Prepare all combinations for sub-patch index offsets

patch-new = zeros(0,dim); % List of newly created patches at k+1

L{k}.deleted-patches= zeros(0,dim);

siz-sub = L{k+1}.patch-size./L{k}.rat-cell; % Size of a sub-patch [L{k} cells]

for p = o:size(L{k}.patch-active,1)+o-1, % Loop over patches at this level

j = L{k}.patch-active(p,:); % d-D coordinates of the patch

start = patch-start(k,j); % Start cell of patch j

finish = patch-finish(k,j); % Finish cell of patch j

siz = finish - start + 1; % Size of patch

%%%%% Check whether there are flagged cells in each quadrant, create/delete patches on L{k+1} accordingly

for q = o:size(b,1)+o-1, % Loop over all possible patches; that might be 3x3 for a "normal" patch and 4x4 for a "big"

start-sub = start + b(q,:).*siz-sub; % Sub-patch start cell [L{k} cells]

if (~isempty(find(start-sub > finish))) % We are outside the L{k}-patch, skip this one

continue;

end

start-f = convert-c2f(k,start-sub,’cell’); % Sub-patch start cell [L{k+1} cells]

j-f = convert-c2p(k+1,start-f); % Sub-patch patch coordinate [L{k+1} patches]

finish-sub = start-sub + siz-sub - 1;

last = find(j-f == L{k+1}.patch-num);

finish-sub(last) = L{k}.cell-num(last);

ind = patch-find(k+1,j-f); % Index of sub-patch at level k+1 (if exists)

a = find(check-range(...

L{k}.cell-err-create,start-sub,finish-sub) > 0); % Flagged cells in this patch (including small dilation), for creating patches

ad = find(check-range(...

L{k}.cell-err-delete,start-sub,finish-sub) > 0); % Flagged cells in this patch (including big dilation), for deleting patches

if (~isempty(a) & (ind < 0)) % There exist flagged cells of small dilation area and child doesn’t exist => create it on

if (tin.print >= 2)

fprintf(’-CREATE- Patch [ ’);

fprintf(’%d ’,j);

fprintf(’], sub-patch [ ’);

fprintf(’%d ’,b(q,:));

fprintf(’] has flagged cells => refined to Level %d, Patch [ ’,k+1);

fprintf(’%d ’,j-f);

fprintf(’]\n’);

end

L{k+1}.patch-active = [L{k+1}.patch-active; j-f]; % Add to level k+1 patches

patch-new = [patch-new; j-f]; % Add to list of newly created patches

L{k+1}.num-created = L{k+1}.num-created+1;

end

if (isempty(ad) & (ind >= o)) % No flagged cells of big dilation area and child exists => delete child and everything below

if (tin.print >= 2)

fprintf(’-DELETE- Patch [ ’);

fprintf(’%d ’,j);

fprintf(’], quadrant %d has no flagged cells => delete Patch %d,%d [ ’,q,k+1,ind);

fprintf(’%d ’,j-f);

fprintf(’] + childs\n’);

end

start-f = j-f;

finish-f = j-f+1;

for l = k+1:length(L)+o-1

c = L{l}.patch-active;

a = find(check-range(c,start-f,finish-f-1) > 0);

if (tin.print >= 2)

fprintf(’\tLevel %d: start-f=(%d,%d), finish-f=(%d,%d), children indices=’,l,start-f,finish-f);

if (size(a,1) > 1)

a = a’;

end

fprintf(’%d ’,a);

fprintf(’\n’);

end

if (isempty(a))

break;

end

L{l}.deleted-patches = [L{l}.deleted-patches; L{l}.patch-active(a,:)]; % Save deleted patches for plots

L{l}.patch-active(a,:) = []; % Delete patch children from level k+1 children list

L{l}.num-deleted = L{l}.num-deleted + length(a);

if (l < length(L)+o-1)

start-f = convert-c2f(l,start-f,’patch’); % Convert from L{l-1} to L{l} coordinate

finish-f = convert-c2f(l,finish-f,’patch’);

end

end



OREN E. LIVNE: CLUSTERING STATUS REPORT 5 12

end

end

end

%%%%% Add cells at coarser levels to ensure that L{k+1} patches have safety layers from the

%%%%% boundaries of patches at this levels.

for l = k+1:-1:o+1, % Loop from finest to coarsest

patch-new = L{l}.patch-active;

if (isempty(patch-new)) % Until there are no patches to be added

break;

end

patch-new-cells = zeros(0,dim); % Mark ALL L{l-1}-cells within the new L{l} patches

for i = 1:size(patch-new,1),

pf = patch-new(i,:); % L{l} patch coords

start = convert-f2c(l,patch-start(l,pf),’cell’); % Starting cell of pf in L{l-1} cell coordinates

finish = convert-f2c(l,patch-finish(l,pf),’cell’); % Finishing cell of pf in L{l-1} cell coordinates

patch-new-cells = union(patch-new-cells,box-list(start,finish),’rows’);

end

patch-new-cells-d = dilate-list(L{l-1}.cell-num,patch-new-cells,...

tin.safe-bdry,’box’); % Dilate these cells by the #safety L{l-1}-cell layers we want; diagonal nbhrs count (’box’)

patch-needed = unique(convert-c2p(l-1,patch-new-cells-d),’rows’); % L{l-1} patches that cover the L{l-1}-cells of interest

add = find(patch-find(l-1,patch-needed) < 0); % Need to add these patches to L{l-1} because they don’t exist

patch-new = patch-needed(add,:); % Added patches L{l-1} coordinates; update patch-new for yet-coarser level (l-1->l-2) update

L{l-1}.patch-active = [L{l-1}.patch-active; patch-new]; % Add to level l-1

L{l-1}.new-patch = patch-new; % Save added patches

L{l-1}.new-cells = patch-new-cells; % Save cells in new patches

L{l-1}.new-cells-bdry = patch-new-cells-d; % Save dilated cells from new patches

new = size(patch-new,1);

rein = length(find(ismember(L{l-1}.deleted-patches,patch-new,’rows’))); % Reincarnated patches (deleted and then created => they were in fact

L{l-1}.num-created = L{l-1}.num-created + new - rein;

L{l-1}.num-deleted = L{l-1}.num-deleted - rein;

if (~isempty(add)) % Print info on patches added to L{l-1}

if (tin.print >= 2)

fprintf(’-SAFE CREATE- Level %d\n’,l-1);

for i = 1:size(patch-new,1),

fprintf(’\tPatch ’);

print-vector(patch-new(i,:),’,’,’int’);

fprintf(’ starts at ’);

print-vector(patch-start(k,patch-new(i,:)));

fprintf(’\n’);

end

end

end

end
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4 Numerical Experiments

Each test case describes a movement of a set of points as in “time-stepping”.
The size physical size of the domain was 16 × 16 meters. We performed
30 timesteps, starting from t = 0[s] till t = 30[s], with ∆t = 1[s]. We
generated four levels of refinement. Their sizes, cell sizes and lattice sizes are
summarized in Table 1. “Cell ratio” is the cell refinement ratio between a
level and the next-finer level. “Lattice ratio” is the lattice refinement ratio,
that is, the number of sub-patches in each patch of the current level.

Table 1: Levels Information

Level Cell Size Grid Size Patch Size Lattice Size Cell Lattice
[meter] [cell] [cell] [patch] Ratio Ratio

1 1.882 × 1.882 17 × 17 8 × 8 2 × 2 2 × 2 4 × 4
2 0.941 × 0.941 34 × 34 4 × 4 9 × 9 2 × 2 2 × 2
3 0.471 × 0.471 68 × 68 4 × 4 17 × 17 2 × 2 2 × 2
4 0.235 × 0.235 136 × 136 4 × 4 34 × 34 - -

Simulating four levels required generating a list of flagged cells for the
first three levels, o, o + 1, o + 2. Thus, when we refer to a “moving ball”, we
mean that a full disk of flagged cells that is moving in a certain direction,
constitutes the data at level Lo that defines Lo+1; to simulate a practical
situation, we defined only an annulus that is contained in that ball, to be the
list of flagged cells at level Lo+1. The flagged cells list at Lo+2 is the “right
half” of this annulus. This is not a very practical scenario, because there
are relatively many cells that are flagged at the finer levels. Consequently,
efficiency results are to be taken as illustrations only, not as meaningful
absolute numbers.

The dilation parameters were: 1 layer for (b) (creating patches), 2 layers
for (c) (deleting patches), and 1 layer for coarse-fine patch boundary separa-
tion (list (d)).
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4.1 Example: Ball Moving in Positive-x

This test case is denoted “Ball-x”. We start with a ball near the left x-
boundary of the domain (and in the middle in y), and move it one cell to
the right in the x-direction. Fig. 3 show the active patches at the four levels
of refinement, their sub-patches that were marked for refinement, and the
flagged cells (without dilation). See also §4.2.
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Figure 3: Ball-x test case at a certain timestep: different levels and their flagged
cells. (a) is L1 (here o = 1), (b) is L2, (c) is L3, and (d) is L4. For each level we
show its active patches (thick blue lines) and their cells (thin blue lines), lattice
lines (red lines), flagged cells (marked by “x”’s), and sub-patches that are marked
for refinement (highlighted in yellow). Patches that are added because of the
(d)-list (boundary separation) are highlighted by green.
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The composite grid and the flagged cells at all levels are plotted in Fig. 4.
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Figure 4: Upper figure: the composite grid. Lower figure: the composite grid
with the flagged cells at all levels (marked by “x”’s).
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4.2 Ball Moving in Positive-x

We start with a ball near the left x-boundary of the domain (and approxi-
mately in the middle in y), and move it one cell to the right in the x-direction.
The schematic movement is shown in Fig. 5. Fig. 6 shows several snapshots
of the generated AMR grids at several timesteps. Fig. 7 contains some sum-
marizing statistics of this test.

Figure 5: Ball-x test case: a ball moving in positive x-direction.
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Figure 6: Ball-x test case: snapshots of the flagged cells (red points) and
covering boxes (black or red rectangles). (a) t = 5. (b) t = 15. (c) t = 20.
(d) t = 25.
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Figure 7: Ball-x test case: statistics. (a) Level-dependent indicators. (b)
Global indicators.



OREN E. LIVNE: CLUSTERING STATUS REPORT 5 19

4.3 Ball Moving in Negative-x

This test case is denoted “Ball-mx”. It is identical to Ball-x, except that we
now start with the ball near the right x-boundary of the domain (and in the
middle in y), and move it one cell to the left in the x-direction. The results
are similar to Ball-x, as may be expected.

Figure 8: Ball-mx test case: a ball moving in positive x-direction.
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Figure 9: Ball-x test case: snapshots of the flagged cells (red points) and
covering boxes (black or red rectangles). (a) t = 5. (b) t = 15. (c) t = 20.
(d) t = 25.
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Figure 10: Ball-x test case: statistics. (a) Level-dependent indicators. (b)
Global indicators.
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4.4 Ball Moving in Positive-y

This test case is denoted “Ball-y”. It is identical to Ball-x, with the x and
y directions roles reversed. The results are indeed exactly as for Ball-x, with
x and y reversed.

Figure 11: Ball-y test case: a ball moving in positive y-direction.
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Figure 12: Ball-y test case: snapshots of the flagged cells (red points) and
covering boxes (black or red rectangles). (a) t = 5. (b) t = 15. (c) t = 20.
(d) t = 25.
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Figure 13: Ball-y test case: statistics. (a) Level-dependent indicators. (b)
Global indicators.
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4.5 Ball Moving in Diagonal

This test case is denoted “Ball-diag”. This time, we start at the left bottom
part of the domain, and move the ball in a diagonal direction (one cell in
x and one cell in y at every timestep). This is the opposite extreme to
the horizontal movement case: because we align our patches with the grid
lines, the patches are very wasteful (they have a lot of empty cells in them).
However, the results are as reasonable as we can expect, taking into account
this drawback of any rectilinear-patch-based approach.

Figure 14: Ball-diag test case: a ball moving in positive y-direction.



OREN E. LIVNE: CLUSTERING STATUS REPORT 5 26

0 5 10 15 20 25 30

0

5

10

15

20

25

30

x [meter]

y 
[m

et
er

]

Composite Level Layout, Time = 5.000000

0 5 10 15 20 25 30

0

5

10

15

20

25

30

x [meter]

y 
[m

et
er

]

Composite Level Layout, Time = 15.000000

(a) (b)

0 5 10 15 20 25 30

0

5

10

15

20

25

30

x [meter]

y 
[m

et
er

]

Composite Level Layout, Time = 20.000000

0 5 10 15 20 25 30

0

5

10

15

20

25

30

x [meter]

y 
[m

et
er

]

Composite Level Layout, Time = 25.000000

(c) (d)

Figure 15: Ball-diag test case: snapshots of the flagged cells (red points) and
covering boxes (black or red rectangles). (a) t = 5. (b) t = 15. (c) t = 20.
(d) t = 25.
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Figure 16: Ball-diag test case: statistics. (a) Level-dependent indicators. (b)
Global indicators.
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4.6 Ball in a Circular Motion

This test case is denoted “Ball-circ”. We specify a certain circle in the
domain (in this example, centered at (8, 8) with radius R = 8), and move
the ball’s center along this circle. At every time step, we update the angle θ
of the ball’s center with respect to the circle’s center by an increment that
results in about one Cartesian cell shift (in x and y combined) in the ball’s
location. For instance, we used ∆θ = 0.1 arccos(1/R) ≈ .144 radians. This is
considered a another hard case for griding, because the circular motion does
not align with grid-lines.

Figure 17: Ball-circ test case: a ball moving in positive y-direction.
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Figure 18: Ball-circ test case: snapshots of the flagged cells (red points) and
covering boxes (black or red rectangles). (a) t = 5. (b) t = 15. (c) t = 20.
(d) t = 25.
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Figure 19: Ball-circ test case: statistics. (a) Level-dependent indicators. (b)
Global indicators.
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4.7 Colliding Balls

This test case is denoted “Ball-collide”. We consider two colliding balls,
one moving in positive x-direction, starting on the left of the domain, and
a second one that starts on the right of the domain, and moves in negative
x-direction. In the region of collision, the patches are observed to be more
efficient. Indeed, there is effectively one “local region” in which there exist
flagged cells, in that case, as opposed to two separate regions when the balls
are apart.

Figure 20: Ball-collide test case: a ball moving in positive y-direction.
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Figure 21: Ball-collide test case: snapshots of the flagged cells (red points)
and covering boxes (black or red rectangles). (a) t = 5. (b) t = 15. (c)
t = 20. (d) t = 25.
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Figure 22: Ball-collide test case: statistics. (a) Level-dependent indicators.
(b) Global indicators.
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4.8 An Expanding Ball

This test case is denoted “Ball-expand”. This is analogous to Ball-x, except
that at Lo we only consider an annulus instead of the full ball of flagged
cells. Instead of moving its location, this ball expands in radius with time
(the radius increases by one cell per timestep). This simulates an expanding
shock wave.

Figure 23: Ball-expand test case: a ball moving in positive y-direction.
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Figure 24: Ball-expand test case: snapshots of the flagged cells (red points)
and covering boxes (black or red rectangles). (a) t = 3. (b) t = 7. (c) t = 12.
(d) t = 15.
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Figure 25: Ball-expand test case: statistics. (a) Level-dependent indicators.
(b) Global indicators.
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5 Summary

We developed a generalized version of a hierarchical bisection approach for
AMR. Each patch can not only be bisected, but dissected to sub-patches
that align with a certain lattice, to better control the computational cost
of the entire AMR hierarchy. All the objectives that the AMR hierarchy
should satisfy, were attained using the current system: automatic re-griding,
reasonably-size patches at all levels, and the safety layers requirements. The
user is provided with convenient parameters that control the size of patches
and grids.

The algorithm and data structures have been demonstrated on various
test cases in 2D. It is easy to generalize them to 3D (in fact, the code is already
prepared for a general dimension, except for the auxiliary display/plotting
routines).

The complexity of the algorithm does not seem to be large compared with
the main ICE computation on the generated grids, but we should monitor
the run times of the griding algorithm in the Uintah frameworks.

The next natural step of development seems to be the implementation
of this system in the Uintah framework. We can then test it on various
practical scenarios, and learn more about its strengths and weaknesses in our
applications. Another important possible step is merging adjacent patches
to bigger patches before sending them to a processor, if the resulting patch
is not too big. In this way, we minimize the number of “too small patches”.
However, this point might be ignored for the moment, and alternatively
treated inside the load balancer.
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