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1 Introduction

In Report 2 we showed how to obtain a set of bounding boxes (patches), given
a set of flagged cells (“cells that need further refinement”). This happens at
every time step of the ICE code; however, we would ideally not like to re-
generate these boxes at every time step. Rather, we would like to re-grid only
if the geometry of the flagged cells significantly changed across timesteps;
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else, we would want to use information from the previous time step to update

the set of patches.
Moreover, we would like to keep as many “old patches” as possible intact.

The reason is that the computational bottleneck in updating patches is the
data transfer across processors, when a new patch is created. Hence, we
would like to minimize the number of patches created at every time step,
and prolong the use of existing patches for as many timesteps as possible.
The clustering algorithm itself is not expected to be a bottleneck, hence we
can afford to spend more time finding a good patch configuration.

Our updating strategy is as follows: we employ two routines, one that
creates patches and one that updates them. At the initial time, we create
a patch set. At each subsequent timestep, we first try to update, and if we
fail, we re-grid (create a new set of patches). To the best of our knowledge,
current patch generation algorithms re-grid at every time step, thus our novel
approach may as efficient or better.

In §2 we discuss our goals for the time-dependent clustering algorithm.
In §3 we list the measures by which we measure the algorithm’s result. In
§3.1 we describe the updating strategy and parameters. In §4, we study
the algorithm’s efficiency and updating efficiency statistics (e.g., how many
timesteps can use the same patches without re-griding). We summarize our
findings and discuss future work in §5.

2 Goals for Time-Stepping

In addition to Objectives 1–5 that we set for a box covering at a single
timestep (Reports 1–2), we would like to have the following in time-dependent
problems:

1. Objective 6 - Fast update: if the flagged cells describe a moving shock
front, we would like to use the box covering from the previous timestep,
and make minor modifications to it to fit it to the new timestep’s flagged
cells.

2. Objective 7 - Persistent Patches: a patch should be used as long as
possible. That is, we would like to keep old patches instead of deleting
or even modifying them. This is because the data flow associated in
creating or modifying patches is the expected computational bottleneck
of the adaptive mesh part of ICE.



OREN E. LIVNE: CLUSTERING STATUS REPORT 3 3

We present an algorithm that addresses Objectives 1–7 (again, we do not
treat Objective 4, assuming that a prior dilation has been already performed).
As we will see, we cannot expect an efficiency (Objective 1) as high as for a
single timestep clustering problem. However, the gain in Objectives 6 and 7
overshadows this degradation.

3 Indicators

We assess the quality of the time-dependent constructed set of boxes by the
following measures. The measures are naturally related to the objectives
listed in §2.

1. Efficiency versus time: ratio of the number of flagged cells to the total
box area [dimensionless] (Objective 1).

2. Number of boxes [dimensionless] versus time.

3. Average box volume [cell] versus time (related to Objective 2 and 3
and to load balancing).

4. Average ratio of the shorter to the longer side ratio [dimensionless],
versus time. As we have seen, this relates to the total mutual boundary
length among patches (Objective 5).

In addition, we define the following quantities that are averages over all
timesteps:

1. Averages number of timesteps between re-griding (i.e., the number of
times we needed to create a new set of boxes, divided by the number
of timesteps - Objective 6).

2. Average number of timesteps for which a patch exists (i.e., the average
“life span” of a patch - Objective 7).

3.1 Updating Strategy

The core of the updating strategy is described in the following pseudo-code.
We use two functions: create-cluster and update-cluster. At the initial
timestep, we generate a set of boxes with update-cluster. Then, we loop
over timesteps, and for each new set of points, we first try to update the set
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from the previous timestep, using update-cluster. If this fails, we re-grid
using create-cluster. The array points denotes the list of flagged cells at
any given timestep. For simplicity, we assume the timestep is uniform in the
code below.

t = 0;

box = create-cluster(points);

for count = 1:num-timesteps

t = t+delta-t;

fprintf(’time step = %f\n’,t);

points = flagged-cells-in-old-timestep;

points-new = flagged-cells-in-new-timestep;

box-new = update-cluster(points,points-new);

if (update-succeeded)

box = box-new;

regrid = 0;

else

box = create-cluster(points-new);

end if

Accumulate-statistics;

end for

3.2 The Update Function

The update function assumes three inputs: the old set of points points,
the old set of boxes box, and a set of points to be added to the old set,
points-new. Note that we do not include the points to be removed from the
old set. Before activating the update function, we can delete from points

the set points-old - points, so that points is contained in points-old;
if some boxes in box become empty, we delete them.

Next, we create a set of boxes around the new points, box-new. If it does
not overlap box, we are done, and output the union of the two sets as the
final set of boxes. If not, we loop over new boxes, and try to shift each of
them to eliminate overlap with the old and other new boxes, while covering
all the new points that were covered by that new box before shifting it. We
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succeed in updating the old set if we can find a proper shift for all new boxes;
if we fail to find a shift for one box, we declare failure.

Note that the permitted shifts s = (sx, sy) of a new box are limited
to those for which the shifted box would still contain the tight bounding box

around the flagged cells in the original new box. It is easy to see that s belongs
to a box, [SXleft, SXright] × [SYleft, SYright], that is determined by the sizes
of the new box and the tight bounding box. When we look for a “good shift”,
we search these permitted s’s by ascending order of magnitude, that is, by
ascending s2

x + s2

y. This is done to minimize search time, hoping that most of
the shifts of new boxes will be of only few cells in every direction. Naturally,
s = (0, 0) is searched first, so if the original new box does not overlap any
other box, it is readily accepted to the final set of boxes. See Fig. 1 for an
illustration.

Finding a shift can be regarded as a local optimization process: applying
a transformation to one new box, keeping the rest fixed. When we proceed
to optimize a second, we use the updated location of the first box; and so
on. This resembles Gauss-Seidel relaxation (or point-by-point optimization)
described in [Bra84, Chap. 1] in the context of multigrid methods for solution
of PDEs, and in[BR03] , for optimization. We could go to more sophisticated
local (e.g., try to stretch the box as well) or even multi-scale optimization;
but that would (for instance) tamper with the minimum and maximum box
size requirements, thus we decided to stay with the simple variant of shift
only.

3.3 Full MATLAB Code

In this section we include two routines: test-movement and update-cluster.
The first is a driver that loops over timesteps and moves a certain object in
a certain direction inside the domain of the coarse grid in ICE. In this case,
we horizontally move a sphere across the domain. The second routine is the
update code, that takes a current set of boxes and points to be added to the
old set of flagged points. If it succeeds, it returns the status code status = 0
with the updated set of boxes. If it fails, status = −1, and we are required
to run create-cluster.

%function test_movement

% TEST_MOVEMENT

% A driver for CREATE_CLUSTER and UPDATE_CLUSTER functions, that takes a shape of flagged cells (e.g.,

% a circle), and moves it over the domain as in "time-stepping". For each timestep, we generate the

% boxes around the flagged cells by CREATE_CLUSTER, or only update them with UPDATE_CLUSTER.

% Statistics on how many re-boxing are actually needed, etc., are printed at the end of the run.
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Figure 1: An example of shifting a new box in the update function. (a) The
relevant old flagged cells are the black points, the old set of boxes is denoted
by the black rectangles; the new points are in red, and the new set of boxes
around the points that lie outside the black boxes, is denoted by the red
rectangles (here there is only one red rectangle). (b) We pick a new box
(denoted by green), and try to shift it so that it does not overlap any other
box. (c) Found a good shift: s = (0,−8).
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%

% Author: Oren Livne

% Date : 05/13/2004 Version 1: moving a circle in a horizontal direction

%%%%% Initialize parameters of this run

fprintf(’<<<<<<<<<<<<<< TEST_MOVEMENT: an example of moving points and boxes around them >>>>>>>>>>>>>>\n’);

plot_flag = 1; % Flag for generating plots of the boxes and cells

domain_size = [100 80]; % Size of the entire domain we live in [cells]

num_tsteps = 20; % Number of timesteps to be performed

delay = 0.;

center = [15 20];

direction = [1 1]; % Direction of movement

s = numgrid(’D’,30); % Example: the unit disk is flagged

max_regridding = 10000; % Maximum number of timesteps allowed between re-gridding

%%%%% Parameters for cluster creation

opts.efficiency = 0.8; % Lowest box efficiency allowed

opts.low_eff = 0.5; % Efficiency threshold for boxes that don’t have holes/inflections

opts.min_side = 10; % Minimum box side length allowed (in all directions)

opts.max_volume = 400; % Maximum box volume allowed. Need to be >= (2*min_side)^dim.

opts.print = 0; % Printouts flag

opts.plot = 0; % Plots flag

opts_create = opts;

%%%%% Parameters for cluster update (efficiency, etc. relate to the generation of the new boxes before merging them into the old set

opts = opts_create;

opts.print = 0; % Printouts flag7

opts.plot = 0; % Plots flag

opts_update = opts;

%%%%% Initial time step: create the initial boxes

dim = length(domain_size); % Dimension of the problem

points_old = zeros(domain_size); % The array of flagged cells

a = cell(dim,1); % Find the x and y coordinate (a{1} and a{2}, respectively)

[a{:}] = find(s); % Read the x- and y- from the 2D array s (which has non-zeros integers at the flagged cells,

a{1} = a{1} - size(s,1)/2 + center(1); % Starting position: move all flagged cells’ indices to the right in the x-direction

a{2} = a{2} - size(s,2)/2 + center(2); % Starting position: put in the middle of the domain in y, because we don’t yet support what

ind = sub2ind(domain_size,a{:}); % Convert to a 1D array

points_old(ind) = 1; % Put 1’s at the flagged cells

[rect,stats] = create_cluster(points_old,opts_create); % Create the initial set of boxes (t=0)

count = 1; % Counter of number of timesteps

t = 0; % Initial time

dt = 1; % Delta_t

all_rect = rect; % Accumulates boxes from all times

all_stats = stats; % Accumulates statistics from all times

all_stats.t = t; % Save initial time

all_stats.regrid = 1; % Save initial regridding status

%%%%% Plot-outs of the points and current boxes

fprintf(’Initial time = %d\n’,t);

if (plot_flag)

figure(1);

clf;

plot_points(points_old,’red’);

hold on;

plot_boxes(rect,’black’);

axis equal;

axis([0 domain_size(1) 0 domain_size(2)]);

% pause

shg;

pause(delay);

eval(sprintf(’print -depsc t%d.eps’,t));

end

%%%%% Main loop over time steps

for count = [1:num_tsteps]+1,

t = t+dt;

fprintf(’time step = %f\n’,t);

a{1} = a{1}+direction(1); % Move all flagged cells’ indices in the x-direction

a{2} = a{2}+direction(2); % Move all flagged cells’ indices in the y-direction

stats_old = stats;

ind_old = find(points_old); % Old flagged cells in a 1D array

ind_new = sub2ind(domain_size,a{:}); % New flagged cells in a 1D array

points_new = zeros(size(points_old)); % An array for the cells added in this time step

points_new(setdiff(ind_new,ind_old)) = 1; % The additional cells of the new time step in a 2D array

points_old(setdiff(ind_old,ind_new)) = 0; % The old cells that are deleted in the new time step

[rect_new,status,stats] = update_cluster(...
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points_old,rect,points_new,opts_update); % Try to add the new points using the update function

points_old = points_old + points_new; % Put the additional cells in the old array, so now points_old are all the points in the

if ((status >= 0) & (mod(count,max_regridding) ~= 0)) % Update suceeded and we are not forcing a re-gridding

rect = rect_new; % Update box set

regrid = 0;

else % Update failed, re-grid

fprintf(’Re-gridding\n’);

[rect,stats] = create_cluster(points_old,opts_create); % Create the set of boxes from the current points

regrid = 1;

end

%%%%% Accumulate statistics

all_rect = [all_rect; rect];

all_stats.t = [all_stats.t; t];

all_stats.regrid = [all_stats.regrid regrid];

all_stats.efficiency = [all_stats.efficiency; stats.efficiency];

all_stats.num_boxes = [all_stats.num_boxes ; stats.num_boxes ];

all_stats.avg_volume = [all_stats.avg_volume; stats.avg_volume];

all_stats.avg_side_rat = [all_stats.avg_side_rat; stats.avg_side_rat];

%%%%% Plot-outs of the points and current boxes

if (plot_flag)

figure(1);

clf;

plot_points(points_old,’red’);

hold on;

plot_boxes(rect,’red’);

axis equal;

axis([0 domain_size(1) 0 domain_size(2)]);

% pause

shg;

pause(delay);

if ((t == 19) | (t == 20) | (t == 21))

eval(sprintf(’print -depsc t%d.eps’,t));

end

end

end

fig = 1;

fig = fig+1;

figure(fig);

clf;

plot(all_stats.t,all_stats.efficiency);

xlabel(’time [sec]’);

ylabel(’Efficiency [%]’);

print -depsc teff.eps

fig = fig+1;

figure(fig);

clf;

plot(all_stats.t,all_stats.num_boxes);

xlabel(’time [sec]’);

ylabel(’Number of boxes’);

print -depsc tnbox.eps

fig = fig+1;

figure(fig);

clf;

plot(all_stats.t,all_stats.avg_volume);

xlabel(’time [sec]’);

ylabel(’Average Box Volume [cell^d]’);

print -depsc tavgvol.eps

a = sortrows(all_rect,[1:2*dim]);

base = max(a(:))+1;

hash = sum(a.*repmat(base.^[0:size(a,2)-1],size(a,1),1),2);

cross = find(diff(hash) ~= 0);

histogram = [cross(1) ; diff(cross) ; length(hash)-cross(length(cross))];

ind = [cross ; length(hash)];

all_stats.avg_box_life = mean(histogram);

all_stats.avg_regrid = (length(find(all_stats.regrid))-1)/num_tsteps; % -1 because we can ignore the initial time

fprintf(’Average efficiency : %.1f%%\n’,mean(all_stats.efficiency));

fprintf(’Average #timesteps of a box’’s life : %f\n’,all_stats.avg_box_life);

fprintf(’Average #timesteps between regriddings: %f\n’,1/all_stats.avg_regrid);
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function [rect,status,stats] = update_cluster(points_old,rect_old,points_new,opts);

% UPDATE_CLUSTER

% Updating a set of covering boxes. If points_old is the old set of flagged cells, and rect_old

% is the covering box set, we add some new flagged cells points_new, and try to update the covering

% set. Possible status code:

% status = 0 We succeeded to update, and the new box set is rect.

% status = -1 We failed tp update. Run CREATE_CLUSTER again.

%

% Author: Oren Livne

% Date : 05/12/2004 Version 1: move each single new box at a time to eliminate overlap with old+new

% 05/13/2004 Version 2: search in a spiral for a new shift (Dave’s brilliant idea)

%%%%%%%%%% Set and print parameters

if (nargin < 4) % Default parameters

opts.efficiency = 0.8; % Lowest box efficiency allowed

opts.low_eff = 0.5; % Efficiency threshold for boxes that don’t have holes/inflections

opts.min_side = 10; % Minimum box side length allowed (in all directions)

opts.max_volume = 100; % Maximum box volume allowed

opts.print = 0; % Printouts flag

opts.plot = 0; % Plots flag

end

fprintf(’<<<<<<<<<<<<<< UPDATE_CLUSTER: updating a cluster given more flagged points >>>>>>>>>>>>>>\n’);

fprintf(’Parameters for creating the new cluster:\n’); % Print parameters

fprintf(’Efficiency threshold: %.1f%%\n’,100*opts.efficiency); % Efficiency threshold

fprintf(’Min. box side length: %d\n’,opts.min_side); % Min. box size

fprintf(’Max. box volume : %d\n’,opts.max_volume); % Max. box volume

%%%%% Delete empty boxes from the old box set, in case we deleted points from points_old and some of the boxes are unusable (but might interfer with shifting

efficiency = box_efficiency(points_old,rect_old); % Compute efficiencies of boxes

empty = find(efficiency < 1e-13); % Empty boxes (efficiency = 0)

rect_old(empty,:) = []; % Remove empty boxes

if ((opts.print) & (~isempty(empty))) % Print the boxes that were deleted

fprintf(’Empty boxes deleted:’);

fprintf(’%d ’,empty);

fprintf(’\n’);

end

%%%%%%%%%% Initialize, find the initial new covering, get rid of non-relevant new points

dim = length(size(points_old)); % Dimension of the problem

status = 0; % Default status is success, if we fail we break and status=-1

points = points_old + points_new; % Merge the old and new point sets (for binary images, + = union)

points_new_orig = points_new;

for k = 1:size(rect_old,1) % Get rid of new points that are covered by old boxes

r = rect_old(k,:); % Old box no. k

points_new(r(1):r(3),r(2):r(4)) = 0; % Delete new points in this box

end

[i,j] = find(points_new); % Index arrays [i,j] of flagged cells

if (isempty(i)) % No new points are flagged

rect = rect_old; % Return the old box set

status = 0; % Return a success code

stats = final_stats(points,rect,opts); % Final printouts (overall statistics) and plot-outs

fprintf(’<<<<<<<<<<<<<< END UPDATE_CLUSTER >>>>>>>>>>>>>>\n’);

return;

end

opts_create = opts; % Options for CREATE_CLUSTER function

opts_create.print = 0; % No printouts from CREATE_CLUSTER, please!

opts_create.plot = 0; % No plots from CREATE_CLUSTER, please!

rect_new = create_cluster(points_new,opts); % Create a set over the new points, might overlap old set

num_new = size(rect_new,1); % Number of new rectangles

%opts.print = 1;

%opts.plot = 1;

%%%%% Plot-outs: plot the points and the current boxes. The considered box is in red.

if (opts.plot)

figure(1);

clf;

plot_points(points_new_orig,’red’);

hold on;

plot_points(points_old,’black’);

plot_boxes(rect_old,’black’);

plot_boxes(rect_new,’red’);

pause

end

%%%%%%%%%% Loop over new boxes; try to move each one so it does not overlap any old or new one

k = 1; % Index of new box to be processed
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while (k <= num_new) % Do until all boxes have been processed

r = rect_new(k,:); % Box coordinates

s = points_new(r(1):r(3),r(2):r(4)); % Flag data of this box

sz = box_size(r); % Vector containing the size of the box: [size_x,size_y]

efficiency = length(find(s))/prod(sz); % Percentage of flagged cells in s

[a,sorted_dims] = sort(-sz); % Sort box sizes in descending orders

[i,j] = find(s);

tight = [min(i) min(j) max(i) max(j)] + [r(1) r(2) r(1) r(2)] - 1;

if (opts.print)

fprintf(’Considering box #%3d at coordinates [%3d,%3d,%3d,%3d] size = %d x %d, vol = %d, efficiency = %f\n’,k,r,sz+1,box_volume(r),efficiency);

fprintf(’Tight box = [%3d,%3d,%3d,%3d]\n’,tight);

end

%%%%% Plot-outs: plot the points and the current boxes. Old is black, new is red. The considered box is in green.

if (opts.plot)

figure(1);

clf;

plot_points(points_new,’red’);

hold on;

plot_points(points_old,’black’);

plot_boxes(rect_old,’black’);

plot_boxes(rect_new,’red’);

plot_boxes(rect_new(k,:),’green’);

pause

end

%%%%% Initialize parameters for shift loop

other_rect = [rect_old; rect_new(setdiff(1:num_new,k),:)]; % All the other rectangles - old+new

overlap = 1; % In the loop below: 0 if we overlap no other rectangle, 1 if we do

within_range= 0; % In the loop below: Check flag - if t contains the tight box around flagged cells (<==>

t = r; % t is the new (shifted) box; init t to the old box r

action = 0; % Counter of shifts, action=1 is original box (shift=(0,...,0)).

%%%%% Prepare a list of permitted shifts of the new box under consideration

shift_line = cell(dim,1); % Permitted shift ranges along the different dimensions

for d = 1:dim

shift_line{d} = [tight(d+dim)-t(d+dim):t(d)-tight(d)]; % Permitted shift ranges along dimension d, so that t still contains tight

end

[shift_cell{1:dim}] = ndgrid(shift_line{:}); % Prepare a dim-D list of the possible shifts

shift = []; % 1D list of dim-coordinates of the shifts

for d = 1:dim % Loop over dimensions

shift = [shift shift_cell{d}(:)]; % Concatenate the d-coordinate of all shifts to the big list

end

dist = sum(shift.^2,2); % Distance from original rectangle

[temp,ind] = sort(dist); % Sort by ascending distance

shift = shift(ind,:); % Apply permutation to the shift list

%%%%% Main loop over shifts: trying to find a shift for which there’s no overlap and we still cover the new points

for action = 1:size(shift,1), % Loop over all permitted shifts

if ((~overlap) & (within_range)) % If there’s no overlap, accept this rectangle, otherwise, try other actions

break;

end

s = shift(action,:); % Current shift

if (opts.print)

fprintf(’Action %5d: shift = (%d,%d)’,action,s);

end

within_range = box_subset(t,tight); % Check if t contains the tight box around flagged cells (<==> t contains all flagged cells

t(1:dim) = r(1:dim) + s; % Shift box lower-left coordinate by s

t(dim+[1:dim]) = r(dim+[1:dim]) + s; % Shift box upper-right coordinate by s

within_range = box_subset(t,tight); % Check if we still cover what we should cover

overlap = max(box_intersect(other_rect,t)); % 0 if we overlap no other rectangle, 1 if we do

if (opts.print)

fprintf(’ overlap = %d\n’,overlap);

end

if (opts.plot)

figure(1);

clf;

plot_points(points_new,’red’);

hold on;

plot_points(points_old,’black’);

plot_boxes(rect_old,’black’);

plot_boxes(rect_new(setdiff(1:num_new,k),:),’red’);

plot_boxes(t,’green’);

pause

end

end

if (overlap) % Unfortunately we can’t find a good shift, so give up and do re-gridding with CREATE_CLUSTER
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if (opts.print)

fprintf(’No shift found, giving up\n’);

end

rect = []; % Return an empty results

status = -1; % Negative status = UPDATE_CLUSTER failed

stats = [];

fprintf(’<<<<<<<<<<<<<< END UPDATE_CLUSTER >>>>>>>>>>>>>>\n’);

return;

else

rect_new(k,:) = t; % Replace the kth new rectangle with the shifted one, t

end

k = k+1; % Consider the next new rectangle

if (opts.print)

fprintf(’\n’);

end

end

%%%%% Unify old and new sets, and delete empty boxes

rect = [rect_old; rect_new]; % Merge the old and new box sets

efficiency = box_efficiency(points,rect); % Compute efficiencies of boxes

empty = find(efficiency < 1e-13); % Empty boxes (efficiency = 0)

rect(empty,:) = []; % Remove empty boxes

if ((opts.print) & (~isempty(empty))) % Print the boxes that were deleted

fprintf(’Empty boxes deleted:’);

fprintf(’%d ’,empty);

fprintf(’\n’);

end

stats = final_stats(points,rect,opts); % Final printouts (overall statistics) and plot-outs

fprintf(’<<<<<<<<<<<<<< END UPDATE_CLUSTER >>>>>>>>>>>>>>\n’);
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4 Numerical Experiments

Each test case describes a movement of a set of points as in “time-stepping”.
We performed 30 timesteps. The maximum box volume was set to 400,
and the minimum side length to 10 (Note that in general, it is prudent
to have maxvolume ≥ (2minsidelength)d, where d is the dimension of the
problem. Otherwise, big boxes cannot be dissected as the resulting boxes are
too small, yielding a contradiction). For each case, we show several snapshots
at some timesteps, and compare (in the summarizing statistics tables) the
results when re-griding is forced at every timestep (regrid = 1), versus a
full utilization of the update routine (regrid = ∞). Unless otherwise noted,
figures describe the tests where full update was operational (regrid = 1).

4.1 Sphere Moving in Positive-x

This test case is denoted “Sphere-x”. We start with a sphere near the left
x-boundary of the domain (and in the middle in y), and move it one cell
to the right in the x-direction. In this case, we need no re-griding: we can
create the set of boxes at the initial time, and only update it at all subsequent
timesteps.

4.2 Sphere Moving in Negative-x

This test case is denoted “Sphere-mx”. It is identical to Sphere-x, except
that we now start with the sphere near the right x-boundary of the domain
(and in the middle in y), and move it one cell to the left in the x-direction.
By symmetry, we need no re-griding here too.

4.3 Sphere Moving in Positive-y

This test case is denoted “Sphere-y”. It is identical to Sphere-x, with the
x and y directions roles reversed. By symmetry, we need no re-griding here
too.
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Figure 2: Sphere-x test case: snapshots of the flagged cells (red points) and
covering boxes (black or red rectangles). (a) Initial timestep. (b) t = 19. (c)
t = 20. (d) t = 21.
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Figure 3: Sphere-x test case: statistics. (a) Efficiency versus time. (b)
Number of boxes versus time. (c) Average box volume versus time.
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Figure 4: Sphere-x test case with re-griding at every timestep: snapshots of
the flagged cells (red points) and covering boxes (black or red rectangles).
(a) Initial timestep. (b) t = 19. (c) t = 20. (d) t = 21.
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Figure 5: Sphere-x test case with re-griding at every timestep: statistics. (a)
Efficiency versus time. (b) Number of boxes versus time. (c) Average box
volume versus time.



OREN E. LIVNE: CLUSTERING STATUS REPORT 3 17

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

(a)

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

(b)

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

(c)

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

(d)

Figure 6: Sphere-mx test case: snapshots of the flagged cells (red points) and
covering boxes (black or red rectangles). (a) Initial timestep. (b) t = 19. (c)
t = 20. (d) t = 21.



OREN E. LIVNE: CLUSTERING STATUS REPORT 3 18

0 5 10 15 20 25 30
20

30

40

50

60

70

80

90

time [sec]

E
ffi

ci
en

cy
 [%

]

(a)

0 5 10 15 20 25 30
1

2

3

4

5

6

7

8

9

time [sec]

N
um

be
r 

of
 b

ox
es

(b)

0 5 10 15 20 25 30
100

150

200

250

300

350

time [sec]

A
ve

ra
ge

 B
ox

 V
ol

um
e 

[c
el

ld ]

(c)

Figure 7: Sphere-mx test case: statistics. (a) Efficiency versus time. (b)
Number of boxes versus time. (c) Average box volume versus time.
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Figure 8: Sphere-y test case: snapshots of the flagged cells (red points) and
covering boxes (black or red rectangles). (a) Initial timestep. (b) t = 19. (c)
t = 20. (d) t = 21.
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Figure 9: Sphere-y test case: statistics. (a) Efficiency versus time. (b)
Number of boxes versus time. (c) Average box volume versus time.
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4.4 Sphere Moving in Diagonal

This test case is denoted “Sphere-diag”. This time, we start at the left
bottom part of the domain, and move the sphere in a diagonal direction (one
cell in x and one cell in y at every timestep). This is the opposite extreme
to the horizontal movement case: because we align our patches with the grid
lines, a diagonal movement requires re-griding at every time step. This also
relates to the size of the sphere relative to the minimum box size: when the
sphere is large compared with the minimum side length, we might be able to
use the update routine more frequently than in the following example.

4.5 Sphere in a Circular Motion

This test case is denoted “Sphere-circ”. We specify a certain circle in the
domain (in this example, centered at (100, 100) with radius R = 30), and
move the sphere’s center along this circle. At every time step, we update
the angle θ of the sphere’s center with respect to the circle’s center by an
increment that results in about one Cartesian cell shift (in x and y combined)
in the sphere’s location. For instance, we used ∆θ = 0.1 arccos(1/R) ≈ .152
radians. This is also a hard case, and re-griding is needed every ≈ 1.5 steps.
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Figure 10: Sphere-diag test case: snapshots of the flagged cells (red points)
and covering boxes (black or red rectangles). (a) Initial timestep. (b) t = 19.
(c) t = 20. (d) t = 21.
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Figure 11: Sphere-diag test case: statistics. (a) Efficiency versus time. (b)
Number of boxes versus time. (c) Average box volume versus time.
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Figure 12: Sphere-circ test case: snapshots of the flagged cells (red points)
and covering boxes (black or red rectangles). (a) Initial timestep. (b) t = 19.
(c) t = 20. (d) t = 21.
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Figure 13: Sphere-circ test case: statistics. (a) Efficiency versus time. (b)
Number of boxes versus time. (c) Average box volume versus time.
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4.6 Summarizing Statistics

The following tables compare two sets of tests: the first table refers to the al-
gorithm that re-grids at every timestep. The second table updates whenever
it can.

Table 1: Summarizing Statistics, no update: regrid = 1

Case Avg. Avg. Avg. Time
Efficiency Patch Life Re-grid

Sphere-x .852 1.0 1.00
Sphere-mx .852 1.0 1.00
Sphere-y .852 1.0 1.00

Sphere-diag .852 1.0 1.00
Sphere-circ .852 1.06 1.00

Table 2: Summarizing Statistics, update: regrid = ∞

Case Avg. Avg. Avg. Time
Efficiency Patch Life Re-grid

Sphere-x .417 17.7 ∞

Sphere-mx .417 17.7 ∞

Sphere-y .417 17.7 ∞

Sphere-diag .852 1.0 1.00
Sphere-circ .775 1.44 1.25
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5 Discussion and Summary

We developed a variant of the Berger-Rigoustos clustering algorithm [BR91]
that is able to use “history” from previous timesteps for updating the set of
boxes, rather than plainly re-grid at every timestep. However, this work is
far from complete.

First, it is clear that when there are several disjoint (and say, far enough
apart) areas of flagged cells, the algorithm should ideally treat each area
separately from all others. Thus, even if we fail to update the box set in one
area, that should not affect the decision in other areas (unlike the current
algorithm).

Furthermore, the diagonal and circular movement cases did not result in
satisfactory updates. We needed to re-grid at almost every timestep. The
updating technique can be improved to treat such cases much more efficiently.
This work will appear in a future report.

Importantly, we can see in Tables 1–2 that the efficiency of the sets gen-
erated by updating an old set is generally much lower than when we re-grid
at every timestep. This is to be expected, as we do not optimize from scratch
but confine ourselves to improving an existing covering boxes solution. How-
ever, we should not worry about that: efficiency plays a major role only when
the areas of flagged cells are large, and if they move continuously, changes
in the efficiency due to updating would be felt only at the boundaries of
the flagged areas. Overall, that would not change the efficiency very much
(unlike the test cases on this report, that had fairly small flagged areas).

Another important addition is the treatment of boxes near the physical
boundaries (the boundaries of the “coarse grid”). Although seemingly tech-
nical, we should in a future research make sure that boxes adjacent or near
the boundary are correctly generated.

In sum, this is a first version of an algorithm that can “move” patches
over time. Our next development stages will be concerned with improving
its updating performance, and analyzing representative test cases of practical
movement (e.g., colliding or separating spheres).
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