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1 Introduction

Our ultimate goal is to develop an algorithm to generate rectilinear patches
from a given set of flagged cells (“cells that need further refinement”) in the
ICE code. A natural candidate is the Berger-Rigoustos (BR) algorithm, that
was discussed and implemented in its classical form in Report 1. However,
the goals we described in Report 1 were not attained – on purpose, though:
we wanted to first address part of the goals, and add the rest in a modular
way in subsequent versions of the algorithm.
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To achieve this modularity, we reformulate the BR algorithm as a “smart
bisection” algorithm that recursively strives to dissect any “bad patch”. For
every such bad patch, we perform a series of actions, trying to find a good
cutting plane (again we stick in this report to 2D experiments, where this is
a 2D line). More actions can now be added to accommodate more control
parameters. In accordance with our goals, we added two more parameters:
the minimum permitted side length of a box, and the maximum allowed box
volume.

In §2 we review our goals, describe the new algorithm, and include a
MATLAB code of its main parts. In §3, we study the algorithm’s efficiency
(how much non-flagged cells are covered by the final set of boxes) versus the
each of the parameters. We also run our standard test cases to check the
algorithm’s efficiency versus the BR algorithm of Report 1.

In sum, we achieved four of the five objectives of the algorithm. The
fifth objective (minimum flag distance from box boundary) is expected to
be achieved at the next step of development, by a pre-processing step of
dilating the area of the flagged cells. This objective is left last, because it
has implications on multi- level refinement, whereas the rest can be discussed
in the context of a single refinement level.

2 The New Algorithm

We recall that for a general set of flagged cells, we focus on obtaining a set
of covering non-overlapping boxes. Our ideal objectives for the boxes are as
follows.

1. Objective 1 - Maximum efficiency: the ratio of the number of flagged
cells to the total box area, should be as close to 1 as possible. We would
like to minimize the wasted “blank space” by the rectangles: the total
work and storage of the patches in the actual solver is proportional to
the total box area.

2. Objective 2 - Minimum box size: the smallest box should not be less
than (say) 4 cells in every direction. Otherwise, there would be a large
overhead that would not justify the use of such boxes.

3. Objective 3 - Maximum box volume: patches that are 323 or 64×64×8
are equivalent in terms of memory and cost, but we would not want very
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large box volumes in light of a worse load balancing between processors,
in a parallel processing framework.

4. Objective 4 - Minimum flag distance from box boundary: the boxes
have to be re-generated every (several) time-steps, and the location of
the flags move (e.., a shock wave front). We want to keep the same
rectangles for as long as possible, and so would not want flagged cells
right near the box edges, as they might move out in the next time-step.

5. Objective 5 - Minimum box mutual-boundary area: to minimize pro-
cessor communication, we would like the boxes to have as low mutual
edges as possible. One way to indirectly achieve this is by trying to
construct more “cubic” boxes than “thin” ones, thereby reducing the
edge area of each box (independently of the other boxes’ edge area,
though).

In Report 1 we treated Objectives 1 and 5. In this report we revise the
algorithm to include Objectives 2 and 3. Objective 4 will be discussed in a
future report.

2.1 The Philosophy of Actions

The core of the BR algorithm [BR91],[JBW94] is a recursive procedure that
takes any box that is not yet acceptable, and dissects it into two smaller boxes
(or leaves it intact, if nothing can be done). In [BR91], a box is processed
only if its efficiency is below the required threshold. Each such “bad box” is
passed a series of tests: we try to look for holes (a line without any flagged
cells); if a hole is found, we choose it and proceed to the next box. Otherwise,
we proceed to look for inflection points, and so on. This form of the algorithm
requires the code to have several recursive “if-statements” that become very
complicated with the addition of minimum and maximum box size controls.

Alternatively, we propose to slightly revise the algorithm’s flow: we loop
over boxes until we process all of them; for each box under consideration,
we loop over a series of actions. Each action is a piece of code that tries
outputs the cut plane direction and location, or indicates that a cut was
not found. The loop is performed until a cut is found. Although this seems
almost identical to the description of the previous paragraph, we replace the
recursive “ifs” by a single “switch” statement, making it much easier to add
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new actions, and to distinguish between actions. A general pseudo-code of
this algorithm follows.

box_index = 1;

while (box_index <= num_boxes)

Look at box number k, compute signatures.

cut_found = 0;

for action = 1:num_actions

switch(action)

case 1:

if (eff >= threshold)

if (box_volume > max_volume)

dissect_because_big_box;

end if

if (not cut_found)

break_the_for_loop;

end if

end

case 2: look_for_holes;

case 3: look_for_inflection_points;

case 4:

if (efficiency <= 0.5)

if (not rectangle_too_small) dissect_rectangle;

end if

else

if (box_volume > max_volume)

dissect_because_big_box;

end if

end if

end switch

if (cut_found)

break_the_for_loop;

end if

end for

if (cut_found)

replace box k by its two halves, numbered k and k+1;

else

k = k+1;
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end

end while

Note that we have to check whether the box is too big in two places in
the code. We check whether the rectangle is too small when trying to dissect
it, but also when we look for holes (action 2) and inflection points (action
3), and when we actually construct the two halves (k and k + 1).

2.2 Treating Small Boxes

We start by defining the input parameter s as the minimum allowed side
length of a box (in any dimension - x or y). Any box with side length s − 1
or less is not allowed to be part of our box covering.

The parameter s affects the following parts of the algorithm (in the sequel,
the current box-under-consideration is [x1, y1] × [x2, y2]:

• Holes: when we look for hole locations, we allow only holes in the
range [x1 + s, x2 − s] in the x-dimension, and in [y1 + s, y2 − s] in the
y-dimension. The actual cut is performed between the location x∗ and
x∗ + 1 (similarly in y), and it is easy to see that by limiting ourselves
to these ranges, we allow the smaller “half” of the box to have a side
length s or larger.

• Inflection points: again, we look for the sharpest edge within the ranges
[x1 + s, x2 − s] and [y1 + s, y2 − s], for the x- and y- inflection searches,
respectively.

• Dissection: if a box admits no holes or inflection points, we check
its efficiency. If it is less than 50%, the standard algorithm dissects
the box along the longest dimension. Instead, we first check whether
the longest dimension is at least 2s; if yes, we dissect; if no, this box
cannot be dissected. Note that only boxes with minimum side length
between s and 2s fall into this category, thus in practice we might end
up with some boxes that are larger than the minimum side length (that
is perfectly acceptable!).

• Tight bounding boxes: when we construct the two halves (k and k +1)
after deciding to dissect the “old-k” rectangle, we originally reduced the
two halves to the smallest (“tight”) bounding box around the flagged
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cells in their respective areas. Instead, we now use a more sophisticated
method of finding the smallest allowed bounding box: we first find the
tight bounding box around the flagged cells (say, in the left half of the
old box). For every dimension, if it is smaller than the minimum box
size in this dimension, we increase it back to the minimum size, and
then shift it so that it is still a subset of the original box (see Fig. 1).

2.3 Treating Large Boxes

The control parameter for large boxes is a maximum permitted volume pa-
rameter, v. Large boxes are easier to handle, because we should take care
of them only if we decide not to dissect the rectangle. This happens at two
instances in the code:

• If the rectangle already has a high enough efficiency, we still check
whether it is too large, and dissect if it is.

• If a rectangle is not dissected by holes or inflection points or the default
bisection for efficiency less than .5, we check if it is too large. If it is,
we dissect it.

Because only efficient boxes are checked for being large, the dissection of a
box whose volume exceeds v is done to maximize the efficiency of its halves,
rather to just bisect it. We search the longest dimension only. For simplicity,
assume this is the x dimension. Then, we choose the cut in [x1 + s, x2 − s]
(to conform to the minimum box size criterion), that minimizes the ratio of
the largest to smallest efficiency of the two halves. Although their efficiency
might be lower than the original box, it should not be too low, because the
original box is efficient.

2.4 Full MATLAB Code

The input for the algorithm is a list of gridpoints flagged as needing re-
finement. In the description below, we use the flag input array as a 2D
binary image. In addition, the structure opts contains the various control
parameters. If opts is omitted, we use some default values.

The output is a list of boxes, that is, an K × 4 array, where K is the
number of boxes, and each box is designated by (x1, y1, x2, y2): its lower-left
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Figure 1: An example of generating two smaller boxes from a big one. (a)
The red area denotes flagged cells. They are surrounded by the box 4 × 10.
(b) For instance, suppose we decide to bisect in the y-dimension. (c) Tight
bounding boxes around the red areas. (d) If the minimum allowed side length
is 2, we have to extend the lower box. (e) If the extended box steps outside
the old box, we shift it back inside.
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corner (x1, y1), and upper-right corner (x2, y2). This output array is denoted
by rect.

function rect = cluster_br_3(points,opts);

if (nargin < 2)

end

opts.efficiency = 0.8; % Lowest box efficiency allowed

opts.low_eff = 0.5; % Efficiency threshold for boxes that don’t have holes/inflections

opts.min_side = 4; %4; % Minimum box side length allowed (in all directions)

opts.max_volume = 100; % Maximum box volume allowed

opts.pause = 0;

fprintf(’Parameters:\n’); % Print parameters

fprintf(’Efficiency threshold: %.1f%%\n’,100*opts.efficiency); % Efficiency threshold

fprintf(’Min. box side length: %d\n’,opts.min_side); % Min. box size

fprintf(’Max. box volume : %d\n’,opts.max_volume); % Max. box volume

%%%%%%%%%% Initialize and find the first box

dim = length(size(points)); % Dimension of the problem

[i,j] = find(points); % Index arrays [i,j] of flagged cells

rect = [min(i) min(j) max(i) max(j)]; % Bounding box for flagged cells

num_actions = 4;

%%%%%%%%%% Main algorithm: loop over boxes, process them, and possiblly add more boxes

k = 1; % Index of box to be processed

while (k <= size(rect,1)) % Do until all boxes have been processed

r = rect(k,:); % Box coordinates

s = points(r(1):r(3),r(2):r(4)); % Flag data of this box

sz = box_size(r); % Vector containing the size of the box: [size_x,size_y]

efficiency = length(find(s))/prod(sz); % Percentage of flagged cells in s

[a,sorted_dims] = sort(-sz); % Sort box sizes in descending orders

sig = compute_signatures(s); % Compute signatures

fprintf(’Considering box #%3d at coordinates [%3d,%3d,%3d,%3d] size = %d x %d, vol = %d, efficiency = %f\n’,k,r,sz+1,box_volume(r),efficiency);

%%%%% Plot-outs: plot the points and the current boxes. The considered box is in red.

if (opts.pause)

figure(1);

clf;

plot_points(points);

hold on;

plot_boxes(rect);

offset = 0.2;

h = rectangle(’Position’,[rect(k,1:2)-offset,[rect(k,3:4)-rect(k,1:2)]+2*offset]);

set(h,’EdgeColor’,’Red’);

set(h,’LineWidth’,2);

pause

end

%%%%% Loop over actions to find a cut

cut.found = 0; % Start: we don’t know where to dissect the box

for action = 1:num_actions, % Try different actions to find a dissection plane ("cut")

switch(action) % Each action is attached to a certain piece of code below

case 1

fprintf(’Action 1: check efficiency; if efficienct but box too big, dissect\n’);

if (efficiency >= opts.efficiency) % box efficient, but check if it’s too big

fprintf(’Box has the required efficiency\n’);

if (box_volume(r) > opts.max_volume) % Box too big

cut.dim = sorted_dims(1); % Longest dimension

cut = dissect_big_box(points,r,...

sig,cut.dim,opts.min_side); % Dissect it

end

if (~cut.found)

break;

end

end

case 2

fprintf(’Action 2: looking for holes\n’);

cut = find_hole(r,sig,sorted_dims,opts.min_side); % Look for a hole

case 3

fprintf(’Action 3: looking for inflection points\n’);

cut = find_inflection(r,sig,opts.min_side); % Look for an inflection point

case 4 % No holes or inflection points; base box acceptance on its efficiency; bisect if not efficient

fprintf(’Action 4: no holes or inflections, dissect if not efficienct and not too small; otherwise, check if too big\n’);

cut.dim = sorted_dims(1); % Longest dimension

if (efficiency <= opts.low_eff) % If box not efficient (efficiency <= 50% - the diagonal black case included, = 50%)

if (sz(cut.dim) >= 2*opts.min_side) % Bissect only if the halves are still larger than the minimum side permitted
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cut.found = 1; % We will cut, this time - bisect

cut.place = floor(...

sz(cut.dim)/2)+r(cut.dim)-1; % The middle absolute coordinate of this dimension

fprintf(’Bisecting box because efficiency = %f < %f and side size = %d > min_side\n’,efficiency,opts.low_eff,sz(cut.dim));

end

else % Efficiency > 50%

if (box_volume(r) > opts.max_volume) % Box too large

cut = dissect_big_box(points,r,sig,cut.dim,opts.min_side);

end

end

otherwise

fprintf(’Unknown action! exiting\n’);

rect = [];

return;

end

if (cut.found)

break;

end

end

%%%%% Make the cut: replace the current box by its two "halves"

if (cut.found)

%%%%% Plot-outs and printouts: plot the cutting plane in green

if (opts.pause)

fprintf(’This box is dissected at cut.dim = %d, cut.place = %3d\n’,cut.dim,cut.place);

if (cut.dim == 1) % This code is specific for 2D, need to generalize to dim-D later

h = line([cut.place cut.place]+0.5,[r(2)-0.2,r(4)+0.2]);

else

h = line([r(1)-0.2,r(3)+0.2],[cut.place cut.place]+0.5);

end

set(h,’LineWidth’,3);

set(h,’Color’,’Green’);

end

rn = dissect_box(points,r,cut,opts.min_side);

rect = [rect; rn{1}; rn{2}]; % Add the two halves to the list

rect(k,:) = []; % Delete box k from the list, so now k points to the "next box" to be considered

if (opts.pause)

pause

end

else

fprintf(’This box is accepted\n’);

k = k+1; % Couldn’t find a cut accept this box and consider the next box on the list

end

fprintf(’\n’);

end

final_stats(points,rect); % Final printouts (overall statistics) and plot-outs

%--------------------------------------------------------------------------------------------------------

function sig = compute_signatures(s)

% Compute signatures of a rectilinear patch s

dim = length(size(s)); % Dimension of the problem

sig = cell(dim,1); % Signature in all dimensions

for d = 1:dim % Loop over dimensions

sig{d} = s; % Start from the box

for j = 1:dim % For all dimensions...

if (j ~= d) % Loop over all dimensions except d

sig{d} = sum(sig{d},j); % Sum along the j’s dimension

end

end

end

%--------------------------------------------------------------------------------------------------------

function cut = find_hole(r,sig,sorted_dims,min_side)

% Look for a hole, given the signature arrays sig and the minimum side length min_side. Sorted_dims

% specifies the order by which we loop over the dimensions when we look for holes

cut.found = 0; % Default: no cut found

for d = sorted_dims % Loop over dimensions in decreasing box size

len = length(sig{d}); % Length of box in this dimension

hole = find(sig{d} == 0); % Look for holes in direction d

hole = intersect(hole,[min_side:len-min_side]); % Do not allow holes that are too close to the boundaries, because we need to keep a minimum

if (~isempty(hole)) % If found hole...

center = len/2+0.5; % Center coordinate of this direction (origin at 1)
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distance = abs(hole+0.5-center); % Distance of holes from the center

best_hole = hole(find(distance == min(distance))); % Find the holes closest to the center

cut.found = 1; % Found a cut, flag up

cut.place = best_hole(1)+r(d)-1; % Choose one of them and convert back into absolute coordinates

cut.dim = d; % Dimension along which we cut

fprintf(’Found hole\n’); % Printout

break; % We terminate the loop over dimensions when we find a legal hole

end

end

%--------------------------------------------------------------------------------------------------------

function cut = find_inflection(r,sig,min_side)

% Look for an inflection point (a zero-crossing in the second derivative of the signature), given the signature arrays sig

% and the minimum side length min_side.

cut.found = 0; % Default: no cut found

sz = box_size(r); % Rectangle side lengths

dim = size(sig,1); % Dimension of the problem

delta = cell(dim,1); % Second-derivative-of-signature in all dimensions

best_place = -ones(dim,1); % Absolute coordinate of best place to cut

value = -ones(dim,1); % Sharpness value of edge; -1 = dummy (no allowed edge found)

for d = 1:dim % Loop over dimensions

delta{d} = diff(diff(sig{d})); % Discrete second-derivative

schange_abs = abs(diff(delta{d})); % Gradient absolute value

schange = zeros(size(schange_abs)); % Array of flags of sign changes in delta

for i = 1:length(delta{d})-1 % Loop over the delta array in this direction

schange(i) = sign(delta{d}(i)*delta{d}(i+1)); % sign change from i to i+1: 1, none; 0, one of them is zero (so sign change); -1, sign change

end

len = length(sig{d}); % Length of box in this dimension

zero_cross = find(schange <= 0); % Indices i for which delta changes sign (i -> i+1)

zero_cross = intersect(zero_cross,...

[min_side:len-min_side]-1); % Do not allow zero crossing that are too close to the boundaries, because we need to keep

if (~isempty(zero_cross)) % If there exist zero crossing...

edge = schange_abs(zero_cross); % Save only the relevant indices (zero_cross) in schange_abs

max_cross_value = max(edge); % Find the sharpest edge value

max_cross = zero_cross(...

find(edge == max_cross_value)) + 1; % Find where are the sharpest edge locations; +1 because delta is defined on [2..len-1] and

center = len/2+0.5; % Center coordinate of this direction (origin at 1)

distance = abs(max_cross+0.5-center); % Distance of zero-crossings for the center

best_cross = max_cross(...

find(distance == min(distance))); % Find those closest to the center

best_place(d) = best_cross(1) + r(d)-1; % Covert back to absolute coordinates and save in best_place

value(d) = max_cross_value; % Save edge value for comparison between dimensions

end

end

zero_cross_dims = find(value >= 0); % All dims for which there exists a zero crossing

if (~isempty(zero_cross_dims)) % If there exists a zero crossing

% best_place

% value

max_cross_dims = find(value == max(value)); % Find sharpest edge(s)

best_dims = max_cross_dims(find(...

sz(max_cross_dims) == max(sz(max_cross_dims)))); % Find the sharpest edge(s) in the longest direction(s)

cut.found = 1; % Found a cut, flag up

cut.dim = best_dims(1); % Dimension along which we cut

cut.place = best_place(cut.dim); % Coordinate of cut along that dimension

fprintf(’Inflection point found\n’); % Printout

end

%--------------------------------------------------------------------------------------------------------

function sz = box_size(r)

% Side length of a box in all dimensions

dim = length(r)/2; % Dimension of the problem

sz = r(dim+1:2*dim) - r(1:dim) + 1; % r = [x1_start,...,xd_start,x1_end,...xd_end]; +1 because if xi_start=xi_end, size=1

%--------------------------------------------------------------------------------------------------------

function vol = box_volume(r)

% Volume of a box

sz = box_size(r); % Rectangle side lengths

vol = prod(sz); % Total volume

%--------------------------------------------------------------------------------------------------------

function cut = dissect_big_box(points,r,sig,d,min_side)

% When box is larger than the maximum volume, break it down. r = box coordinates, sig = signature arrays, min_side = minimum

% side length permitted, cut.dim = dimension along which we try to cut (usually the longest)
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fprintf(’Box too big\n’);

cut.found = 0; % Default: no cut found

dim = size(sig,1); % Dimension of the problem

len = length(sig{d}); % Length of this side

eff = zeros(2,len-1); % Efficiency of the two halves of the prospective cut coordinate

rn = cell(2,1); % The two halves

rn{1} = r; % Create the "left half"

rn{2} = r; % Create the "right half"

for i = 1:len-1 % This could be done more efficiently in a sliding window manner

rn{1}(d+dim) = r(d)-1+i; % The "left half": change the end index in the d-direction to the cut index

rn{2}(d) = r(d)-1+i+1; % The "right half": change the beginning index in the d-direction to the cut index

for h = 1:2

s = points(rn{h}(1):rn{h}(3),rn{h}(2):rn{h}(4)); % Flag data of this box; specific for 2D

eff(h,i) = length(find(s))/(rn{h}(d+dim)-rn{h}(d)+1);

end

end

ratio = max(eff,[],1)./min(eff,[],1);

ratio_inner = ratio(min_side:len-min_side);

best = find(ratio_inner == min(ratio_inner))+min_side-1;

center = len/2+0.5; % Center coordinate of this direction (origin at 1)

distance = abs(best+0.5-center); % Distance of zero-crossings for the center

best_center = best(find(distance == min(distance))); % Find those closest to the center

cut.found = 1; % Found a cut, flag up

cut.place = best_center(1)+r(d)-1;

cut.dim = d;

%--------------------------------------------------------------------------------------------------------

function rn = dissect_box(points,r,cut,min_side)

% Given a rectangle r and cut information (cut), return rn = the coordinates of the two halves. We try to

% fit the tightest bounding box, up to the restriction of the minimum box side length (min_side). points is

% the array of the flagged points (boolean image)

dim = length(r)/2; % Dimension of the problem

rn = cell(2,1); % The two halves

rn{1} = r; % Create the "left half"

rn{2} = r; % Create the "right half"

rn{1}(cut.dim+dim) = cut.place; % The "left half": change the end index in the d-direction to the cut index

rn{2}(cut.dim) = cut.place+1; % The "right half": change the beginning index in the d-direction to the cut index

s = points(rn{1}(1):rn{1}(3),rn{1}(2):rn{1}(4)); % Flag data of this box

[i,j] = find(s); % 2D indices of the points in this box

rn{1} = [rn{1}(1:2) rn{1}(1:2)]-1 + ...

[min(i) min(j) max(i) max(j)]; % Tight bounding box around the points

s = points(rn{2}(1):rn{2}(3),rn{2}(2):rn{2}(4)); % Flag data of this box

[i,j] = find(s); % 2D indices of this box

rn{2} = [rn{2}(1:2) rn{2}(1:2)]-1 + ...

[min(i) min(j) max(i) max(j)]; % Tight bounding box around the points

fprintf(’New boxes before extending:\n’);

fprintf(’Left half coordinates [%3d,%3d,%3d,%3d] size = %d x %d\n’,rn{1},rn{1}(3)-rn{1}(1)+1,rn{1}(4)-rn{1}(2)+1);

fprintf(’Right half coordinates [%3d,%3d,%3d,%3d] size = %d x %d\n’,rn{2},rn{2}(3)-rn{2}(1)+1,rn{2}(4)-rn{2}(2)+1);

%%%%% Correct bounding boxes to at least the minimal required side length

for h = 1:2

for d = 1:dim

lc = d;

rc = lc+dim;

slack = min_side - (rn{h}(rc)-rn{h}(lc)+1); % If we’re too thin, slack is positive

if (slack > 0)

ext_left = floor(slack/2) % How much to extend tight bounding box on the left

ext_right = slack - ext_left; % How much to extend tight bounding box on the right

rn{h}(lc) = rn{h}(lc) - ext_left; % Left extend

rn{h}(rc) = rn{h}(rc) + ext_right; % Right extend

if (rn{h}(lc) < r(lc))

rn{h}(lc:rc) = rn{h}(lc:rc) + (r(lc) - rn{h}(lc));

end

if (rn{h}(rc) > r(rc))

rn{h}(lc:rc) = rn{h}(lc:rc) + (r(rc) - rn{h}(rc));

end

end

end

end

fprintf(’New boxes after tightening bounding boxes:\n’);

fprintf(’Left half coordinates [%3d,%3d,%3d,%3d] size = %d x %d\n’,rn{1},rn{1}(3)-rn{1}(1)+1,rn{1}(4)-rn{1}(2)+1);

fprintf(’Right half coordinates [%3d,%3d,%3d,%3d] size = %d x %d\n’,rn{2},rn{2}(3)-rn{2}(1)+1,rn{2}(4)-rn{2}(2)+1);

%--------------------------------------------------------------------------------------------------------

function final_stats(points,rect)
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% Final printouts (overall statistics) and plot-outs

x = (rect(:,3)-rect(:,1)+1);

y = (rect(:,4)-rect(:,2)+1);

rect_area = x.*y;

total_rect_area = sum(rect_area);

flagged_area = length(find(points));

fprintf(’Total Number of flagged pts : %d\n’,flagged_area);

fprintf(’Total Area in boxes : %d\n’,total_rect_area);

fprintf(’\n’);

fprintf(’flagged points/tot.box.vol. : %.1f%%\n’,100*flagged_area/total_rect_area);

fprintf(’Number of boxes : %d\n’,size(rect,1));

fprintf(’Minimum box edge : %d\n’,min(min(rect(:,3)-rect(:,1)+1,rect(:,4)-rect(:,2)+1)));

fprintf(’Maximum box volume : %d\n’,max(rect_area));

fprintf(’Average box volume : %f\n’,mean(rect_area));

fprintf(’Average box side ratio : %.1f%%\n’,100*mean(min(x,y)./max(x,y)));

figure(1);

clf;

plot_points(points);

print -depsc cells.eps

figure(2);

clf;

plot_points(points);

hold on;

plot_boxes(rect);

print -depsc cover.eps

%--------------------------------------------------------------------------------------------------------

function plot_points(points)

% Plot the points in the current figure

[i,j] = find(points);

h = plot(i,j,’b.’);

set(h,’MarkerSize’,10);

axis([min(i)-1 max(i)+1 min(j)-1 max(j)+1]);

axis off;

%--------------------------------------------------------------------------------------------------------

function plot_boxes(rect)

% Plot the current box covering in the current figure

offset = 0.2;

for i = 1:size(rect,1)

rectangle(’Position’,[rect(i,1:2)-offset,[rect(i,3:4)-rect(i,1:2)]+2*offset]);

end
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3 Numerical Experiments

Each test case is a set of flagged cells in 2D. For each case, we plot the original
points and the resulting covering. Tables include summarizing run statistics
(see Report 1). In all cases, we used a minimum efficiency threshold of .8.

3.1 Generic Test Cases

We first tested the new algorithm (with the restricting parameters s = 4,
v = 100; note that in the test cases that follow, v is a significant portion of
the total area of the flagged points) on the test cases (G1–G4) described in
[BR91], and compared the results with the old algorithm. The latter can be
viewed as a special case of the former, without restrictions (s = 0, v = ∞).
The results are summarized in the following tables and figures.

Table 1: Generic Test Cases: Old Algorithm, s = 0, v = ∞

Case Flagged Tot.Box Effi- # Min. Max. Avg.Box Avg.Box
Cells Volume -ciency Boxes Edge Volume Volume Edge.Rat.

G1 614 668 .919 11 2 128 60.7 .336
G2 623 683 .912 13 2 288 52.5 .564
G4 245 281 .872 11 1 110 25.5 .761
G5 233 264 .883 10 1 104 63.8 .638

Table 2: Generic Test Cases: New Algorithm, s = 4, v = 100

Case Flagged Tot.Box Effi- # Min. Max. Avg.Box Avg.Box
Cells Volume -ciency Boxes Edge Volume Volume Edge.Rat.

G1 614 664 .925 15 4 96 44.3 .601
G2 623 688 .906 16 4 80 43.0 .711
G4 245 298 .822 6 5 88 49.7 .710
G5 233 292 .798 6 4 72 48.7 .698
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3.2 Hard Test Cases

We compare the new and old algorithms the hard test cases from Report 1,
§4.2. Because the total number of flagged cells for these test cases is ≈ 100,
we use s = 4 and v = 50 as our control parameters for the new algorithm.

Table 3: Hard Test Cases: Old Algorithm, s = 0, v = ∞

Case Flagged Tot.Box Effi- # Min. Max. Avg.Box Avg.Box
Cells Volume -ciency Boxes Edge Volume Volume Edge.Rat.

H1 82 84 .976 3 1 42 28 .571
H2 108 108 1.00 2 6 54 54 .667
H3 61 81 .753 41 9 9 2.0 1.00
H4 66 81 .815 30 1 9 2.7 .869

Table 4: Hard Test Cases: New Algorithm, s = 4, v = 50

Case Flagged Tot.Box Effi- # Min. Max. Avg.Box Avg.Box
Cells Volume -ciency Boxes Edge Volume Volume Edge.Rat.

H1 82 105 .781 3 4 42 35 .714
H2 108 108 1.00 4 4 30 27 .750
H3 61 121 .504 36 5 36 30.3 .917
H4 66 171 .386 8 4 25 21.4 .908
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(a)

(b)

Figure 2: Test Case G1 results. Upper figure: the old algorithm covering.
Lower figure: the new algorithm covering.



OREN E. LIVNE: CLUSTERING STATUS REPORT 2 16

(a)

(b)

Figure 3: Test Case G2 results. Upper figure: the old algorithm covering.
Lower figure: the new algorithm covering.
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(a)

(b)

Figure 4: Test Case G4 results. Upper figure: the old algorithm covering.
Lower figure: the new algorithm covering.
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(a)

(b)

Figure 5: Test Case G5 results. Upper figure: the old algorithm covering.
Lower figure: the new algorithm covering.
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(a)

(b)

Figure 6: Test Case H1 results. Upper figure: the old algorithm covering.
Lower figure: the new algorithm covering.
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(a)

(b)

Figure 7: Test Case H2 results. Upper figure: the old algorithm covering.
Lower figure: the new algorithm covering.
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(a)

(b)

Figure 8: Test Case H3 results. Upper figure: the old algorithm covering.
Lower figure: the new algorithm covering.
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(a)

(b)

Figure 9: Test Case H4 results. Upper figure: the old algorithm covering.
Lower figure: the new algorithm covering.
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3.3 Discussion

There are a few important points to note in the comparison of the two algo-
rithms:

• The minimum and maximum patch size constraints are satisfied for all
cases (an evidence of the code’s correctness).

• The efficiency threshold is almost always attained by the old algorithm;
however, the new algorithm fails to meet this requirement. Especially
hard cases are H3 and H4. This can be explained by the geometry
of these two cases. in H3, we have points that are positioned in a
way that the total area covered by them is twice their number. A
related phenomenon occurs in H4: the randomly distributed points are
scattered on a very large area, with some points isolated from the rest.
While the old algorithm can afford to create small boxes around these
isolated points, the new algorithm is required to create larger patches.
Depending on the sparsity of the points, these larger patches can be
very wasteful, as in H4. However, in cases where the points’ “cloud”
is more dense, as expected in the ICE application (and will anyway
happen if we dilate to points to attain Objective 4 in the future), this
is unlikely to happen. The other test cases provide some evidence for
this prediction.

• The boxes tend to be more “cubical” (indicated by the higher average
edge ratio) in the new algorithm. This an interesting consequence of
adding the extra constraint on the minimum size of the patch (possibly
also resulting from the maximum patch size, if a very big and stretched
patch is initially pondered on). We come to the interesting observation
that Objectives 2 and 3 do not contradict Objective 5, rather “live
harmoniously”. Note that more-cubical boxes tend to minimize mutual
patch boundaries

4 Summary

We developed a new variant of the Berger-Rigoustos clustering algorithm,
and compared it with the old Berger-Rigoustos used in Report 1, for several
test cases. The new algorithm has a similar efficiency to the old algorithm,
for most cases. Exceptions with low efficiency are observed when the flagged
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cells cover a “checkerboard” space or are scattered at large distances from
each other. On the other hand, the new algorithm satisfies additional con-
straints on the minimum and maximum patch size; interestingly, the added
constraints (Objectives 2 and 3) help attain Objective 5 as well, because
larger boxes than the old algorithm are likely to be generated, and because
of the nature of the dissection, they tend to be more “cubical”, hence mini-
mize mutual patch boundaries.

It seems that the new algorithm satisfies Objectives 1,2,3 and 5 to a
reasonable tolerance. Next, we will turn our attention in the next reports to
dealing with Objective 4 - dilating the flagged cells to keep them away from
the box boundaries. This is strongly related to the generation of multiple
refinements within each other.
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