
1

Clustering on Single Refinement Level:

Berger-Rigoustos Algorithm

Oren E. Livne

UUSCI-2006-001

Scientific Computing and Imaging Institute
University of Utah

Salt Lake City, UT 84112 USA

January 23, 2006

Abstract:

We describe the Berger-Rigoustos algorithm for clustering points, and its current implementation for
our purposes. The goal is to define rectilinear patches over the set of flagged cells that are indicated
by a refinement criterion. We show results for the model problems from the original papers on the
algorithm and discuss the required changes to the current algorithm for our purposes.



Clustering on Single Refinement Level:

Berger-Rigoustos Algorithm

Oren E. Livne ∗

January 23, 2006

Abstract

We describe the Berger-Rigoustos algorithm for clustering points,

and its current implementation for our purposes. The goal is to define

rectilinear patches over the set of “flagged cells” that are indicated by

a refinement criterion. We show results for the model problems from

the original papers on the algorithm and discuss the required changes

to the current algorithm for our purposes.

Key words. Clustering, rectangles, signatures, refinement criterion.

1 Goals and Assumptions

A refinement criterion will be developed in ICE and flag certain cells of our
computational grid as “cells that need further refinement”. Regardless of the
criterion, we need to develop the machinery to construct finer-level patches
over these flagged cells. For simplicity, we stick in this feasibility study to
a 2D domain and 2D boxes. The report is organized as follows. In §1 we
present our assumptions and list the computational objectives. In §2 we list
the measures by which we measure the algorithm’s result. §3 is devoted to
a description of the algorithm. §4 contains numerical experiments with the

∗SCI Institute, 50 South Central Campus Dr., Room 3490, University of Utah, Salt

Lake City, UT 84112.Phone: +1-801-581-4772. Fax: +1-801-585-6513. Email address:

livne@sci.utah.edu

1



OREN E. LIVNE: CLUSTERING STATUS REPORT 1 2

algorithm. We try various test cases described in the papers discussing the
algorithm. We show both “generic” and “hard” scenarios. §5 discusses the
results and suggests the next steps of development.

We will restrict the discussion to

• Rectilinear patches, that is, rectangular boxes that cover the flagged
cells.

• Non-overlapping patches.

These are not necessarily natural assumptions: in many cases, the optimal
patches (from a numerical viewpoint of storage vs. accuracy of solution,
artificial anisotropies in the grids, etc.) are stretched (that we can have in the
current setting), rotated, or transformed through a local coordinate system
(the latter two are of course not possible). However, for feasibility purposes,
and under the constraints of the current working environment, we will assume
that, and bear in mind the possible extensions for more complicated patch
structures.

For a general set of flagged cells, we focus on obtaining a set of covering
boxes. Our ideal objectives for the boxes are as follows.

1. Objective 1 - Maximum efficiency: the ratio of the number of flagged
cells to the total box area, should be as close to 1 as possible. We would
like to minimize the wasted “blank space” by the rectangles: the total
work and storage of the patches in the actual solver is proportional to
the total box area.

2. Objective 2 - Minimum box size: the smallest box should not be less
than (say) 4 cells in every direction. Otherwise, there would be a large
overhead that would not justify the use of such boxes.

3. Objective 3 - Maximum box volume: patches that are 323 or 64×64×8
are equivalent in terms of memory and cost, but we would not want very
large box volumes in light of a worse load balancing between processors,
in a parallel processing framework.

4. Objective 4 - Minimum flag distance from box boundary: the boxes
have to be re-generated every (several) time-steps, and the location of
the flags move (e.., a shock wave front). We want to keep the same
rectangles for as long as possible, and so would not want flagged cells
right near the box edges, as they might move out in the next time-step.



OREN E. LIVNE: CLUSTERING STATUS REPORT 1 3

5. Objective 5 - Minimum box mutual-boundary area: to minimize pro-
cessor communication, we would like the boxes to have as low mutual
edges as possible. One way to indirectly achieve this is by trying to
construct more “cubic” boxes than “thin” ones, thereby reducing the
edge area of each box (independently of the other boxes’ edge area,
though).

In the current report we present an algorithm that treats Objective 1,
and in part, Objective 5. We maximize efficiency, and the algorithm also
tries to construct “cubic” boxes.

2 Indicators

We assess the quality of a constructed set of boxes by the following measures.
The measures are naturally related to the objectives listed in §1.

1. Efficiency: ratio of the number of flagged cells to the total box area
[dimensionless] (Objective 1).

2. Number of boxes (important for parallelism in general).

3. Minimum edge size of a box [cells] (Objective 2).

4. Maximum box volume [cells] (Objective 3).

5. Average box volume (related to Objective 2 and 3 and to load balanc-
ing).

6. Minimum flag distance from box edge [cells] (Objective 4).

7. Average ratio of the shorter to the longer side ratio [dimensionless]
(Objective 5). Note that this is not the total boundary length to the
total box volume; but for a cluster of many boxes, the “localized”
measure will be comparable with the desired “global” ratio, divided by
the number of boxes. We prefer this localized measure, which is easier
to compute and to control with our algorithm. It is also dimensionless
– it does not increase with the number of boxes.



OREN E. LIVNE: CLUSTERING STATUS REPORT 1 4

3 The Clustering Algorithm

We use the Berger-Rigoustos clustering algorithm (basically, it is a “smart
bisection” algorithm). The algorithm has been first purposed in [BR91],
including a lot of numerical experiments. An improved version has been sug-
gested in [JBW94]. We use the improved version, with trivial modifications.
The numerical experiments of §4 include both the test case battery of [BR91],
some hard test cases described therein, and some other examples we came
up with to illustrate the strengths and weaknesses of the algorithm. In this
section we describe the algorithm’s flow, for the 2D case.

3.1 Signatures

Given a continuous function f(x, y), the horizontal and vertical signatures
Σx and Σy are defined as

Σx :=
∫

y
f(x, y)dy

Σy :=
∫

x
f(x, y)dx,

respectively. For a binary image {fij}i,j, i = 1, . . . ,m, j = 1, . . . , n, these
translate into

Σx(i) :=
n∑

j=1

fij

Σy(j) :=
m∑

i=1

fij

The summations clearly extend over the non-zero fij only. In case of a binary
image, Σd counts the number of non-zero cells (pixels) along a planar cut in
the d-direction. We also use the discrete second derivative of Σ (in each
direction),

∆d(i) := Σd(i − 1) − 2Σd(i) + Σd(i + 1),

defined except at the first and last cell of a rectangle under consideration.

3.2 The Algorithm

The input for the algorithm is a list of gridpoints flagged as needing refine-
ment. In the description below, we use the flag input array as a 2D binary



OREN E. LIVNE: CLUSTERING STATUS REPORT 1 5

image. In practice, we may want to use proper indexing to keep only the list
of flagged point coordinates in flag,

The output is a list of boxes, that is, an K × 4 array, where K is the
number of boxes, and each box is designated by (x1, y1, x2, y2): its lower-left
corner (x1, y1), and upper-right corner (x2, y2). This output array is denoted
by rect.

The pseudo-code that follows uses the MATLAB notations. It can in fact
be readily used as a MATLAB script.

threshold = 0.9; % Lowest rectangle efficiency allowed

%%%%%%%%%% Initialize and find the first rectangle

dim = length(size(flag)) % Dimension of the problem

[i,j] = find(flag); % Index arrays [i,j] of flagged cells

box = [min(i) min(j) max(i) max(j)]; % Bounding box for flagged cells

rect = box; % List of rectangles, has one rectangle to start with

%%%%%%%%%% Main algorithm: loop over rectangles, process them, and possiblly add more rectangles

k = 1; % Index of rectangle to be processed

while (k <= size(rect,1)) % Do until all rectangles have been processed

r = rect(k,:); % Rectangle parameters

s = flag(r(1):r(3),r(2):r(4)); % Flag data of this rectangle

rect_size = size(s); % Vector containing the size of the rectangle: [size_x,size_y]

efficiency = length(find(s))/prod(rect_size); % Percentage of flagged cells in s

if (efficiency < threshold) % Rectangle not efficient, try to "smartly bisect" it

%%%%% Compute signatures

for d = 1:dim

sig{d} = s;

for j = 1:dim

if (j ~= d) % Loop over all dimensions except d

sig{d} = sum(sig{d},j); % Sum along the j’s dimension

end

end

% sig{d} = sum(s,d); % Integrate along the d-direction

% sig{d}

end

cut_found = 0; % 0 if we haven’t found a place to bisect, 1 if we have

%%%%% Look for a hole: a zero value in one of the signature

for d = 1:dim

hole = find(sig{d} == 0);

if (~isempty(hole))

% Right now using the first found hole; later could switch to the closest to the center of the rectangle

cut_found = 1;

cut_place = hole(1)+r(d)-1;

cut_dim = d;

break;

end

end

%%%%% Look for an inflection point: a crossing point for the second derivative of the signature

if (~cut_found)

best_place = -ones(dim,1); % Init with -1’s

value = -ones(dim,1); % Init with -1’s

for d = 1:dim

delta{d} = diff(diff(sig{d}));

schange_abs = abs(diff(delta{d}));

schange = zeros(size(schange_abs));

for i = 1:length(delta{d})-1

schange(i) = sign(delta{d}(i)*delta{d}(i+1));

end

zero_crossing = find(schange <= 0);

if (~isempty(zero_crossing))

max_crossing_value = max(schange_abs);

max_crossing = find(schange_abs == max_crossing_value) + 1;

center = length(sig{d})/2 + 0.5;

distance_from_center = abs(max_crossing+0.5 - center);



OREN E. LIVNE: CLUSTERING STATUS REPORT 1 6

best_crossing = max_crossing(find(distance_from_center == min(distance_from_center)));

best_place(d) = best_crossing(1) + r(d)-1;

value(d) = max_crossing_value;

end

end

zero_crossing_dims = find(value >= 0);

if (~isempty(zero_crossing_dims))

max_crossing_dims = find(value == max(value));

best_dims = max_crossing_dims(find(rect_size(max_crossing_dims) == max(rect_size(max_crossing_dims))));

cut_found = 1;

cut_dim = best_dims(1); % If there’s more than one dimension, take the first one

cut_place = best_place(cut_dim);

end

end

%%%%% No holes or inflection points; base rectangle acceptance on its efficiency; bisect if not efficient enough

if (~cut_found)

if (efficiency <= 0.5)

longest_dims = find(rect_size == max(rect_size));

cut_found = 1;

cut_dim = longest_dims(1);

cut_place = floor(rect_size(cut_dim)/2);

else

% Rectangle has more than a 0.5 efficiency, accepted

end

end

if (cut_found)

r1 = r; % Create the "left half"

r2 = r; % Create the "right half"

r1(cut_dim+dim) = cut_place; % The "left half" new coords

r2(cut_dim) = cut_place+1; % The "right half" new coords

s = flag(r1(1):r1(3),r1(2):r1(4));% Flag data of this rectangle

[i,j] = find(s);

r1 = [r1(1:2) r1(1:2)]-1 + [min(i) min(j) max(i) max(j)];

s = flag(r2(1):r2(3),r2(2):r2(4));% Flag data of this rectangle

[i,j] = find(s);

r2 = [r2(1:2) r2(1:2)]-1 + [min(i) min(j) max(i) max(j)];

rect = [rect; r1; r2]; % Add the two halves to the list

rect(k,:) = []; % Delete rectangle k from list, so now k points to the next one

else

k = k+1; % Couldn’t find a cut; accept this box and consider the next one

end

else

k = k+1; % Rectangle is efficient, consider the next rectangle on the list

end

end



OREN E. LIVNE: CLUSTERING STATUS REPORT 1 7

4 Numerical Experiments

Each test case is a set of flagged cells in 2D. For each case, we plot the original
points and the resulting covering. The tables include some summarizing
statistics (indicators, see §2). In all cases, we used a minimum efficiency
threshold of .8.

4.1 Generic Test Cases

We first tested the algorithm over the test cases (G1–G4) described in [BR91].
Unfortunately, the data reported there was wrong (the number of flagged cells
is even not the one shown in the picture). However, the qualitative picture
of box covering is the same here and in that paper.

Table 1: Generic Test Cases: Final Statistics

Case Flagged Total Box Effi- # Min. Max. Avg. Box Avg. Box
Cells Volume -ciency Boxes Edge Volume Volume Edge Ratio

G1 614 668 .919 11 2 128 60.7 .336
G2 623 683 .912 13 2 288 52.5 .564
G4 245 281 .872 11 1 110 25.5 .761
G5 233 264 .883 10 1 104 63.8 .638



OREN E. LIVNE: CLUSTERING STATUS REPORT 1 8

4.2 Hard Test Cases

The paper [BR91] discusses some cases where the algorithm fails to obtain an
optimal covering. We include these cases, along with some other examples
that are considered “hard to address”:

H1 : Two rectilinear blocks in diagonal constellation. Without the direct
bisection step, we would put one bounding box over both of them,
reducing the efficiency to .5.

H2 : The “Fig. 18” example from [BR91]. The algorithm fails to find
an optimal dissection at the first step, thereby leading to three boxes
instead of two.

H3 : red-black grid with a lot of “holes” in it. The algorithm finds it
confusing to adapt to the .8 efficiency threshold.

H4 : (suggested by Steve and Todd) randomly (Gaussian) distributed
points around the center point of the grid shown. The standard de-
viation is 3 cells in every direction.

Table 2: Hard Test Cases: Final Statistics

Case Flagged Total Box Effi- # Min. Max. Avg. Box Avg. Box
Cells Volume -ciency Boxes Edge Volume Volume Edge Ratio

H1 82 84 .976 3 1 42 28 .571
H2 108 108 1.00 2 6 54 54 .667
H3 61 81 .753 41 9 9 2.0 1.00
H4 66 81 .815 30 1 9 2.7 .869



OREN E. LIVNE: CLUSTERING STATUS REPORT 1 9

(a)

(b)

Figure 1: Test Case G1 results. Upper figure: the original cells. Lower figure:
the cells with the box covering.



OREN E. LIVNE: CLUSTERING STATUS REPORT 1 10

(a)

(b)

Figure 2: Test Case G2 results. Upper figure: the original cells. Lower figure:
the cells with the box covering.



OREN E. LIVNE: CLUSTERING STATUS REPORT 1 11

(a)

(b)

Figure 3: Test Case G4 results. Upper figure: the original cells. Lower figure:
the cells with the box covering.



OREN E. LIVNE: CLUSTERING STATUS REPORT 1 12

(a)

(b)

Figure 4: Test Case G5 results. Upper figure: the original cells. Lower figure:
the cells with the box covering.



OREN E. LIVNE: CLUSTERING STATUS REPORT 1 13

(a)

(b)

Figure 5: Test Case H1 results. Upper figure: the original cells. Lower figure:
the cells with the box covering.



OREN E. LIVNE: CLUSTERING STATUS REPORT 1 14

(a)

(b)

Figure 6: Test Case H2 results. Upper figure: the original cells. Lower figure:
the cells with the box covering.



OREN E. LIVNE: CLUSTERING STATUS REPORT 1 15

(a)

(b)

Figure 7: Test Case H3 results. Upper figure: the original cells. Lower figure:
the cells with the box covering.



OREN E. LIVNE: CLUSTERING STATUS REPORT 1 16

(a)

(b)

Figure 8: Test Case H4 results. Upper figure: the original cells. Lower figure:
the cells with the box covering.



OREN E. LIVNE: CLUSTERING STATUS REPORT 1 17

5 Conclusions

We examined the behavior of the Berger-Rigoustos clustering algorithm on
a battery of test cases. The main findings are as follows.

• The results reported in [BR91],[JBW94] have been reproduced, at least
qualitatively (missing details and wrong data in the papers make it hard
to compare bit-by-bit, but the pictures of box covering look similar in
our results and the papers’ results).

• The algorithm’s objective is to maximize efficiency (Objective 1). Given
a minimum efficiency threshold, the algorithm attained it in all test
cases except H3, and in many cases, yielded yet a much higher effi-
ciency. Objective 5 (making the boxes as cubical as possible) has been
implicitly implemented in the algorithm, making sure that box dissec-
tions are to be preferred in the “longest edge dimension”. The results
show that the average ratio of edge lengths is not very small (typically,
around .5), which can be considered a “good value” of this measure.

• The algorithm produces very small boxes, for almost all cases (the
minimal box size is 1, mostly). Also, there is no limit on the maximum
box volume. The algorithm should be modified to fit our needs. Control
parameters for the minimum and maximum box sizes should and can
be specified (this will appear in a next report on this subject).

• The minimum distance of flagged cells from the boundary is of course
zero in this algorithm, that uses tight bounding boxes whenever it can,
to maximize efficiency. A pre-processing phase of “dilating” the flagged
cells areas can solve this problem to obtain Objective 4.

References

[BR91] M. J. Berger and I. Rigoustos. An algorithm for point clustering
and grid generation. IEEE. Trans. Sys. Man Cyber., 21 (5):1278–
1286, 1991.

[JBW94] J. Saltzman J. Bell, M. J. Berger and M. Welcome. Three-
dimensional adaptive mesh refinement for hyperbolic conservation
laws. SIAM. J. Sci. Comput., 15 (1):127–138, 1994.


