
1

A Ray Tracing based Virtual Reality Framework for

Industrial Design

Ingo Wald, Carsten Benthin‡¦, Alexander Efremov†, Tim Dahmen¦, Johannes Günther†,
Andreas Dietrich‡, Vlastimil Havran†, Hans-Peter Seidel†, Philipp Slusallek‡

UUSCI-2005-009

Scientific Computing and Imaging Institute
University of Utah

Salt Lake City, UT 84112 USA

December 6, 2005

Abstract:

Computer Aided Design (CAD) and Virtual Reality (VR) are becoming increasingly important tools
for industrial design applications. Unfortunately, there is a huge and growing gap between what
data CAD engineers are working on, what rendering quality is needed by designers and executives
to faithfully judge a design variant, and what rendering capabilities are offered by commonly
available VR frameworks. In particular, existing VR systems cannot currently cope with the
accuracy demanded by CAD engineers, nor can they deliver the photorealistic rendering quality
and reliability required by designers and decision makers. In this paper, we describe a ray tracing
based virtual reality framework that closes these gaps. In particular, the proposed system supports
direct ray tracing of trimmed freeform surfaces even for complex models of thousands of patches,
allows for accurately simulating reflections and refraction for glass and car paint effects, offers
support for direct integration of measured materials via Bidirectional Texture Functions (BTFs),
and even allows for soft environmental lighting from high dynamic range environment maps. All of
these effects can be delivered interactively, and are demonstrated on a real-world industrial model,
a complete Mercedes C-class car.

¦ Carsten Benthin and Tim Dahmen area associated with inTrace GmbH, Saarbrücken, Germany

† Alexander Efremov, Vlastimil Havran, and Hans-Peter Seidel are members of the Max Planck Institute für Informatik, Saarbrücken, Germany

‡ Carsten Benthin, Andreas Dietrich, and Philipp Slusallek are affiliated with Saarland University, Saarbrücken, Germany



SCI Institute, University of Utah Technical Report UUSCI-2005-009

A Ray Tracing based Virtual Reality Framework for
Industrial Design

Ingo Wald×� Carsten Benthin‡� Alexander Efremov† Tim Dahmen� Johannes Günther†

Andreas Dietrich‡ Vlastimil Havran† Hans-Peter Seidel† Philipp Slusallek‡

×SCI Institute †Computer Graphics Group ‡Computer Graphics Group �inTrace GmbH
University of Utah MPI Informatik Saarland University Schützenstrasse 3-5

Salt Lake City, UT, USA Saarbrücken, Germany Saarbrücken, Germany Saarbrücken, Germany

Figure 1: Several example screenshots from our framework, demonstrated on a complex Mercedes C-Class model: a.) The model
consists of 320,000 Bézier patches and thousands of trimming curves that are directly and interactively ray traced without triangulation.
b.) The model with ray traced shaders for e.g. glass and car paint, put into some nice environment made up of 200,000 triangles
and a captured HDR environment map. Note the accurate reflections, the refraction through the glass, and the smooth shadows from
environment lighting. c.) The realistic interior appearance is achieved via a shader supporting Bidirectional Texture Functions (BTFs)
of measured samples from the corresponding real-world materials. d.) All these effects work together seamlessly, as can be seen on this
view through the side window. At slightly reduced quality during interaction (see below), these views render at 20+, 14, 1.5, and 4.8
frames per second at 640×480 pixels, respectively.

Abstract
Computer Aided Design (CAD) and Virtual Reality (VR) are becoming increasingly important tools for indus-
trial design applications. Unfortunately, there is a huge and growing gap between what data CAD engineers are
working on, what rendering quality is needed by designers and executives to faithfully judge a design variant, and
what rendering capabilities are offered by commonly available VR frameworks. In particular, existing VR systems
cannot currently cope with the accuracy demanded by CAD engineers, nor can they deliver the photorealistic
rendering quality and reliability required by designers and decision makers.
In this paper, we describe a ray tracing based virtual reality framework that closes these gaps. In particular, the
proposed system supports direct ray tracing of trimmed freeform surfaces even for complex models of thousands of
patches, allows for accurately simulating reflections and refraction for glass and car paint effects, offers support
for direct integration of measured materials via Bidirectional Texture Functions (BTFs), and even allows for
soft environmental lighting from high dynamic range environment maps. All of these effects can be delivered
interactively, and are demonstrated on a real-world industrial model, a complete Mercedes C-class car.

1. Introduction

Computer Aided Design and Virtual Reality are becoming
increasingly important tools for industrial design applica-
tions. In particular large and high-end engineering projects
such as cars or airplanes are already engineered almost en-
tirely digital, as the cost for building physical mockups of
such objects is very high. In practice however, this digital
design is not as simple as it might first seem, as there are
several problems and complication arising from conflicting
demands of the different groups involved in such a project,

namely CAD engineers, designers, VR specialists, and com-
pany executives.

CAD Engineers work on the raw geometric data of the
model, usually using freeform data such as NURBS Sur-
faces [PT97]. The main objective of the CAD engineer is
to model the individual geometric components of the car,
and to perform evaluations like stress analysis, crash tests,
or assembly simulation. For that reasons, CAD engineers
are mostly interested in the highest possible geometric ac-



2 Wald et al. / A Ray Tracing based Virtual Reality Framework for Industrial Design

curacy, as e.g. an assembly simulation can easily produce
wrong results when working on approximated data. Photore-
alistic rendering quality is usually not an objective for CAD
designers – in fact, most of their tools do not even support
reasonable material properties or even texture coordinates.

Designers: In contrast to CAD engineers, designers are
usually interested in producing photorealistic results. As de-
signers are responsible for the eventual look of the car to the
customer, they strongly depend on the ability to predict how
the model will eventually look in reality. For this reason, de-
signers are usually interested in the highest rendering quality
possible, and are particularly interested in realistic surface
appearance, lighting effects like shadows, (accurate!) reflec-
tion and refraction, and if possible even global illumination.

Decision makers use visualizations – supplied by the de-
signers or VR specialists – to evaluate and judge different
variants of a model. As a decision for or against a certain
variant may have significant financial consequences, deci-
sion makers require that what they see in VR is faithful to
reality, and that both the geometry as well as the model ap-
pearance is as accurate as possible. Additionally, they are
often neither computer specialists nor graphics experts, and
thus have to take their decisions solely based on what they
are being shown by the VR specialists.

VR Specialists have the task of taking the data prepared
by CAD engineers and designers, and generating an interac-
tive visualization for the decision makers. Unfortunately, the
above-mentioned goals – high accuracy, high realism, and
high performance – are in stark conflict to each other: In or-
der to satisfy the interactivity constraints, virtually all of to-
days VR systems are built on triangle rasterization. With that
however, rendering complete models at full accuracy is not
possible, as freeform surfaces cannot be rendered directly,
and the amount of triangles generated by a high-quality tes-
sellation is in the order of tens of millions of triangles. Thus,
VR specialists usually deliver their presentation on specially
prepared “VR models” of the real data. In the best case, this
involves a lot of various tools and manual effort for convert-
ing the model, tesselating, simplifying, removing invisible
parts, and for fixing polygon orientations, degeneracies, and
surface cracks, etc. In the worst case, this leads to costly re-
modeling a completely new, simpler version of the original
CAD model.

Apart from lack of geometric accuracy, existing VR tools
also fail to deliver the realism required by designers and de-
cision makers. Whereas designers often make use of offline
rendering processes, VR specialists have to deliver realtime
frame rates, and thus often rely on approximations, manual
model tuning, and “hand-painting” special textures to create
reasonably nice images. Here as well, this “model prepara-
tion” step involves many different tools, complex workflows,
and lots of manual effort. In practice, such model preparation
is usually measured in “person weeks”.

1.1. Limitations and Demands of Industrial VR

This process of working on specially prepared VR models
is currently state of the art in industry, but has several im-
portant drawbacks: First, preparing these special VR models
takes time, so changes to the original model may take several
days before they can be shown in a VR presentation. This of-
ten leads to decision makers looking at outdated model vari-
ants. Apart from this “latency” issue, the personnel cost for
the same tedious model preparation has to be spent anew for
each iteration cycle. Finally, the qualitative limitations of ex-
isting, rasterization-based VR systems usually fail to deliver
the realistic appearance that designers and decision makers
depend on, potentially leading to suboptimal decisions, or
requiring the construction of costly physical mockups.

1.2. Outline

In this paper, we describe a ray tracing based Virtual Reality
framework that starts to close the gap between engineers, de-
signers, and Virtual Reality. In particular, the proposed sys-
tem supports direct ray tracing of trimmed freeform surfaces
even for complex models of thousands of trimmed patches,
allows for accurately simulating reflections and refraction
for glass or car paint effects, allows for soft environmental
lighting from high-dynamic range environment maps, and
even offers support for direct integration of measured mate-
rials via Bidirectional Texture Functions (BTFs). All of these
effects can be delivered interactively, and will be demon-
strated on a real-world industrial dataset, a complete Mer-
cedes C-class model (see Figure 1).

In the following, these individual components will be dis-
cussed and assembled step by step: Section 2 briefly sketches
the freeform ray tracing module we use for rendering the
base geometry. Following this, Section 3 discusses the glass
and car paint shaders used for generating a realistic outside
appearance, while Section 4 describes how smooth shadows
from environmental lighting are generated. Section 5 then
discusses how a high-quality car interior is achieved by using
ray traced Bidirectional Texture Functions (BTFs), followed
by some notes on our hardware setup and overall system per-
formance in Section 6. Finally, in Section 7 we conlude with
a discussion of some limitations – and potential extensoins –
of our approach.

2. Freeform Ray Tracing for Real-World Data Sets

Before we can look into realistic surface appearance, we
first have to be able to render the original model. In prac-
tice, this usually means supporting NURBS surfaces, as
these – due to useful geometric properties and a com-
pact representation – are the de-facto standard used by
CAD engineers. In the last two decades researchers have
proposed several approaches for ray tracing NURBS sur-
faces [SB86, PSL∗99, MCFS00, WSC01], but due to the
high cost of evaluating the NURBS equations this is usually

SCI Institute, University of Utah. Technical Report Number UUSCI-2005-009



Wald et al. / A Ray Tracing based Virtual Reality Framework for Industrial Design 3

too slow for interactive performance. More recently Benthin
et al. [BWS04] have presented a framework for interactive
ray tracing of bicubic Bézier patches, that allowed for in-
teractive performance even on a single CPU. Essentially, we
build on a (significantly modified) variant of that framework.

2.1. NURBS to Bicubic Bézier Conversion

Since we only supports bicubic patches, we first convert the
NURBS surface to an arbitrary-degree, rational Bézier rep-
resentation, which can be done without any loss of accu-
racy [PT97]. This is achieved by increasing the multiplicity
of each knot in the knot vectors of both parameter direc-
tions to the order of the NURBS surface in the correspond-
ing parameter direction [PT97, Efr05]. The given model for-
tunately contains only non-rational surfaces, so no special
handling of the rational part was necessary.

As our framework only supports non-rational Bézier
patches of degree 3× 3, the degree of each Bézier patch
must then be either reduced or elevated, depending on the
initial degree of the patch. This degree reduction of course
may lead to a certain loss of accuracy, which is handled by a
user-specified tolerance threshold: If the degree of a Bézier
patch cannot be reduced without preserving the patch geom-
etry below the tolerance threshold, the initial Bézier patch
must be subdivided in the direction where the Bézier reduc-
tion step failed. Based on a given error threshold, this degree
reduction is then applied recursively to each of the obtained
subpatches. The same strategy can also be used for convert-
ing the contour trimming curves, which are given by (2D)
NURBS curves in the surface’s parameter domain.

In our example of the C Class, the original model con-
sists of a total of 69,067 NURBS surfaces with 392,491
2D NURBS curves that form 73,749 trimming contours.
Converting first yields 308,095 Bézier patches of arbitrary
degree, which after degree reduction with error threshold
yields 319,340 bicubic Bézier patches (see Figure 2). The
resulting number of trimming curves in the model is 1.46
million, i.e., an average of 5 trimming curves per patch.

Obviously, approximating NURBS surfaces by bicubic
Bézier patches also involves a certain loss of accuracy, and
thus seems to conflict with our goal of working on the orig-
inal CAD data. Nevertheless, typical NURBS ray tracing
algorithms [SB86, MCFS00, PSL∗99] are approximative in
nature as well. Additionally, we already achieve significantly
higher accuracy than a triangulation, as 320,000 smooth
Bézier patches obviously achieves a significantly higher ac-
curacy as representing the same model with a million tri-
angles only. In particular, smooth Bézier patches allows for
zooming onto the surface without eventually seeing the tri-
angular discretization at the silhouettes. Additionally, as the
trimming curves are fully integrated into the rendering pro-
cess, we do not have to cope with all the problems that usu-
ally arise from finding nice triangulations along the trim-
ming contours. Finally, the main strength of that approach is

Figure 2: The Mercedes C class model used in our ex-
periments consists of 69,067 trimmed NURBS patches with
392,491 2D NURBS trimming curves, which we represent
using 319,340 million trimmed Bézier patches with 1.4
million Bézier trimming curves. Left: Final model. Right:
Color-coded Bézier patches showing the amount of geomet-
ric complexity. Note that the colored regions do not represent
a tesselation, but a smooth Bézier patch each. On a single
PC, the views on the left render at 0.86 and 3.01 frames per
second at 640×480 pixels, respectively.

its full automatic: Whereas triangulation often require man-
ual user intervention – i.e., for tuning parameters and fix-
ing cracks, degeneracies etc in the triangulated surface – our
framework is a fully automatic batch process that requires
no user intervention at all.

2.2. Efficiently Ray Tracing the Freeform Model

Once the Bézier representation is generated, that represen-
tation is fed into the Bézier ray tracing plugin. Though
this framework builds on earlier work on Benthin et
al. [BWS04], this original framework eventually turned out
to be quite problematic for a real-world data set such as the
C class model. While this original framework was already
used for scenes with thousands of patches, the C class model
turned out to be much more complicated, mainly due to the
excessive number of trimming curves, multiple patches over-
lapping and intersecting themselves, and untrimmed patches
being very large in relation to their eventual trimmed coun-
terparts. For example, the high accuracy requirements re-
sulted in a high patch refinement level that got quite costly.
Second, most of the traversal steps were performed on the
patch level, which – as overlapping patches have to be in-
tersected one after another – resulted in a huge amount of
traversal steps. This is particularly annoying if these costly
traversals then result in a hitpoint outside the trimming do-
main. Finally, the original system already supported trim-
ming curves, but was optimized for only one or two trim-
ming curves per patch, and could not cope with the huge
amount of trimming curves in the C class model.

As a result, the existing system was completely re-

SCI Institute, University of Utah. Technical Report Number UUSCI-2005-009



4 Wald et al. / A Ray Tracing based Virtual Reality Framework for Industrial Design

engineered. It now combines the original approach of Ben-
thin et al. [BWS04] with some ideas from ray-tracing
NURBS by Martin et al. [MCFS00]: Instead of performing
a fixed number of de Casteljau subdivisions during traver-
sal [BWS04], we now also use Newton-Iteration for com-
puting the ray-patch intersections. In order to obtain good
start values for the Newton Iteration, we follow Martin at
al. [MCFS00] and – before rendering – subdivide the Bézier
patches into multiple “sub-patches”, that are then organized
in an additional index structure. Generating subpatches for
our 319,340 Bézier patches yields 1.2 million bicubic sub-
patches, whose accuracy clearly exceeds the roughly 1 mil-
lion triangles in the triangulated counterpart of that model.

Instead of using a bounding volume hierarchy for these
subpatches we use kd-trees, which allows for reusing the
fast traversal algorithms as proposed by Wald et al. [Wal04].
In particular for regions where multiple patches overlap, we
now no longer have to traverse each of these patches sepa-
rately, but rather perform a single traversal in the 3D kd-tree,
and for each encountered subpatch only have to perform the
final Newton Iteration.

Once a hitpoint on the (untrimmed) Bézier patch is found,
the trimming curves have to be evaluated. As in the given
model some patches have up to several hundred trimming
curve segments, an additional hierarchy was required for de-
termining the trimming curves as well, which is realized by
yet another (2D) kd-tree. Of course, we follow Martin et al.,
and determine completely trimmed patches before building
the 3D kd-tree. Also, when building the kd-tree we are taking
care to consider the trimming curves when computing the
bounding box of the subpatch, which minimizes the number
of subpatch intersections that later on get trimmed anyway.

Even with all these optimizations, ray tracing the C class
model is still quite costly, due the huge geometric complex-
ity and the large number of trimming curves (see Figure 2).
Nevertheless, we still achieve interactive performance: On
one dual 2.43GHz Opteron PC, we achieve 0.86 respectively
3.01 frames per second for the interior respectively exterior
view shown in Figure 2. Note that the interior view in Fig-
ure 2 is one of the most costly views at all, due to the huge
number of patches on the steering wheel, radio, and air vents.

3. Realistic Surface Appearance

Since we can now accurately render the original CAD ge-
ometry we geometry, we next focus on realistic material
descriptions. Because ray tracing accurately simulates the
physics of light transport and automatically accounts for
global effects like reflections etc., we can fully concentrate
on local material descriptions, which are realized via indi-
vidual ray traced surface shaders.

Figure 3: As most of a car’s outside body consists of car
paint, a realistic representation of that material is quite im-
portant. Left: Car with a typical Phong shader, illuminated
by the HDR environment map. Right: With a ClearCoat
shader that simulates Fresnel effects in the car paint and
computes the resulting reflections. Note the accurate reflec-
tions (as opposed to a reflection map), as well as the varying
reflectivity depending on the viewing angle.

3.1. Car Paint

As most of a car’s outside is made up of car paint, a realistic
appearance of this material is obviously important. Car paint
can have a wide range of appearances, including as diverse
ingredients as pearlescence and sparkling effects [EKM01].
However, not all of these effects are equally important. One
of the most obvious effects of car paint is its high specular-
ity, which usually results in the car reflecting reflecting the
environment. In typical VR systems, this is usually achieved
by a highly specular Phong or ClearCoat [Sil98] shader with
an appropriately chosen environment map.

Unfortunately, reflection maps usually result in significant
artifacts, due to their “infinite distance” assumption that is
violated by nearby geometry. This is particularly the case
for highly curved regions such as at the fenders or door han-
dles. Additionally, the infinite distance assumption makes re-
flection maps notoriously hard to use for the interior, where
special reflection maps have to be computed for each object
supposed to be be reflective. Furthermore, reflection maps
do not allow for self-reflections, which is particularly prob-
lematic for e.g. the hood, which when standing in front of a
car usually reflects the roof and windscreen (see Figure 3).
Reflection maps must also account for reflection of nearby
geometry such as the street or nearby cars. Thus reflection
maps must be carefully constructed anew for each environ-
ment, and often have to be manually edited using PhotoShop
to look good. This process can become quite costly.

As our framework is built on a ray tracer, these limita-
tions obviously can be removed by computing real, accurate
reflections. In order to improve realism, we usually surround
the car by fully modeled environments. We still use an en-
vironment map for distant geometry such as the sky, but –
due to a ray tracers good scalability in geometric complex-
ity – can represent a large part of the environment by real
geometry. Of course, we can easily switch between different
environments during runtime, and all reflections will be fully
accurate and correct any time, without any manual effort.

The reflectivity of car paint varies depending on the an-

SCI Institute, University of Utah. Technical Report Number UUSCI-2005-009



Wald et al. / A Ray Tracing based Virtual Reality Framework for Industrial Design 5

gle at which the surface is seen, which cannot be captured
with a standard Phong material model. For this reason, we
use a shader based on a slightly more accurate variant of
the “ClearCoat” model [Sil98], which essentially simulates
a small layer of glass (the transparent coating) on an other-
wise Phong-style material. The angular dependent reflectiv-
ity then is a result of the Fresnel factors for the coating. As
all physical formulas for that are well known, implementing
this “car paint” shader was straightforward.

Obviously, this relatively simple model for car paint is still
not perfect. For example, we currently support neither glossy
reflections nor pearlescence or sparkles, either. However, in
practice the current set of effects has shown to be sufficient.
The difference between our model and a Phong shader can
be seen in Figure 3. Note that though these effects seem very
subtle (in particular for still images and when printed on pa-
per), there was explicit user demand for these features.

3.2. Glass

Of even higher importance for design reviews, in particular
for cars, is Glass. Many other materials can – at least after
enough manual tuning and hand-painting of textures – still
be reasonably well represented by appropriately textured
Phong models or specially designed programmable surface
shaders. For glass however, this is not the case.

Glass is recursive in nature, as the color seen by an in-
coming ray hardly depends on the hit object at all, but al-
most entirely on what is seen in the reflected and refracted
directions. Thus, rendering realistic glass with anything but
a recursive ray tracing is next to impossible. For this reason,
in typical VR systems glass is usually modeled by a sim-
ple mostly-transparent plane, with a slight gray-blue tint to
make the glassy object visible at all.

This simplistic model is still state of the art in most of to-
days VR systems, but is mostly useless for reliable design
decisions. In particular for glass, even very subtle effects,
such as its slight reflectivity, can have a critical influence.
For example, reflections of bright parts in the windshield or
side windows can have significant security issues (e.g., glare,
occlusion, or distraction). Accurately simulating such effects
– in particular during interaction, where different configura-
tions can be evaluated from different views – are extremely
important for designers. In practice this is particularly im-
portant for the head and rear lights of the cars, due to the
complex optical light paths inside these objects. However,
a physically correct simulation of glass is impossible with
current state-of-the-art VR systems.

For a ray tracer on the other side, glass is a pretty straight-
forward material to compute: It requires neither shadow rays
nor costly texture operations, its physical behavior is well
understood, and essentially only at most two new rays (for
reflection and refraction) have to be shot. For this reason,
Glass simulation was one of the first industrial applications

Figure 4: Realistic simulation of glass effects has a strong
impact on the level of realism of a rendered image. Left:
Rendering glass materials as semi-transparent surfaces as
usually done in rasterization-based systems. Right: With a
physically correct, ray traced glass shader. Top: View from a
drivers seat (effect slightly emphasized to reproduce on pa-
per). Bottom: View from the outside.

for realtime ray tracing [BWDS02]. Essentially, we use ex-
actly the same implementation, except for a few minor opti-
mizations and integration into a new framework. All the ef-
fects described in [BWDS02] – reflection, refraction, Fres-
nel terms, and termination of low-contributing paths – are
supported in our current framework as well.

The impact of a realistic glass simulation can be seen
in Figure 4, which compares the rendering quality of our
ray traced glass shader with the quality as achieved by
a semi-transparent plane as used in standard VR systems.
Unfortunately, we cannot demonstrate this effect for the
lights as well – though our system handles lights perfectly
well [BWDS02], geometric data for the lamps unfortunately
was not available for this model.

4. Smooth Shadows and HDR Environmental Lighting

Apart from materials, a realistic appearance of a car also also
depends strongly on the incident illumination. For data sets
such as cars the most natural source of illumination is its
surrounding environment. For a clear, sunny sky, such illu-
mination can be simulated by just placing a single directional
light source into the respective direction.

However, in reality illumination usually is much more
complex, resulting in smooth shadows and other effects. Be-
cause soft shadows are costly to compute, typical VR sys-
tems either use sharp shadows only (if at all), or confine
themselves to a “hand-painted” shadow texture placed below
the car. Of course, both methods again involve manual effort,
have to be re-done for every change of the environment, of-
ten create inconsistencies between the shadows shown and
the shadows as expected by the given environment, and gen-
erally fail to produce realistic appearance.

SCI Institute, University of Utah. Technical Report Number UUSCI-2005-009



6 Wald et al. / A Ray Tracing based Virtual Reality Framework for Industrial Design

Figure 5: Smooth environmental lighting: Left: Using 3 samples only, producing sharp shadows. Center: With interleaved
sampling and discontinuity buffering, at ∼8 frames/s. Right: After accumulation. Also note the shadows in the background.

4.1. Discretizing Environmental Lighting

For this reason, we have chosen to equip our framework
with a module for environmental lighting from an HDR en-
vironment map in the spirit of [KK03, ARBJ03]. In particu-
lar, this module is designed to work fully automatically, and
without any user invention except for specifying the environ-
ment map to be used. The respective “light shader” will use
the same (high-dynamic range) environment map that is also
used for rays that do not hit any geometry. Thus, the shadows
always stay consistent with the chosen environment.

Unfortunately, producing smooth environmental lighting
by randomly sampling an environment map often produces
Monte Carlo noise [ARBJ03]. It is also quite costly due to
the large number of samples required to reduce the noise.
For that reason, we have chosen to discretize the illumina-
tion from the environment by (automatically) placing “vir-
tual directional lights” in the spirit of [ARBJ03, KK03] that
are then used to illuminate the scene (see Figure 5 below).

In order to support progressive accumulation (see below)
for each loaded environment map we generate N such sam-
ples in a progressive way, i.e., one can always take the first k
of these N samples, and – by simply scaling their power by
N
k – can use these k samples to get a coarser but nonetheless
consistent representation of the environmental illumination.

4.2. Interleaved Sampling and Discontinuity Buffering

For reasonable quality of the environmental lighting, at least
20 to 40 samples would have to be computed, and really
high-quality images would require even more samples. Un-
fortunately, due to the high cost of tracing the corresponding
shadow rays, even using only 20 samples per pixel is not
affordable during interaction.

To maintain interactive performance, we use inter-
leaved sampling and discontinuity buffering as origi-
nally proposed for the Instant Global Illumination method
[WKB∗02, BWS03]. In that approach, not every pixel com-
putes every shadow sample, but every other pixel in a 3×3 or
5× 5 pattern uses a different set of shadow samples, whose
results are then combined in an a-posteriori filtering step. As
this filtering step only filters the irradiance (and not the fi-
nal pixel colors), and additionally restricts filtering to pixels

whose hitpoints pass certain continuity criteria, blurring over
material or geometric discontinuities is minimized. Note that
this technique was also already used in [KK03].

Using this method, the effective number of samples used
per pixel after filtering is 9 respectively 25 times the num-
ber of shadow rays cast for each individual pixel, achieving
nearly the same quality as when actually using that many
samples per pixel. Thus, a reasonably good quality can be
achieved even during interaction, where only a few (2–5)
samples are affordable per pixel (see Figure 5).

As soon as camera motion stops, we perform the usual
trick of progressively improving image quality by computing
successive images of the same viewpoint with new random
samples, and accumulating the resulting images.

In summary, with only 3–5 samples we achieve reason-
ably smooth shadows for environmental lighting even dur-
ing interaction, and high-quality shadows after accumulating
only a few frames (see Figure 5). In practice, this has shown
to not be a problem, as the coarser shadow quality without
accumulation is less perceptible during interaction. Note that
the shadows computed by our method not only comprise the
shadows of the car cast onto the floor, but, of course, also
include the shadows the environment and the car casts onto
themselves, respectively.

5. Support for Measured Real-World Materials using
Bidirectional Texture Functions

While the outside appearance can be reasonably well han-
dled with the techniques described above, the cars interior
is more complex, including materials such as cloth, (struc-
tured) plastic, carpet, metal, leather, and wood. Most auto-
motive companies have extremely high quality requirements
for realistically rendering “their” materials, which cannot be
satisfied using a common Phong reflection model with tex-
tures. Even bump mapping can only insufficiently capture
the intricate lighting effects happening at the microstructure
level of these materials. Thus, there is huge demand to ac-
quire the surface appearance of samples of the real-world
materials, and use those during rendering.

SCI Institute, University of Utah. Technical Report Number UUSCI-2005-009



Wald et al. / A Ray Tracing based Virtual Reality Framework for Industrial Design 7
t=90

t=75

t=60

t=45

t=15

u=360u=180u=0

Figure 6: Quadrilinear interpolation for reconstructing a
smooth representation from the sampled BTF using succes-
sive linear interpolation in each dimension. This example
shows a two-dimensional example, while the BTF interpola-
tion across two directions is four-dimensional.

5.1. Bidirectional Texture Functions

Unfortunately, measured BRDF data assumes a homo-
geneous surface, and cannot capture the complex sur-
face patterns of the materials we are most interested in.
Thus, Dana et al. [DvGNK99] have proposed to sample
the texture of the material for many different light- and
viewing-directions, yielding the so-called Bidirectional Tex-
ture Functions (BTFs). This approach has later been refined
by Meseth et al. and Müller et al. [MMS∗04], who proposed
to compress the BTFs using clustered principle component
analysis (PCA) [MMK03], and who presented an automatic
BTF acquisition setup.

For the given Mercedes C-Class model, all of the sur-
faces had already been scanned by Bonn University in the
course of the RealReflect project [Rea, MMS∗04], and the
resulting BTF data has been made available to us, courtesy
of DaimlerChrysler AG. These BTFs are originally given
as 256× 256 pixel textures for every combination of the
81× 81 samples of the viewing and incident lighting di-
rections. Due to the HDR acquisition process, each of these
256× 256× 81× 81 samples contains an RGB float triple.
This huge amount of data (12GB per material) is compressed
using clustered PCA [MMK03] with 32 clusters and 8 com-
ponents per cluster. In addition to a reference to one of the
PCA clusters, each of the 256× 256 texels contain the 8
float weights for reconstructing the PCA, while each of the
32 clusters contains eight 81×81-dimensional base compo-
nents, resulting in only roughly 24 Megabytes per material.
During rendering, the BTF data for each (u,v,ωi,ωo) sample
is then decompressed on the fly from that PCA data.

5.2. Smooth Reconstruction using Quadrilinear
Interpolation

Unfortunately the data set contains only values for 81× 81
discrete (ωi,ωo) pairs. Thus, for any two given view and
light direction during rendering, some value has to be recon-
structed from these spares samples. With only 81 samples
on the hemisphere, simply taking the nearest available sam-
ple yields severe discretization artifacts. To obtain visually
pleasing results, it is therefore required to smoothly interpo-
late the data from multiple adjacent sample directions.

The BTFs are sampled on a hemisphere, which is
discretized in θ direction into 15 degree steps, at θ =
0,15,30,45,60,75 degrees. The BTF does not actually rep-
resent a discretized BRDF fr(x,ωi,ωo), but rather its cosine-
weighted counterpart fr(x,ωi,ωo)cosθi. Thus, for the θ =
90 ring all samples are zero, and are not stored.

The φ discretization on each such θ ring is chosen propor-
tional to sin(θ), ranging from 24 15-degree steps for θ = 75,
to a single sample at the pole (see Figure 6). This highly ir-
regular sampling complicates bilinear interpolation (see Fig-
ure 6). We experimented with both a triangulating of the
sample points, and with weighted distance interpolation, but
have finally chosen to first linearly interpolate on each of the
two nearest θ rings, and then to interpolate the result in θ

direction, yielding a smooth reconstruction.

Unfortunately this bilinear interpolation is very costly:
First, determining the correct sample indices and weights is
costly, since many special cases have to be considered for
each lookup (e.g., the missing samples for θ > 75). Second,
extracting a sample from the BTF dataset requires a costly
PCA-decompression for each sample (i.e., accumulation of
several terms addressed though many indirections). Third,
we have to smoothly interpolate for both in- and outgoing
direction, and thus have to perform a quadrilinear interpola-
tion, i.e., we have to perform these costly PCA lookups 16
times for each pair of directions, and filter the resulting 16
values. Finally, as the incident direction ωi varies for each
light source, this costly procedure has to be performed anew
for every light source. As a result, the BTF shader is ex-
tremely costly, and the weighting of the light samples is of-
ten more expensive than shooting the shadow ray itself.

5.3. Interior Lighting

As discussed in the previous section, we use environmental
lighting or the car to produce a realistic model appearance
on the outside. For the interior of the car, one would actually
have to compute a full global illumination solution. In prin-
ciple, it would be possible to use an interactive global illumi-
nation algorithm as proposed in [WKB∗02, BWS03]. These
methods however are specially optimized for mostly-diffuse
scenes, and do not easily work for as complex shaders (glass,
BTFs) as used in our framework. Furthermore, the complex
lighting in the car interior would require too many virtual
light source for achieving reasonable quality, which would
probably not allow for interactive performance any more.

Precomputing global illumination using a Radiosity
method [CW93] is not helpful either, as Radiosity is a di-
rectionally independent quantity, and is thus useless for il-
luminating BTFs. Precomputed Radiance Transfer meth-
ods [SKS02, KSS02, DAK∗04] might be a reasonably alter-
native, but have never been applied to such models, yet.

For that reason, we have chosen to not yet compute any

SCI Institute, University of Utah. Technical Report Number UUSCI-2005-009



8 Wald et al. / A Ray Tracing based Virtual Reality Framework for Industrial Design

Figure 7: Comparison of using BTFs vs. usual textured
Phong surfaces by a view into the car’s cockpit. Left: Tex-
tured Phong. Right: Using measured BTFs. Top: Entire
cockpit. Bottom: Zoom onto the wood and leather.

global illumination in the car interior, but to confine our-
selves to the direct environmental illumination only, plus a
manually placed point light that “emulates” indirect lighting.
In practice, most of the illumination patterns (such as shad-
ows) are due to direct illumination, anyway, so the level of
realism is still sufficiently high even without supporting in-
direct illumination yet. Nevertheless, in order to remove this
final limitation in physical correctness, we are already look-
ing into precomputing global illumination in a directionally
dependent way. Preliminary results are available and look
promising, but are not yet available for practical use, and
will not be discussed in this paper.

5.4. Results

While the high cost of the BTFs is obviously a strong dis-
advantage, the increased level of realism makes more than
up for that. Figure 7 shows a comparison of the measured
BTF material versus a nicely textured Phong material. Note
that the textures on the textured Phong model have already
been provided with the original model. These are also pho-
tographs from the original materials and have been opti-
mized to produce the highest image quality. Even in com-
parison to this already high quality, BTFs further increase
the quality, in particular for cloth, wood, and leather (see
Figure 7). Though this effect can hardly be seen on printed
paper, it becomes clearly apparent during interaction, in par-
ticular when the viewing and/or lighting directions change.
To our knowledge, this is the first time that BTFs have been
ray traced or used in Virtual Reality at all.

6. Final Integration and Overall Results

In the preceding sections, we have discussed all the individ-
ual components of our framework, starting with directly ray
tracing the complex, trimmed freeform geometry of the car,
over various ray traced surface shaders (including glass and

car paint), an efficient method for computing environmental
illumination, and support for measured materials using bidi-
rectional texture functions.

Using a ray tracing based framework, combining all these
individual effects works mostly automatic: For example, a
view from the inside will not only show the BTFs directly,
but these surfaces will be correctly reflected in the mirrors
or in reflections off the glass. Similarly, the environment –
which is to a large degree modeled by real geometry as well
– will correctly cast smooth shadows like the car as well, and
will be correctly visible through the glass shaders as well as
correctly reflected in the car paint, on the mirrors, etc. Some
examples of the final rendering quality can e.g. be seen in
Figure 8, and on the color page at the end. Note that though
these images look exactly like offline renderings, they can
be computed at interactive rates.

As our entire framework is realized via shaders and plu-
gins into the OpenRT engine [Wal04], all the features of an
existing OpenRT-based VR application are available for our
framework as well. For example, the user can define and use
lighting, geometry, and shading scenarios, can specify and
interactively edit cutting planes, surface shaders, and light
sources, can switch variants and move objects, etc.

6.1. Hardware Setup

As already discussed in the previous sections, the targeted
level of accuracy and quality does not come for free: For as
complex a model as the C class model, the freeform ray trac-
ing incurs a high computational cost (see Section 2), and the
complex shaders used in our framework further add to this
cost. Furthermore, due to the complexity of the used shaders
(e.g., glass and BTFs) we cannot use the fast packet-traversal
code described in [WSBW01], and rather have to use the
slower single-ray traversal code. Finally, the extensive use
of secondary and shadow rays for computing reflections, re-
fractions, and environmental illumination additionally mul-
tiplies the rendering cost. Thus, in order to achieve interac-
tive performance, we use the parallelization framework of
the OpenRT engine, and run our system on multiple PCs.

As a dedicated ray tracing cluster unfortunately was not
available for our experiments, we have taken the commodity
PCs available in our lab, and have used those for our experi-
ments. In particular, we use a mix of 4 dual-3GHz Xeon ma-
chines, 1 quad-2.4GHz Opteron, and 9 various dual-Opteron
machines ranging from 1.8 to 2.4 GHz (30 CPUs total).
All machines are connected via multiple switches, some via
100MBit Fast Ethernet, others via Gigabit. Neither the ma-
chines not the network have been available for the ray tracer
exclusively, and have been in use by others as well.

6.2. Final Performance

Even under these suboptimal conditions, we achieve in-
teractive performance of 1.5 to 20+ frames per second at

SCI Institute, University of Utah. Technical Report Number UUSCI-2005-009



Wald et al. / A Ray Tracing based Virtual Reality Framework for Industrial Design 9

Figure 8: The final system. Top: Driver’s view of the inte-
rior. Bottom: Outside view. Note the smooth shadows, the
correct reflections in the car’s paint, the subtle glass effects
in the windshield, as well as the BTF interior. These views
run at 1.5 and 10+ frames per second at 640× 480 pixels,
respectively. Left: During camera motion. Right: After accu-
mulating several frames.

640× 480 pixels, depending on viewpoint and complexity
of features seen. In particular, the views in Figure 8 can be
rendered at 1.5 and 10+ frames per second, respectively, and
even the accumulated performance is reached after only a
few frames. Note that the interior view is one of the most
expensive views in the entire car. Though this could not be
tested, it can be expected that a dedicated ray tracing cluster,
with better network and available for exclusive use by the
ray tracer, would yield even better results.

Though the compute power accumulated for our experi-
ments at first seems quite considerable, for industrial stan-
dards it is actually not significant. For example, a dedicated
ray tracing cluster of ∼50 dual-Opteron nodes has recently
been set up at a major german car manufacturer, where it
is used to drive a 3200×1200 pixel PowerWall for ray trac-
ing based design reviews. We estimate the compute power of
such a setup to be sufficient for running our complete frame-
work also in fullscreen mode.

7. Discussion

In this paper, we have presented a novel VR framework that
is entirely based on realtime ray tracing, and that particularly
targets a very high level of realism. The presented frame-
work offers direct ray tracing of freeform surfaces, high-
quality rendering of car paint and glass materials, smooth
shadows from high-dynamic range environment maps, and
support for measured materials using BTFs.

7.1. Comparison to Existing VR Solutions

In comparison to existing rasterization-based VR solutions,
the proposed system offers a number of advantages. Di-
rectly ray tracing a freeform model allows for significantly

improved geometric accuracy of up to 1.2 million smooth
Bézier subpatches. Apart from this pure geometric complex-
ity, directly ray tracing the trimmed Bézier patches removes
the need for generating a complex triangulation of the model,
which significantly simplifies the VR workflow.

Using ray traced shaders for e.g. glass and car paint deliv-
ers accurate and reliable images, and for the first time allows
for predictive rendering even during interactive design re-
views. Similarly, smooth environmental illumination greatly
exceeds the realism previously available in VR applications.

All of these features have previously been possible only
during offline rendering and are usually not available in
practical VR systems at all. Though some of these features
are already being worked on also for rasterization hardware
(e.g. [MMK03, GBK04]), but few of such research results
are actually used in industry. Finally, we believe our system
to be the only one to support all of these effects at the same
time and in a fully integrated way.

7.2. Shortcomings and Limitations

Even though the presented system qualitatively exceeds ex-
isting VR solutions, there are also several open issues.

First of all, due to the high computational cost of the
freeform geometry, complex surface shaders, and illumi-
nation effects, our framework is currently restricted to rel-
atively low resolutions (640 × 480) and frame rates (<
10 fps), while already requiring a considerable amount of ag-
gregate compute power. On the other hand, hardware cost is
often one of the lesser problems for industrial applications,
and much larger clusters than the one used in our experi-
ments have already been installed for similar purposes. On
such a hardware platform, it should even be possible to reach
fullscreen resolutions at interactive frame rates. Even so, the
compute power required for driving a fully interactive VR
setup (including high-resolution output devices) is still sig-
nificant, and - in particular - considerably higher than that
for typical non-ray traced VR systems.

Also on the quality side, there is lot of room for im-
provements: For example, the simple logarithmic tone map-
ping used in our system works well in practice, but is
far from “state of the art” in offline rendering technology,
where much better tone mapping algorithms are being used.
Though these tone mapping techniques are well-known, in
particular the global operators are tricky to implement in a
distributed ray tracing system.

Similarly, the car paint shader used in our system is a
rather trivial shader. Much better car paint models – often
generated via acquisition of real car paint BRDFs – are well
known.

Though the quality far exceeds typical VR setups, we do
not offer all the rendering effects that other offline render-
ers use. In particular, not supporting global illumination – in

SCI Institute, University of Utah. Technical Report Number UUSCI-2005-009



10 Wald et al. / A Ray Tracing based Virtual Reality Framework for Industrial Design

particular in the interior of the car - is a severe limitation.
Offline rendering packages typically provide global illumi-
nation effects, and thus generate far more accurate and “pho-
torealistic” images than we do.

Developments into these areas are already under
way. For example, a prototypical implementation of a
precomputation-based technique for rendering the given
model with full global illumination (including caustics,
highlights, glossyness, BTFs, illumination through the wind-
shields etc) is already available [Wal05]. Right now how-
ever this method is not yet fully integrated into the given
system, and some incompatibilities exist. Similarly, in a re-
lated project Günther et al. have shown that much higher
realism for car paint can be realized with a specially de-
signed shader that is based on acquisition, digitalization, and
fitting of real-world car paint samples [GCG∗05]. Both the
DIRmap-technique as well as Günther et al.’s measured car
paint shader have been implemented in the OpenRT system,
and adding them should only be a question of invested pro-
gramming time. So far, however, this integration has not yet
taken place, as end-user demand for adding these two fea-
tures has been quite limited.

7.3. Summary

In this paper, we have proposed a system designed for
ray tracing based VR applications. Though the system still
leaves room for improvements – in both performance and
quality – it for the first time allows for ray traced design
reviews even for complex models composed of thousands
of freeform surfaces. In particular typical ray tracing effects
that are notoriously hard to simulate under VR – i.e., reflec-
tions, refraction, shadowing effects, and Glass – can be sim-
ulated accurately and interactively.

Advanced shading technology – in particular Global Illu-
mination, better tone mapping, and a better car paint model
– are already being developed for this system, and – using
a fully plug-n-play enabled ray tracing engine – should be
relatively easy to integrate into the final framework.

In summary, we reach neither the quality standards of
high-end offline renderers, not the interactivity of standard
VR applications. We do, however, offer significantly more
realistic images than VR applications that are at least close
to offline renderings – and still at interactive rates.

Acknowledgements

This paper would not have been possible without the gra-
cious support of DaimlerChrysler AG, who have provided
the C Class Model in both triangulated and NURBS version,
and who have granted permission to use the measured BTF
data. Second, we would like to thank the RealReflect project,
in particular the Computer Graphics Group at Bonn Univer-
sity, for providing the BTF data and help in numerous ways.

Finally, we have to thank the system administration groups
of the MPI and Saarland University for mustering and pro-
viding the required compute power.

References

[ARBJ03] AGARWAL S., RAMAMOORTHI R., BELONGIE S.,
JENSEN H. W.: Structured Importance Sampling of
Environment Maps. Computer Graphics (Proceed-
ings of ACM SIGGRAPH) 22, 3 (2003), 605–612.

[BWDS02] BENTHIN C., WALD I., DAHMEN T., SLUSALLEK

P.: Interactive Headlight Simulation – A Case Study
of Distributed Interactive Ray Tracing. In Proceed-
ings of the 4th Eurographics Workshop on Parallel
Graphics and Visualization (PGV) (2002), pp. 81–88.

[BWS03] BENTHIN C., WALD I., SLUSALLEK P.: A Scalable
Approach to Interactive Global Illumination. Com-
puter Graphics Forum 22, 3 (2003), 621–630. (Pro-
ceedings of Eurographics).

[BWS04] BENTHIN C., WALD I., SLUSALLEK P.: Interactive
Ray Tracing of Free-Form Surfaces. In Proceedings
of Afrigraph (November 2004), pp. 99–106.

[CW93] COHEN M. F., WALLACE J. R.: Radiosity and Real-
istic Image Synthesis. Morgan Kaufmann Publishers,
1993.

[DAK∗04] DMITRIEV K., ANNEN T., KRAWCZYK G.,
MYSZKOWSKI K. O., SEIDEL H.-P.: A CAVE Sys-
tem for Interactive Modeling of Global Illumination
in Car Interior. In ACM Symposium on Virtual Reality
Software and Technology (2004), pp. 137–145.

[DvGNK99] DANA K. J., VAN GINNEKEN B., NAYAR S. K.,
KONDERINK J. J.: Reflectance and Texture of Real-
World Surfaces. ACM Transactions on Graphics 18,
1 (1999), 1–34.

[Efr05] EFREMOV A.: Efficient Ray Tracing of Trimmed
NURBS Surfaces. Master’s thesis, Computer Science
Department, University of Saarland, 2005.

[EKM01] ERSHOV S., KOLCHIN K., MYSZKOWSKI K.: Ren-
dering Pearlescent Appearance Based on Paint-
Composition Modeling. In Computer Graphics
Forum, Proceedings of Eurographics 2001 (2001),
pp. 227–238.

[GBK04] GUTHE M., BALÁZS A., KLEIN R.: Real-time out-
of-core trimmed NURBS rendering and editing. In
Vision, Modeling and Visualisation 2004 (November
2004), pp. 323–330.

[GCG∗05] GÜNTHER J., CHEN T., GOESELE M., WALD I.,
SEIDEL H.-P.: Efficient Acquisition and Realis-
tic Rendering of Car Paint. In Proceedings of
10th International Fall Workshop - Vision, Modeling,
and Visualization (VMV) 2005 (Erlangen, Germany,
November 2005), Greiner G., Hornegger J., Niemann
H.„ Stamminger M., (Eds.), Akademische Verlagsge-
sellschaft Aka, pp. 487–494.

[KK03] KOLLIG T., KELLER A.: Efficient Illumination by

SCI Institute, University of Utah. Technical Report Number UUSCI-2005-009



Wald et al. / A Ray Tracing based Virtual Reality Framework for Industrial Design 11

High Dynamic Range Images. In EGRW ’03: Pro-
ceedings of the 14th Eurographics workshop on Ren-
dering (2003), Eurographics Association, pp. 45–50.

[KSS02] KAUTZ J., SLOAN P.-P., SNYDER J.: Fast, Ar-
bitrary BRDF Shading for Low-Frequency Lighting
Using Spherical Harmonics. In Rendering Tech-
niques (2002), pp. 301–308. (Proceedings of Euro-
graphics Workshop on Rendering).

[MCFS00] MARTIN W., COHEN E., FISH R., SHIRLEY P.:
Practical Ray Tracing of Trimmed NURBS Surfaces.
Journal of Graphics Tools 5 (2000), 27–52.

[MMK03] MÜLLER G., MESETH J., KLEIN R.: Compression
and Real-Time Rendering of Measured BTFs using
Local PCA. In Vision, Modeling and Visualisation
2003 (November 2003), pp. 271–280.

[MMS∗04] MÜLLER G., MESETH J., SATTLER M., SARLETTE

R., KLEIN R.: Acquisition, Synthesis and Rendering
of Bidirectional Texture Functions. In Eurographics
2004, State of the Art Reports (2004), pp. 69–94.

[PSL∗99] PARKER S., SHIRLEY P., LIVNAT Y., HANSEN C.,
SLOAN P.-P.: Interactive Ray Tracing. In Proceed-
ings of Interactive 3D Graphics (1999), pp. 119–126.

[PT97] PIEGL L., TILLER W.: The NURBS book, 2nd edi-
tion. Springer-Verlag, Inc., 1997.

[Rea] REALREFLECT: The Real Reflect Project.
http://www.realreflect.org.

[SB86] SWEENEY M., BARTELS R.: Ray Tracing Free-Form
B-Spline Surfaces. IEEE Computer Graphics and
Applications 6, 3 (1986), 41–49.

[Sil98] SILICON GRAPHICS, INC.: ClearCoat360. http://-
www.sgi.com/products/software/clearcoat, 1998.

[SKS02] SLOAN P.-P., KAUTZ J., SNYDER J.: Precomputed
Radiance Transfer for Real-Time Rendering in Dy-
namic, Low-Frequency Lighting Environments. In
Proceedings of ACM SIGGRAPH (2002), pp. 527–
536.

[Wal04] WALD I.: Realtime Ray Tracing and Interactive
Global Illumination. PhD thesis, Computer Graph-
ics Group, Saarland University, 2004. Available at
http://www.mpi-sb.mpg.de/∼wald/PhD/.

[Wal05] WALD I.: High-Quality Global Illumination
Walkthroughs using Discretized Incident Radiance
Maps. Tech. Rep. UUSCI-2005-010, SCI In-
stitute, University of Utah, 2005. available at
http://www.sci.utah.edu/∼wald.

[WKB∗02] WALD I., KOLLIG T., BENTHIN C., KELLER A.,
SLUSALLEK P.: Interactive Global Illumination us-
ing Fast Ray Tracing. Rendering Techniques (2002),
15–24. (Proceedings of the 13th Eurographics Work-
shop on Rendering).

[WSBW01] WALD I., SLUSALLEK P., BENTHIN C., WAGNER

M.: Interactive Rendering with Coherent Ray Trac-
ing. Computer Graphics Forum 20, 3 (2001), 153–
164. (Proceedings of Eurographics).

[WSC01] WANG S., SHIH Z., CHANG R.: An Efficient and
Stable Ray Tracing Algorithm for Parametric Sur-
faces. 18th Journal of Information Science and Engi-
neering (2001), 541–561.

SCI Institute, University of Utah. Technical Report Number UUSCI-2005-009



12 Wald et al. / A Ray Tracing based Virtual Reality Framework for Industrial Design

Examples

Figure 9: Progressively turning on the features of our framework: a) Freeform model, in plain gray Phong. b) After adding an
environment and assigning the car paint shader, but still with hard shadows and without glass shaders. c) After adding glass
and computing environmental illumination, after accumulation.

Figure 10: Interior of the car modelled via bidirectional texture functions (BTFs). a) Entire cockpit (without external lighting).
b) Zoom onto some wood and leather materials. c) In comparison, the view with textured Phong materials. The distortions in
both variants result from distorted texture coordinates supplied with the model.

Figure 11: Exterior views of the car. Note the smooth shadows and accurate reflections. a) Distant view. b) Closeup, during
user interaction. c) After accumulating several frames.

Figure 12: a) Reflections of the interior in the windshield and side windows, when evaluating effects like glare, occlusion,
or distraction (effects artificially emphasized to reproduce on paper). b) Zoom onto the mirror, during interaction. c) After
accumulating several frames.

SCI Institute, University of Utah. Technical Report Number UUSCI-2005-009


