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Abstract:

Transmission electron microscopy (TEM) provides resolutions on the order of a nanometer. Hence,
it is a critical imaging modality for biomedical analysis at the cellular level. One of the problems
associated with TEM images is variations in brightness due to electron imaging defects or non-
uniform support films and specimen staining. These variations render image processing operations
such as segmentation more difficult. The correction requires estimation of the global illumination
field. In this paper, we propose an automatic method for estimating the illumination field using
only image intensity gradients. The closed-form solution is very fast to compute.
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Abstract

Transmission electron microscopy (TEM) provides resolutions on the order of a nanome-
ter. Hence, it is a critical imaging modality for biomedical analysis at the cellular level.
One of the problems associated with TEM images is variations in brightness due to
electron imaging defects or non-uniform support films and specimen staining. These
variations render image processing operations such as segmentation more difficult. The
correction requires estimation of the global illumination field. In this paper, we propose
an automatic method for estimating the illumination field using only image intensity
gradients. The closed-form solution is very fast to compute.



Chapter 1

Introduction

The field of image processing has made significant progress in the quantitative analysis
of biomedical images over the last 20 years. In certain domains, such as brain imaging,
scientific papers that test clinical hypotheses using sophisticated image filtering and
segmentation algorithms are not uncommon. Compared to the vast amount of research
in medical imaging modalities such as MRI and CT, the number of scientific papers
on electron microscopy applications in the image processing community has been very
limited.

In transmission electron microscopy (TEM), a thin specimen is cut and stained,
then it is suspended in an electron beam. The staining agent, which blocks the electron
beam, is selectively picked up by different structures such as membranes. As a result,
stained structures appear darker which is the source of contrast in TEM images. One of
the problems with TEM images is spatially varying contrast due to non-uniform illumi-
nation. Non-uniform illumination can have many sources: aging filaments, faulty ref-
erence voltages, contaminated apertures, or non-uniform support film fabrication [1].
Subtle electron illumination asymmetries are more evident at moderate-to-low mag-
nifications and are often inadvertently enhanced by digital contrast adjustment. This
effect is similar to the the intensity inhomogeneity problem observed in MRI. The MRI
intensity inhomogeneity problem is manifested as a slowly varying multiplicative field
in the acquired images. Similarly, the non-uniform illumination can be modeled as a
multiplicative effect [2]. The observed image is given as

f(x, y) = s(x, y)I(x, y) + n(x, y), (1.1)

where s is the true signal, I is the non-uniform illumination field and n is additive
noise. The I field varies slowly over the image; in other words, it does not have any
high frequency content.

Removal of non-uniform illumination effects is important for later processing stages
such as image registration based on correlation metrics and segmentation based on in-
tensity thresholding. An automatic correction for non-uniform illumination in TEM
images captured by a CCD camera has been proposed [2]. This approach makes as-
sumptions about the properties of the CCD camera and characteristics of the true signal.
TEM acquired in this way are not as high resolution as TEM images captured directly
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on film and scanned. Hence, the latter is the preferred method of acquisition in most
applications. In this paper, we propose an approach that is applicable in general.

A larger amount of research effort has focused on the intensity inhomogeneity prob-
lem in MRI . Approaches using tissue class information [3] and combining the inho-
mogeneity correction with segmentation [4, 5, 6] have been proposed. Other methods
perform inhomogeneity correction based on intensity gradients and entropy [7, 8, 9].
MRI intensity inhomogeneity correction approaches that rely on parametric class prop-
erties are not useful for TEM images because histograms of cellular TEM images do
not have well separated classes. However, methods based on image gradients are suit-
able for adaptation to TEM images. In this paper, we propose an approach based on
the MRI intensity inhomogeneity correction method of Samsonov et al. [9].
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Chapter 2

Methods

Randall et al. [2] propose a radial model for the illumination. This is motivated by the
observation that the electron beam has a radially symmetric nature. However, the esti-
mation of a radial model requires knowing the precise position of the electron beam’s
center, which is not necessarily the center of the image (see Figure 3.1(c)). In [2], this
is accomplished by the focus adjustment circle that is available on images captured
with a CCD camera. Unfortunately, this focus adjustment circle is not present in TEM
images captured on film and scanned, which is the typical acquisition method as dis-
cussed in Section 1. A more general model is the free-form, bivariate polynomial of
degree N :

Î(x, y) =

i=N
∑

i=0

j=i
∑

j=0

αi−j,jx
i−jyj , (2.1)

where α are the weights on the different monomial terms.
After fixing the degree (N ) of the polynomial model in equation 2.1, estimation

of the non-uniform illumination field is reduced to the estimation of the α parameters.
In [2], a direct estimation of parameters is proposed. This approach requires two as-
sumptions: (i) I is constant over local neighborhoods, and (ii) the mean value of s in
the same local neighborhoods is constant over the entire image. The first assumption
is always valid owing to the physics of TEM imaging; however, the second assumption
fails depending on the type of specimen being imaged. For instance, the large band
structure at the upper left corner of Figure 3.1(a) is darker on average than the rest of
the cells. Next, we describe an indirect method of parameter estimation based on the
intensity gradients instead of intensity means. The advantage of this indirect method is
that the second assumption about the means of s is replaced by a much weaker assump-
tion on its gradients. The main idea behind this method is to choose the α parameters
so that the spatial gradients of the illumination model in equation 2.1 fit the gradients
of I in equation 1.1 as closely as possible. This idea was proposed by Samsonov et
al. [9] for MRI intensity inhomogeneity correction. While our approach is similar, it
differs in two important ways that will be discussed at the end of this section.

The gradient of I , which are needed to fit the model parameters, is not directly
observable. The gradient of the observed signal is ∇f . It has three contributing com-
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ponents:

1. Edges of distinct objects (cells): Large in magnitude; Spatially abrupt (high fre-
quency), but organized geometrically.

2. Gradients due to noise: Varying magnitudes; Spatially abrupt (high frequency)
and unorganized.

3. Gradients of I : Small magnitude and slowly varying (low frequency).

The goal is to eliminate the first two kinds of gradients, and fit the model only to
gradients of I . We begin by convolving the image with a Gaussian kernel:

fσ = (sI)σ + nσ ≈ (sI)σ . (2.2)

If the standard deviation is chosen large enough, we can assume that the remaining
contribution of n in the filtered signal is negligible. Furthermore, the convolution of
the product of s and I with the Gaussian kernel Kσ (equation 2.3) can be rewritten in
a simpler form. Since I is slowly varying, it is approximately constant in the Gaus-
sian kernel’s region of support. Therefore, it can be taken out of the integral yielding
equation 2.4:

(sI)σ (x) =

∫

u

s(x + u)I(x + u)Kσ(u)du (2.3)

≈ I(x)

∫

u

s(x + u)Kσ(u)du (2.4)

= I(x)sσ(x).

In the above equation, we use x to denote the image coordinates (x, y). To transform
the multiplicative nature of the illumination field into an additive one, we now take the
logarithm of the filtered signal:

log fσ = log I + log sσ. (2.5)

Taking the gradient of both sides, we get

∇ log fσ = ∇ log I + ∇ log sσ . (2.6)

The gradient of I can not be isolated exactly from the gradient of sσ ; however, we know
that latter dominates the in pixels where an edge is present. To decrease the effect of
such pixels in the illumination model, we define the weight at pixel i as

wi = exp

(

−
|| ∇fσ,i ||

µ2

)

. (2.7)

This equation assigns monotonously decreasing weights to pixels with larger gradient
magnitudes; the parameter µ controls the rate of decline. By an appropriate choice of
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µ, edge pixels in sσ can be assigned much smaller weights than non-edge pixels. Then,
the model parameters are estimated by minimizing the following energy function:

E(α) =
∑

i

wi

(

(

∂fσ,i

∂x
−

∂Ii

∂x

)2

+

(

∂fσ,i

∂y
−

∂Ii

∂y

)2
)

, (2.8)

where i enumerates all image pixels. The energy is written in terms of the model
parameters α by substituting equation 2.1 for I . This is a least-squares fitting problem
with a closed-form solution. The implementation of the least squares solution is beyond
the scope of this paper. Finally, the corrected image can trivially be computed by
dividing the original image by the estimated illumination field.

The first important difference of our method from the one proposed in [9] is the
method of identifying ∇ log I . In that work, Samsonov et al. use anisotropic diffu-
sion [10] to filter the image. Then, the gradient magnitude image is thresholded to
remove edge pixels. However, anisotropic diffusion is designed to filter piece-wise
constant images. While MRI falls into this category, TEM images of cells (and tex-
tured images in general) violate this principle. Therefore, anisotropic diffusion filtering
is not a viable option for our application. As discussed above, we use Gaussian filter-
ing combined with an appropriate weighting in the energy equation (2.8) to eliminate
gradients due to edges and noise from the polynomial fit.

The second difference is in the use of global histogram information. Samsonov et
al. minimize a weighted combination of the gradient fitting and the energy of the his-
togram power spectrum [9]. The weight for the histogram energy term is negative;
therefore, it is being maximized while the gradient fitting energy is being minimized.
Due to the presence of this non-linear term in the energy, an iterative solution is re-
quired to estimate α. By dropping this term, we obtained an energy (equation 2.8) that
could be solved very fast in a non-iterative (closed-form) manner.
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Chapter 3

Results

Figure 3.1(a) shows a TEM image of a portion of the rabbit retina. Notice that struc-
tures in the right side of the image appear brighter than those on the left. This is due to
non-uniform electron illumination. However, also notice there is a darker band of cells
in the upper-left corner of the image. Since, these cells are sharply darker than their
immediate surroundings, this is not a case of non-uniform illumination. The illumina-
tion corrected image for this 1328× 1069 example takes approximately 10 seconds to
compute on a high-end PC. The corrected image and the estimated illumination field
are shown in Figures 3.1(b) and (c), respectively. Recall that stained cell membranes
appear darker in TEM images than their surroundings. Figure 3.2 shows the results
of a simple thresholding experiment to identify cell membranes. The results with the
illumination corrected image are spatially more consistent.
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(a)

(b)

(c)

Figure 3.1: (a) Original TEM image, (b) same image after illumination correction, (c)
estimated illumination field.
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(a)

(b)

Figure 3.2: (a) Result of thresholding (a) original image, (b) illumination corrected
image.
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Chapter 4

Conclusion

In this paper, we proposed an automatic illumination correction for TEM images that
does not rely on strong assumptions about the true signal. The method draws on ideas
from the MRI intensity inhomogeneity correction method introduced in [9]; however,
it uses a different strategy for identifying image gradients due to non-uniform illumi-
nation that is more suitable for TEM images. Furthermore, we proposed an energy
function with a closed-form solution that can be computed very fast.
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