
1

Volume Rendering of Time-Varying Scalar Fields on

Unstructured Meshes

Fabio F. Bernardon, Steven P. Callahan, Joao L. D. Comba, Claudio T. Silva

UUSCI-2005-006

Scientific Computing and Imaging Institute
University of Utah

Salt Lake City, UT 84112 USA

July 15, 2005

Abstract:

Volume Rendering of time-varying datasets is essential in several scientific applications. Due to the
enormous amount of data involved, in datasets with static sampling regions it is common to consider
only time-varying scalar fields (TVSFs). The use of Vector Quantization (VQ) to compress scalar
fields has been shown to be quite effective when combined with texture-based volume rendering
algorithms for structured grids. In this paper we discuss how to apply VQ to volume render
unstructured grids (meshes of tetrahedra). We extended two of the fastest unstructured grid
algorithms (both use programmable GPUs) to handle time-varying scalar fields, discuss advantages
and disadavantages of each extension, and show results that allows us to interactively render meshes
composed of nearly one million tetrahedra and several hundred time instances.

Volume Rendering of Time-Varying Scalar Fields on Unstructured Meshes

Fábio F. Bernardon 1 Steven P. Callahan 2 João L. D. Comba 1 Cláudio T. Silva 2

1 Instituto de Informática, Federal University of Rio Grande do Sul, Brazil
2 Scientific Computing and Imaging Institute, University of Utah

Figure 1: Different time steps of the SPX dataset.

ABSTRACT

Volume Rendering of time-varying datasets is essential in several
scientific applications. Due to the enormous amount of data in-
volved, in datasets with static sampling regions it is common to
consider only time-varying scalar fields (TVSFs). The use of Vec-
tor Quantization (VQ) to compress scalar fields has been shown to
be quite effective when combined with texture-based volume ren-
dering algorithms for structured grids. In this paper we discuss
how to apply VQ to volume render unstructured grids (meshes of
tetrahedra). We extended two of the fastest unstructured grid al-
gorithms (both use programmable GPUs) to handle time-varying
scalar fields, discuss advantages and disadavantages of each exten-
sion, and show results that allows us to interactively render meshes
composed of nearly one million tetrahedra and several hundred time
instances.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling— Surface and object representations,
geometric algorithms; I.3.3 [Computer Graphics]: Picture/Image
Generation

Keywords: volume rendering, tetrahedral meshes, time-varying
data

1 INTRODUCTION

Advances in computational power are enabling the creation of in-
creasingly sophisticated simulations generating vast amounts of
data. Effective analysis of these large datasets is a growing chal-
lenge for scientists who must validate that their numerical codes
faithfully represent reality. Data exploration through visualization
offers powerful insights into the reliability and the limitations of
simulation results, and fosters the effective use of results by non-
modelers.

However, at this time, there is a mismatch between the simula-
tion capabilities of existing systems, which are often based on high-
resolution time-varying 3D unstructured grids, and the availability
of visualization techniques. In a recent survey article on the topic,
Ma [8] says:

“Research so far in time-varying volume data visualiza-
tion has primarily addressed the problems of encoding

and rendering a single scalar variable on a regular grid.
... Time-varying unstructured grid data sets has been ei-
ther rendered in a brute force fashion or just resampled
and downsampled onto a regular grid for further visual-
ization calculations. ...”

One of the key problems in handling time-varying data is the
raw size of the data that must be processed. For rendering, these
datasets need to be stored (and/or staged) in memory either on main
memory or GPU memory. Data transfer rates create a bottleneck for
the effective visualization of these datasets. A number of successful
techniques for time-varying regular grids have used compression to
mitigate this problem, and allow for better use of resources.

In this paper, we propose an approach that couples the compres-
sion scheme proposed in [11] with rendering techniques proposed
in [1, 2]. In our approach, the data is first compressed using hierar-
chical vector quantization [11], which helps reduce the amount of
data being transferred through the AGP bus (in fact, we can han-
dle an arbitrary number of time steps through page management of
the compression tables). Then, it is rendered with the Hardware-
Assisted Visibility Sorting (HAVS) algorithm or GPU-based ray
casting.

2 RELATED WORK

The visualization of time-varying data is of obvious importance,
and has been the source of substantial research. Here, we are par-
ticularly interested in the research literature related to compression
and rendering techniques for this kind of data. For a more compre-
hensive review of the literature, we point the interested reader to the
recent surveys by Ma [8] and Ma and Lum [9].

Very little has been done for unstructured grids, therefore all the
papers cited below focus on regular grids. Some researchers have
explored the use of spatial data structures for optimizing the ren-
dering of time-varying datasets [3, 10, 12]. The Time-Space Parti-
tioning (TSP) Tree used in those papers is based on an octree which
is extended to encode one extra dimension [12] by storing a binary
tree at each node that represents the evolution of the subtree through
time. The TSP tree can also store partial sub-images to accelerate
ray-casting rendering.

More related to our work is the technique proposed by Wester-
mann [14], where he compresses time-varying isosurface and as-

Figure 2: Vector Reconstruction.

sociated volumetric data with a wavelet transform that allows for
fast reconstruction and rendering. A follow-up of this work [11]
describes a GPU implementation using Vector Quantization, re-
viewed in more details in the next section. Another technique is
the hardware-accelerated rendering technique of Lum et al [5, 6].
The basic idea is based on the temporal encoding of indexed volu-
metric data that can be quickly decoded in hardware. Their render-
ing engine is based on texture-based volume rendering. They com-
pressed the time-varying volume by breaking it up into “spans” and
using the Discrete Cosine Transform (DCT). Every sample within
the span is encoded as a single index. Then, they store the volume
as a set of 2D paletted textures, which are decoded using a time-
varying palette. Due to the fact that the compressed datasets fit in
main memory, they are able to achieve much higher rendering rates
than for the uncompressed data, which needs to be incrementally
loaded from disk. Because of their sheer size, I/O issues become
very important when dealing with time-varying data [15].

3 COMPRESSION OF TVSF

Compression schemes are important to reduce the memory foot-
print of time-varying volumetric datasets. For real-time applica-
tions, the decompression time needs to be considered along with
compression ratios when selecting a compression scheme. In this
section we review the vector quantization (VQ) approach used by
[11] to compress TVSF for structured grids, and extend it to handle
unstructured grids.

3.1 Hierarchical Decomposition

In order to prepare for VQ, data is organized hierarchically using a
multi-resolution approach. Consider a TVSF on a given vertexv of
a mesh containingn time instances (i.e.n scalar values per vertex).
Let Vl be a vector inRn storing the different scalar values ofv, and
for simplicity considern to be a power ofb (i.e. bl = n). We divide
Vl into b disjoint subsets, compute the mean of its elements, and
use the resulting averages to form a down-sampled vectorVl−1 in
Rn/b of Vl . This process is repeated forl iterations until we obtain
a vectorV0 in R containing a single value which corresponds to the
mean of the entire vectorVl .

The multi-resolution representation is created by computingl de-
tail vectorsD2i in R2i

that corresponds to the difference between the
original vectorVi (i:1..l) and the average used to create the down-
sampled vector ofVi . The detail vectors combined with the mean
stored inV0 are sufficient to reconstruct each element ofVl . The
reconstruction involves adding the meanV0 with the proper coeffi-
cients of each detail vectorD2i . In Figure 2 we show an example
with n = 64, b = 8 andl = 2. The mean stored atV0 is added to
one component of the detail vectorsD8 andD64 to reconstruct the
original data.

Figure 3: Codebooks access.

3.2 VQ in structured grids

The VQ approach described in [11] to compress TVSF in structured
grids is summarized here. First, consider one time instance of an
n×n×n structured grid. The volume is decomposed into 4×4×4
sub-blocks, which was a suitable choice for their tests. Each sub-
block contains 64 values represented as a vector inR64. Down-
sampled versions of this vector are obtained by considering 2×2×
2 and 1× 1× 1 sub-blocks. Two detail vectorsD8 and D64 are
computed for each sub-block.

Consider a structured grid with dimensions 128× 128× 128,
with 32768 4×4×4 sub-blocks. The 32768 detail vectors are pro-
cessed using VQ quantized to generate two codebooksC8 andC64,
each with the 256 most representative vectors of each set. VQ uses
covariance analysis to find an initial codebook, which is then re-
fined using a modification of the LBG-algorithm [4]. Original val-
ues are reconstructed by keeping, for each block, the meanV0 and
two indicesi8 andi64 in codebooksC8 andC64.

In order to handle time-varying data, they propose to use a new
codebook for each time instance. Due to temporal coherence, a
codebook generated in timet often can be used during quantization
as initial codebook for the LBG-algorithm for the next time step,
thus avoiding the covariance analysis at each time instance.

3.3 VQ in unstructured grids

Our solution to extend the VQ approach to unstructured grids ar-
ranges data for VQ in a different manner. Instead of using spatial
coherence when forming vectors (as in structured grids), we focus
our approach on temporal coherence. For each vertex of a struc-
tured mesh, we form vectors containing 64 scalar values, each cor-
responding to a consecutive time instance of the scalar field. The
choice of 64 is for convenience only, and allows us to obtain a multi-
resolution approach identical to the one used in [11]. The number of
detail coefficientsD8 andD64 passed to VQ is given by the number
of vertices in the mesh.

To reconstruct a scalar value, both codebook indicesi8 and i64
need to be stored per vertex as well as a mean valueV0. For a given
time instancet, codebooksC8 andC64 are accessed as described in
Figure 3. Note that the same indext is used to index bothC8 and
C64.

In the sections to follow we show how this compression scheme
is combined with two GPU-based Volume Rendering algorithms.

Figure 4: HAVS sorts faces on the CPU and GPU and composites
them into a final image.

4 TIME -VARYING HAVS

4.1 HAVS summary

The Hardware-Assisted Visibilty Sorting (HAVS) volume render-
ing system was proposed in [2]. Given an unstructured mesh, HAVS
prepares the mesh faces for rasterization by sorting them by their
centroids. This provides in most cases only a partial order of the
faces in object-space since the mesh may contain faces of varying
size or even visibility cycles. Upon rasterization, the fragments un-
dergo an image-space sort in the GPU via a data structure called the
k-buffer (Figure 4).

Thek-buffer is implemented using fragment shaders and keeps a
fixed number of fragments (k) in each pixel of the framebuffer. As
a new fragment is rasterized, it is compared with the other entries
in thek-buffer, the two entries closest to the viewpoint (for front-to-
back) are used to find the color and opacity for the fragment using
a lookup table which contains the pre-integrated volume integral.
The color and opacity are composited in the framebuffer, and the
remaining fragments are written back to thek-buffer (see [2] for
more detail).

4.2 TVSF HAVS

Our first approach was to store the codebooks in textures and re-
construct scalar values in the Vertex Shader using Shader Model 3.0
available on an NVIDIA 6800, which allows a texture access within
the vertex shader. This approach, however, did not work well and
was considerably slow, since the number of operations that are per-
formed in the vertex shader are small to compensate for the latency
necessary to fetch data from textures.

The second alternative was to perform the reconstruction in the
fragment shader. Since the k-buffer approach renders faces of the
original mesh, we would need to recover the means and codebook
indicesi8 and i64 for each face vertex (requiring at least 3 texture
fetches). Since this information changes per face, it requires send-
ing constant information to the fragment shader which is hard to do
in any other place than as a program argument, which can be slow
if changed for each face.

Our most effective solution is to avoid using vertex buffer objects
(VBOs) for explicit definition of vertex data. At each rendering pass
we perform the decompression on the CPU and pass reconstructed
scalar values as texture coordinates. Codebooks are stored in CPU
memory and a simple paging mechanism allows us to render multi-
ple instances of time.

Figure 5: Ray-Casting Calculation

Figure 6: Mesh Data (per tetrahedron)

5 TIME -VARYING RAY CASTING

5.1 Ray Casting Summary

Our algorithm is based on the GPU-based ray-casting described
in [1], which introduced several extensions to the work described
by [13]. The idea is to compute ray intersections using the frag-
ment shader of a GPU, advancing one intersection inside the mesh
at a time (Figure 5) while evaluating the volume rendering integral.
Two sets of textures are used to store current ray intersection infor-
mation, as well as accumulated color.

Computing the point that each ray leaves a tetrahedron is only
possible if mesh data is available at the fragment shader, therefore
mesh information (vertices, normals, connectivity, scalar fields)
needs to be stored per tetrahedron in texture memory. Scalar data
is stored using the gradient of the scalar field and a reference static
value, in order to allow reconstruction of scalar values using inter-
polation. A depth-peeling approach is used to handle non-convex
meshes in a more general way than [13].

5.2 GPU Storage

Since this approach already uses texture memory to store mesh data,
adding TVSF data increases GPU memory usage even further. Our
first action was to reduce usage for the static algorithm, removing
the normals, since they can be reconstructed from vertex positions.

An important difference is the representation of scalar data. We
apply the same VQ used in HAVS, which allows us to decompress
scalar data for each vertex, instead of the gradient of the scalar field
as in the static case. In order to perform interpolation, we store a
matrix that allows us to calculate the gradient of the scalar field [7].
Codebook indices and mean are stored per vertex in a way similar to
vertex positions. Figure 6 illustrates the data stored per tetrahedron
(192B total). In addition, we need to store the codebooks using
8×256 and 64×256 floating-point textures.

5.3 Managing Codebook Changes

The codebooks we used only handle 64 time instances. To avoid
rendering stalls while switching codebooks, we again use a paging
mechanism to keep in texture memory the current and next code-
books. The first two codebooks are loaded into GPU memory when
rendering starts. After we access the last time instance stored in
the first codebook, we swap texture references to the second set,
already in memory. The rendering process continues, and simulta-
neously we load the next codebook in place of the first one, giving
time to the new data to be loaded into the graphics memory before
it is required. This avoids a stall in the graphics pipeline while ren-
dering, and allow us to handle an arbitrary number of time steps
without any noticeable performance loss.

5.4 Decompression

The scalar reconstruction runs on the fragment shader. First we
recover for each vertex the mean and two codebook indicesi8 and
i64. Each codebook index is used as thev coordinate to access
the codebook texture. Theu coordinate contains the current time
step, and it used for both codebooks. Once the four scalars are
reconstructed, we calculate the gradient of the scalar field using
the gradient matrix stored with the tetrahedron data. We finally
compute the scalar value for both the current entry and exit points
of the tetrahedron, using the algorithm described in ([7]).

6 RESULTS

Experiments were performed on a PC computer with a 2.8GHz
Pentium 4 and a GeForce 6800GT with 256MB RAM. The HAVS
code was written using OpenGL and the Ray-Casting Code uses
DirectX 9.0c. A video showing some of the results can be found at
http://www.inf.ufrgs.br/~fabiofb/tvsf.

6.1 Compression Results

Most TVSF used in our tests were procedurally generated with
known unstructured grids. However, the Torso dataset shows the re-
sults of a rotating dipole in the mesh and the Brain dataset shows ac-
tual electroencephalograph (EEG) readings of a brain mapped onto
a head. The number of time instances varies between 64 and 360.
Scalar values passed to VQ are float numbers, with one codebook
generated for each sequence of 64 time steps. We used the VQ
code written by Schneider et al [11] to compress our TVSF data.
The meshes we used in our tests are listed in Table 1.

Mesh Vert Tetra Time Instances
SPX 19K 12K 64
SPX1 36K 101K 64
SPX2 162K 808K 64

BLUNT 40K 183K 64
TORSO 8K 50K 360
BRAIN 68K 387K 120

Table 1: TVSF mesh data

In Table 2 we summarize the compression results we obtained.
In addition to the signal-to-noise ratio given by the VQ code, we
also measured the minimum and maximum discrepancy between
the original and quantized values. The procedurally generated
datasets have more continuous variation on the scalar fields and
give the higher SNR results. The brain dataset has the worst com-
pression results since it has more complex and alleatory scalar field
motion.

The storage of TVSF data without compression is given by
sizeu = v× t × 4B, wherev is the number of vertex meshes,t is

the number of time instances in each dataset, and a scalar value
uses four bytes (float). The compressed size using VQ is equal to
sizevq = v×c×3×4B + c×72KB, wherec is the number of code-
books used (c = t/64), each vertex requires 3 values per codebook
(mean plus codebook indicesi8 and i64), and each codebook uses
72KB = 256×64×4B + 256×8×4B (Table 2).

Mesh Size Size Compr SNR SNR MAX
TVSF VQ Ratio Min Max Error

SPX 4.75M 300K 16.21 39.44 42.08 0.0041
SPX1 9.00M 504K 18.29 39.45 41.96 0.0045
SPX2 40.50M 1.97M 20.57 39.24 41.88 0.0091

BLUNT 10.00M 552K 18.55 41.70 44.36 0.0046
TORSO 11.25M 1008K 11.43 20.53 28.12 0.0017
BRAIN 31.87M 1.73M 18.38 2.96 10.24 1.0632

Table 2: Compression Results

6.2 HAVS results

Results were obtained by using a fixed number of viewpoints. Ren-
dering rates were nearly the same for most datasets, and only 40%
slower on the largest dataset (see Table 3).

Mesh Min Time Max Time Min Time Max Time
Static(ms) Static(ms) TVSF(ms) TVSF(ms)

SPX 31 47 31 47
SPX1 109 125 110 125
SPX2 703 813 1016 1157

BLUNT 156 312 218 266
TORSO 62 79 62 79
BRAIN 438 500 578 625

Table 3: HAVS Results

6.3 Ray Casting results

Due to memory limitations of storing the mesh on the GPU, we
were not able to run the largest datasets with the Ray Casting code.
Table 4 shows the performance of our algorithm when compared
with a static rendering.

Mesh Min Time Max Time Min Time Max Time
Static(ms) Static(ms) TVSF(ms) TVSF(ms)

SPX 156 265 203 235
SPX1 297 500 406 672

BLUNT 94 1062 125 1125

Table 4: Ray-Casting Results

7 CONCLUSIONS

Rendering dynamic data is a challenging problem in volume visual-
ization. In this paper we have shown how time-varying scalar fields
on unstructured grids can be efficiently rendered with virtually no
penalty in the performance for most datasets. We have described
how vector quantization can be employed in two state-of-the-art,
GPU-assisted volume rendering systems to achieve interactive ren-
dering rates. Our algorithm is simple, easily implemented, and most
importantly, it closes the gap between rendering time-varying data
on unstructured and structured grids.

In the future, we plan to explore the VQ approach to find a gen-
eral way of choosing its parameters based on dataset characteristics.

Figure 7: Different time steps of Blunt using HAVS.

Also, when next generation graphics cards become available, we
would like to revisit our GPU solution to take advantage of new fea-
tures. Finally, we would like to explore solutions for time-varying
geometric data.

ACKNOWLEDGMENTS

The authors thank J. Schneider for the VQ code, Mike Calla-
han and the SCIRun team at the University of Utah for the brain
and torso datasets, Bruno Notrosso (Electricite de France) for the
SPX dataset, and NVIDIA from donated hardware. Steven Calla-
han is supported by the Department of Energy (DOE) under the
VIEWS program. The work of F́abio Bernardon and João Comba
is supported by a CNPq grant 540414/01-8 and FAPERGS grant
01/0547.3. Cĺaudio Silva is partially supported by the DOE un-
der the VIEWS program and the MICS office, the National Science
Foundation under grants CCF-0401498, EIA-0323604, and OISE-
0405402, and a University of Utah Seed Grant.

REFERENCES

[1] F. F. Bernardon, C. A. Pagot, J. L. D. Comba, and C. T. Silva. Gpu-
based tiled ray casting using depth peeling.Journal of Graphics Tools,
to appear. Also available as SCI Institute Technical Report UUSCI-
2004-006.

[2] S. P. Callahan, M. Ikits, J. L. Comba, and C. T. Silva. Hardware-
assisted visibility ordering for unstructured volume rendering.IEEE
Transactions on Visualization and Computer Graphics, 11(3):285–
295, 2005.

[3] D. Ellsworth, L.-J. Chiang, and H.-W. Shen. Accelerating time-
varying hardware volume rendering using tsp trees and color-based
error metrics. InProceedings of 2000 Volume Visualization Sympo-
sium, pages 119–128, 2000.

[4] Y. Linde, A. Buzo, and R. Gray. An algorithm for vector quantizer
design.IEEE Transactions on Communications, 1:84–95, Jan. 1980.

[5] E. Lum, K.-L. Ma, and J. Clyne. Texture hardware assisted rendering
of time-varying volume data. InProceedings of IEEE Visualization
2001, pages 263–270, 2001.

[6] E. Lum, K.-L. Ma, and J. Clyne. A hardware-assisted scalable solution
of interactive volume rendering of time-varying data.IEEE Transac-
tions on Visualization and Computer Graphics, 8(3):286–301, 2002.

[7] C. Lürig, R. Grosso, and T. Ertl. Implicit Adaptive Volume Ray-
Casting. In S. Klimenko, Y. Bayakovsky, and V. Galaktionov, editors,
Proceedings of GraphiCon ’97, pages 114–120, 1997.

[8] K.-L. Ma. Visualizing time-varying volume data.Computing in Sci-
ence & Engineering, 5(2):34–42, 2003.

[9] K.-L. Ma and E. Lum. Techniques for visualizing time-varying vol-
ume data. In C. D. Hansen and C. Johnson, editors,Visualization
Handbook. Academic Press, 2004.

[10] K.-L. Ma and H.-W. Shen. Compression and accelerated rendering
of time-varying volume data. InProceedings of 2000 International

Computer Symposium – Workshop on Computer Graphics and Virtual
Reality, pages 82–89, 2000.

[11] J. Schneider and R. Westermann. Compression domain volume ren-
dering. InProceedings of IEEE Visualization 2003.

[12] H.-W. Shen, L.-J. Chiang, and K.-L. Ma. A fast volume rendering al-
gorithm for time-varying field using a time-space partitioning (tsp)
tree. In Proceedings of IEEE Visualization 1999, pages 371–377,
1999.

[13] M. Weiler, M. Kraus, M. Merz, and T. Ertl. Hardware-Based Ray
Casting for Tetrahedral Meshes. InProceedings of IEEE Visualization
2003, pages 333–340, 2003.

[14] Westermann. Compression time rendering of time-resolved volume
data. InProceedings of IEEE Visualization 1995, pages 168–174,
1995.

[15] H. Yu, K.-L. Ma, and J. Welling. I/O strategies for parallel render-
ing of large time-varying volume data. InEurographics/ACM SIG-
GRAPH Symposiumm Proceedings of Parallel Graphics and Visual-
ization 2004, pages 31–40, 2004.

Figure 8: Different time steps of SPX using HAVS.

Figure 9: Different time steps of SPX using Ray Casting.

Figure 10: Different time steps of Torso dataset using HAVS.

Figure 11: Different time steps of Brain using HAVS.

