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Abstract

The restoration of images is an important and widely
studied problem in computer vision and image processing.
Various image filtering strategies have been effective, but
invariably make strong assumptions about the properties
of the signal and/or degradation. Therefore, these meth-
ods typically lack the generality to be easily applied to new
applications or diverse image collections. This paper de-
scribes a novel unsupervised, information-theoretic, adap-
tive filter (UINTA) that improves the predictability of pixel
intensities from their neighborhoods by decreasing the joint
entropy between them. Thus UINTA automatically discov-
ers the statistical properties of the signal and can thereby
restore a wide spectrum of images and applications. This
paper describes the formulation required to minimize the
joint entropy measure, presents several important practical
considerations in estimating image-region statistics, and
then presents results on both real and synthetic data.

1. Introduction

Restoring images is an important and widely studied
problem in computer vision and image processing 1. By
image restoration, we mean the recovery of an image from
a degraded version whose quality has been undermined by
some stochastic process. Most research addresses the re-
moval of additive, independent, random noise, which is
also the focus of many examples in this paper. However,
such degradations can also include correlated noise, spa-
tially varying blurring (“smudging”), areas with loss of con-
trast, etc.

Research in image restoration has led to a plethora of
algorithms based on diverse strategies such as linear sys-
tems, statistics, information theory, and variational calculus.
However, most of the image filtering strategies make strong

1We mean image in the most general sense—a scalar or vector valued
function defined on an n-dimensional domain, sampled on a dense, Carte-
sian grid.

assumptions about the properties of the signal and/or degra-
dation. Therefore, they typically lack the generality to be
easily applied to diverse image collections and they break
down when images exhibit properties that do not adhere to
the underlying assumptions. Hence, there is still a need for
general image filtering algorithms/strategies that are effec-
tive for a wide spectrum of restoration tasks and are easily
adaptable to new applications.

This paper describes a novel unsupervised information-
theoretic adaptive filter (UINTA) for image restoration.
UINTA restores pixels by comparing them to other pixels
in the image that have similar neighborhoods. The under-
lying formulation relies on an information-theoretic mea-
sure of goodness combined with a nonparametric model of
image statistics. UINTA minimizes a penalty function that
captures the entropy of the patterns of intensities in image
regions. Entropy is a nonquadratic functional of the image
intensities and hence the filtering, obtained as a variation
of the functional, is nonlinear. UINTA operates without a
priori knowledge of the geometric or statistical structure of
the signal or degradation, but relies instead on some gen-
eral observations about the entropy of natural images. It
does not rely on labeled examples to shape its output, and is
hence unsupervised. UINTA automatically learns the true
image statistics from the degraded input data and constructs
a filtering strategy based on that model, making it adaptive.
Moreover, UINTA adjusts all its important free parameters
automatically via a data-driven approach and information-
theoretic metrics. Because UINTA is nonlinear, nonpara-
metric, adaptive, and unsupervised, it can restore a wide
spectrum of images with very little parameter tuning.

Section 2 discusses recent works in image filtering and
their relationship to UINTA. Section 3 describes the mathe-
matical formulation of UINTA and motivates the choice of
the particular entropy measure. Entropy optimization en-
tails the estimation of probability densities for the associ-
ated random variables. Section 4 describes a nonparametric
multivariate density estimation technique and gives some
reasons behind UINTA’s success in spite of a large number
of dimensions involved. Section 5 formulates a gradient-
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descent scheme to optimize the joint entropy measure and
discusses several important practical challenges pertaining
to statistical estimation and its application to image neigh-
borhoods. Section 6 gives numerous experimental results
on real and synthetic images and analyzes UINTA’s behav-
ior on the same. Section 7 summarizes the contributions of
the paper and presents ideas for further exploration.

2. Related Work

This section establishes the relationship of this work to
several important, relevant areas of nonlinear image filter-
ing. Nonlinear filtering approaches are typically based on
either variational methods that lead to algorithms based on
partial differential equations (PDEs), or statistical methods
that lead to nonlinear estimation problems. They typically
involve high computational costs, entail the tuning of extra
free parameters, and enforce strong geometric or statistical
assumptions on images.

PDE-based image processing methods became
widespread after Perona and Malik’s work on anisotropic
diffusion [16], which smoothed high-frequency noise while
sharpening edges. The anisotropic diffusion equation is
also the first variation of an image energy that penalizes
image gradients with an allowance for outliers [14], and
therefore seeks piecewise constant solutions. Because such
variational approaches prefer certain image geometries, we
refer to these local geometric configurations as models. A
multitude of nonlinear PDE models have been developed
for a wide variety of images [13, 20, 19, 26, 27] with a
variety of algorithms based on level sets [22, 15].

An alternative to variational models is to construct non-
linear transforms in the frequency domain. The wavelet lit-
erature addresses image denoising extensively. The current
state-of-the-art methods [18] treat the wavelet coefficients
as random variables and model their a priori marginal/joint
probability density functions (PDFs) parametrically. They
then estimate the coefficients of the noiseless image given
the observed coefficients of the noisy image via various
schemes such as Bayesian estimation. The limitations of
these methods stem both from the choice of the particu-
lar wavelet decomposition basis and the specific statistical
models imposed on the coefficients.

Among the statistical approaches to nonlinear filtering,
an important class of methods rely on stochastic image
models described by Markov random fields (MRFs) [9].
They exploit the equivalence between MRFs and Gibbs dis-
tributions to model image statistics with Gibbs distributions.
UINTA also exploits the Markov property of the images, but
rather than imposing a particular model on the image, it es-
timates the relevant conditional PDFs from the input data
and updates pixel intensities to decrease the randomness of
these conditional PDFs.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 1. (a) Degraded fingerprint image and (b) a zoomed in-
set. Zoomed insets of the fingerprint image (grayscale range:0-
100) processed with (c) anisotropic diffusion (K=0.45 grayscale
values, 99 iterations) (d) bilateral filtering (σdomain=3 pixels,
σrange=15 grayscale values) (e) curvature flow (time step=0.2, 5
iterations) (f) coherence enhancing diffusion (σ=0.1 pixels, ρ=2
pixels, α=0.0001, C=0.0001, 15 iterations) (g) unrestricted mean
shift filtering [1] (σdomain=2 pixels, σrange=5 grayscale values,
5 iterations) (h) wavelet denoising [18] (σnoise=14 grayscale val-
ues).

The literature shows several statistically-based image
processing algorithms that do rely on information theory,
such as the mean-shift procedure [8, 2, 3], which can be said
to be a mode seeking process on the PDF associated with
image intensities. It moves the samples uphill on that PDF
to a steady state with all samples converged to the nearest
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mode. However, the mean-shift procedure operates only on
image intensities (be they scalar or vector valued) and does
not account for neighborhood structure in images. This pa-
per shows the mathematical relationship between the mean-
shift procedure and entropy reduction and thereby formu-
lates UINTA as a generalization of the mean-shift proce-
dure, which incorporates neighborhoods to reduce the en-
tropy of the associated conditional PDFs.

Figure 1 shows the results of filtering on a degraded fin-
gerprint image using some of the prevalent nonlinear tech-
niques, demonstrating their typical characteristics. We see
that the piece-wise smooth image models associated with
anisotropic diffusion, bilateral filtering [24], and curvature
flow [22] (Figure 1(c)-(e)) are clearly inappropriate for this
image. Coherence enhancing diffusion [27] (which is as
well suited to this image as virtually any other) does not
succeed in retaining or enhancing the light-dark contrast
boundaries, and yet it forces elongated structures to grow
or connect (Figure 1(f)). An unrestricted mean-shift filter-
ing [1] (Figure 1(g)) on image intensities yields a thresh-
olded image retaining most of the noise. Wavelet denoising
(Figure 1(h)), which imposes statistical models on wavelet
coefficients and an additive white Gaussian noise model, is
unable to get rid of the smudges and excessively smoothes
the image.

Popat et al.[17] were among the first to use nonpara-
metric Markov sampling in images. They attempt to cap-
ture the higher-order nonlinear image statistics via cluster-
based nonparametric density estimation and use them for
image restoration, image compression, and texture classi-
fication. However, their method involves training unlike
UINTA which attempts to learn these statistics from the de-
graded data itself.

Researchers analyzing the statistics of natural image
neighborhoods [11, 12, 5] found the multi-dimensional in-
tensity data derived from image neighborhoods to be con-
centrated in clusters or low-dimensional manifolds exhibit-
ing nontrivial topologies. UINTA also relies on the hypoth-
esis that natural images exhibit some regularity in neigh-
borhood structure, but it discovers this regularity for each
image individually in a nonparametric manner.

Weissman et al., [28], propose the DUDE algorithm that
addresses the problem of denoising data sequences gener-
ated by a discrete source and received over a discrete, mem-
oryless channel. DUDE assigns image values based on the
similarity of neighborhoods gathered from image statistics,
which resembles the construction of conditional probabili-
ties in the proposed method. However, the DUDE approach
is limited to discrete-valued signals whereas the proposed
method addresses continuous-valued signals, such as those
associated with grayscale images. While the DUDE algo-
rithm is demonstrably effective for removing replacement
noise, it is less effective in case of additive noise.

3. Joint Entropy Based Image Filtering

This section describes the mathematical formulation of
UINTA. It begins with an overview of the random-field im-
age model and the associated notation, concluding with a
high-level algorithmic description of UINTA.

3.1. Random Field Image Model

A random field/process [6] is a family of random vari-
ables X(Ω; T ), for some index set T , where, for each fixed
T = t, the random variable X(Ω; t) is defined on the sam-
ple space Ω. If we let T be a set of points defined on a
discrete Cartesian grid and fix Ω = ω, we have a realization
of the random field called the digital image, X(ω, T ). In
this case {t}t∈T is the set of pixels in the image. For two-
dimensional images t is a two-vector. We use a shorthand
to denote random variables X(Ω; t) by X(t). We denote
a specific realization X(ω; t) (the intensity at pixel t), as a
deterministic function x(t).

If we associate with T a family of pixel neighborhoods
N = {Nt}t∈T such that Nt ⊂ T , t /∈ Nt, and u ∈ Nt if
and only if t ∈ Nu, then N is called a neighborhood system
for the set T and pixels in Nt are called neighbors of t. We
define a random vector Y (t) = {X(t)}t∈Nt , denoting its
realization by y(t), corresponding to the set of intensities at
the neighbors of pixel t. We also define a random vector
Z(t) = (X(t), Y (t)) corresponding to image regions, i.e.
pixels combined with their neighborhoods. For the formu-
lation in this paper, we assume a stationary ergodic process
(in practice this assumption can be relaxed somewhat). We
denote the original (not degraded) image by X(ω, T ) and
its associated set of neighborhood intensities by Y (ω, T )
with regions Z(ω, T ). Correspondingly, for the observed
degraded image, we use X̃(ω, T ), Ỹ (ω, T ) and Z̃(ω, T ).
For notational simplicity we use the short hand for random
variables X(t) as X and their realizations x(t) as x, drop-
ping the index t.

3.2. Neighborhood Entropy for Image Filtering

The UINTA filtering strategy is to reduce the entropy
h(X̃|Ỹ = ỹ) of the conditional PDF, for each pixel-
neighborhood pair (X̃ = x̃, Ỹ = ỹ), by manipulating the
value of each center pixel x̃. For this, UINTA employs a
gradient descent. Note that a gradient descent on h(X̃|Ỹ )
has components corresponding to both the center pixel x̃,
and the neighborhood ỹ, and thus the entire region, (x̃, ỹ),
could be updated in a gradient descent scheme. In practice
we update only the center pixel x̃; that is, we project the
gradient onto the direction associated with the center pixel.
Given this projection, UINTA is also a reweighted gradient
descent on the joint entropy h(X̃, Ỹ ).
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This choice of entropy as a measure of goodness follows
from several observations. First, the addition of two inde-
pendent random variables (e.g. a signal and additive noise)
increases the entropy [4]. Entropy reduction reduces the
randomness in corrupted PDFs and tries to counteract noise.
Of course, continued entropy reduction might also eliminate
some of the normal variability in the signal (original image).
However, natural images tend to have very low entropy rel-
ative to their degraded versions. Therefore, a gradient de-
scent on entropy first affects the randomness in degradations
substantially more than the signal. Furthermore, the entropy
reduction is limited by an information-based stopping crite-
rion, as described in Section 3.4.

3.3. High-Level Algorithmic Structure

1. The input degraded image I has a set of inten-
sities {x̃}t∈T , neighborhoods {ỹ}t∈T , and regions
{z̃}t∈T = {(x̃, ỹ)}t∈T . These values form the initial
values (I0 = I) of a sequence of images I0, I1, I2, . . .,
with corresponding intensities x̂0, x̂1, x̂2, . . ..

2. For each region ẑm in the current image Im, compute
∂h(X̂|Ŷ = ŷm)/∂x̂m.

3. Construct a new image Im+1, using finite forward
differences on the gradient descent, with intensities
x̂m+1 = x̂m − λ∂h/∂x̂m.

4. Check the stopping criterion (see Section 3.4). If not
done, go to Step 2, otherwise Im+1 is the output.

3.4. Stopping Criteria

The choice of stopping criteria for this algorithm depend
on a number of factors. For instance, in the absence of any
knowledge of the signal, noise, or other types of degrada-
tion, the algorithm will inevitably require some parameter
tuning. For instance, we have found empirically that the en-
tropy of the noise diminishes faster than that of the signal,
and therefore, an effective strategy is to stop when the rela-
tive rate of change of the entropy, from one iteration to the
next, falls below some threshold. In the case of a known
level of additive noise, UINTA iterates until the root-mean-
square difference (residual) between input (noisy) and the
processed image equals the noise level. We have found em-
pirically that this method is quite effective and we have used
this approach in all of the results (for which noise levels are
known) in this paper.

4. Nonparametric Density Estimation

Entropy optimization entails the estimation of the PDFs
associated with neighborhoods. High-dimensional spaces
are notoriously challenging for data analysis (regarded as

the curse of dimensionality [21, 7]) because they are so
sparsely populated. Despite theoretical arguments sug-
gesting that density estimation beyond a few dimensions
is impractical, the empirical evidence from literature is
more optimistic [21, 17]. The results in this paper con-
firm that observation. One advantage for UINTA is that
the random vector Z̃ ≡ (X̃, Ỹ ) comprises random vari-
ables with identical PDFs, via stationarity, which lends it-
self to more accurate density estimates [21, 23]. Further,
UINTA relies on the neighborhoods in natural images hav-
ing a lower-dimensional topology in the multi-dimensional
feature space [12, 5].

For image regions comprising n pixels, UINTA em-
ploys Parzen-windowing [7] with an n-dimensional Gaus-
sian, G(z̃,Ψn), as the kernel where Ψn is the n× n covari-
ance matrix. Having no a priori information on the structure
of the PDFs, we choose an isotropic Gaussian of standard
deviation σ, i.e. Ψn=σ2I , where I is the n × n identity
matrix. Using optimal values of the Parzen-window param-
eters is critical to UINTA’s success, and Section 5.2 gives
strategies for the same.

Entropy is the expectation of negative log-probability,
and therefore we can approximate it with the sample mean
[25]. Thus, for a stationary ergodic process

h(Z̃) ≈ −1
|T |

∑
ti∈T

log

⎛
⎝ 1
|Ai|

∑
tj∈Ai

Gn(z̃i − z̃j ,Ψn)

⎞
⎠ (1)

where zj is shorthand for z(tj). The samples in set Ai

are, typically, a small random fraction of those in T . This
significantly reduces the computational cost for the entropy
estimation, from O(|T |2) to O(|Ai||T |), and produces a
stochastic approximation for entropy. The latter leads to
a stochastic-gradient algorithm [10] that effectively over-
comes the effects of spurious local maxima introduced in
the Parzen-window density estimate [25].

5. Entropy Minimization of Conditional PDFs

Entropy minimization in UINTA relies on the derivative
of the entropy with respect to x̃i ≡ x̃(ti) for each ti ∈ T .
Each x̃i undergoes a gradient descent based on the entropy
of the conditional PDF estimated via Ai. The gradient de-
scent is

∂x̃i

∂τ
= −∂h(X̃|Ỹ = ỹi)

∂x̃i
≈ 1

|T |
∂ log P (z̃i)

∂x̃i
= (2)

−1
|T |

∂z̃i

∂x̃i

∑
tj∈Ai

Gn(z̃i − z̃j ,Ψn)∑
tk∈Ai

Gn(z̃i − z̃k,Ψn)
Ψ−1

n (z̃i − z̃j) (3)

where ∂z̃i/∂x̃i is a projection operator that projects an n-
dimensional vector z̃i onto the dimension associated with
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(a) (b)

Figure 2. (a) An example of a 2D PDF contour plot with the
forces (vertical arrows) that reduce entropy of the conditional
PDFs P (X̃|Ỹ = ỹ), (see (2)). (b) Attractive forces (arrows: width
≡ force magnitude) act on a sample (z̃:circle) towards other sam-
ples (z̃j :squares) in the set Ai (see (3)). The resultant force acts
towards the weighted mean (star), and the sample z̃ moves based
on its projection (vertical arrow).

the center pixel intensity x̃i, and τ is a dummy variable for
time. Figure 2 elucidates this process.

If we choose a σ > 0 (and finite), the entropy for a finite
set of samples is always bounded. Because we perform a
(projected) gradient descent on a bounded energy function,
the process converges (for sufficiently small time steps). In-
deed, analysis of simple examples shows the existence of
nontrivial steady states, e.g. an image which is a discrete
sampling of a linear function. Empirical evidence shows
that the filtering algorithm does sometimes converge to in-
teresting results. However, for many applications, conver-
gence to a fixed point is not the goal; as with many other
iterative filtering strategies, several iterations of the gradi-
ent descent are sufficient for acceptable restoration.

5.1. Relationship to the Mean-Shift Procedure

A gradient descent on the entropy h(X̃) of the grayscale
pixel intensities using finite forward differences, x̃m+1

i =
x̃m

i − λ∂h(X̃)/∂x̃m
i , with a time step λ = |T |σ2 and

Ai = T,∀i gives exactly the mean-shift update proposed
by Fukunaga [8]. The UINTA updates have the same form,
except that the weights are influenced not only by the dis-
tances/similarities between intensities x̃i but also by the dis-
tances/similarities between the neighborhoods ỹi. That is,
pixels in the image with similar neighborhoods have a rel-
atively larger impact on the weighted mean (see (3)) that
drives the updates of the center pixels. Note that in UINTA,
as well as in [8], the PDFs on which the samples climb get
updated after every iteration, unlike the approach in [3].

5.2. Implementation Issues

The UINTA algorithm, as presented in previous sec-
tions, presents a number of significant engineering ques-
tions which are crucial for its effectiveness. This section
discusses some of these issues and the proposed solutions.
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Figure 3. (a) h(X, Y ) versus σ (for the Lena image in Figure 6(a),
|Ai| = 1000). (b) h(X, Y ) and σ (for the Lena image), are al-
most unaffected for |Ai| > 1000. To give smoother curves, each
measurement, for a particular |Ai|, was averaged over 3 different
random sets Ai.

The first issue is the selection of the scale or size of the
Parzen window: the Gaussian kernel standard deviation σ.
The Parzen-window density estimate, using finitely many
samples, shows a great deal of sensitivity for different val-
ues of σ [7]. Thus, the particular choice of σ, and thereby
Ψn, is a crucial factor that determines the behavior of the
entire process of entropy optimization. Furthermore, this
choice is related to the sample size |Ai| in the stochastic ap-
proximation. For a particular choice of |Ai|, we propose to
use the σ that minimizes the joint entropy, which we will
call the optimal scale for a data set. We determine this
automatically at each iteration in UINTA processing (Fig-
ure 3(a)). Our experiments show that for sufficiently large
|Ai| the entropy estimates and the optimal scale are virtu-
ally constant, and thus |Ai| can also be generated directly
from the input data (Figure 3(b)).

In practice, image statistics are not stationary for most
images and are more accurately modeled as piecewise sta-
tionary ergodic. Thus, while processing pixel t, the set Ai

should comprise pixels that are nearby t. To achieve this,
we choose a unique set of pixels, for each pixel t, at ran-
dom from a Gaussian distribution on the image coordinates
centered at t with standard deviation β = 40. This strategy
gives consistently better results than uniform sampling, and
we have found that it performs well for any choice of β that
encompasses more than several hundred pixels.

Another issue is the shape of the image neighborhoods.
Square neighborhoods produce anisotropic artifacts. To ob-
tain isotropic filtering results we propose a feature space
metric that controls the influence of each neighborhood
pixel so that the resulting mask is more isotropic. In this
way, directions in the feature space corresponding to cor-
ners of neighborhoods collapse so that they do not influence
the filtering. A similar strategy enables us to handle image
boundaries without distorting the image statistics. That is,
pixels at image boundaries rely on the statistics in lower-
dimensional subspaces corresponding to the set of neigh-
borhood pixels lying within the image.

The algorithmic complexity of UINTA is significant:



To appear in Proc. IEEE Int. Conf. Computer Vision and Pattern Recognition, 2005 6

(a) (b)

(c) (d)

(e) (f)

Figure 4. (a) Degraded fingerprint. (b) UINTA filtered image.
(c),(e) and (d),(f) show zoomed insets of (a) and (b), respectively.

O(|Ai||T |ED) where D is the image dimension and E is
the extent of the neighborhood along a dimension. This is
exponential in E, and the current results are limited to 2D
images. The literature suggests some potential improve-
ments (e.g. [29]). However, the purpose of this paper is
to introduce the theory and methodology—algorithmic im-
provements are the subject of future work.

6. Results

This Section gives the results of UINTA filtering on real
and synthetic images and analyzes the behavior of UINTA
on the same. The noise in the synthetic-image examples
is additive, zero-mean, independent, and Gaussian. Be-
cause of interactions of neighborhoods from one iteration
to the next, the time step λ = |T |σ2 can lead to oscil-
lations in the results. We have found that a time step of
λ = |T |σ2/

√|Nt|, where |Nt| denotes neighborhood size,
alleviates this effect. UINTA takes roughly 2 minutes per
iteration, for a 2562 image, with standard hardware.

The fingerprint image in Figure 4 shows an example
where the degradation involves smudges (blurring) and is

(a) (b)

(c) (d)

(e) (f)

Figure 5. (a) Noisy MRI head. (b) UINTA filtered image. (c),(e)
and (d),(f) show zoomed insets of (a) and (b), respectively.

clearly not additive noise. UINTA enhances the contrast
of the light and dark lines without significant shrinkage.
The results are noticeably better than any of those ob-
tained using other methods shown in Figure 1. UINTA
performs a kind of multidimensional classification of im-
age neighborhoods—therefore some features in the top-left
are lost because they resemble the background more than
the ridges. As a stopping criterion, UINTA uses the relative
change in entropy as described in Section 3.4.

Figure 5 shows the results of processing an MRI image
of a human head. This shows UINTA’s ability to adapt to
a variety of grayscale features in real images approximated
by piecewise stationary models. Figure 6 gives an exam-
ple of restoring the Lena image corrupted with independent
and identically distributed (i.i.d.) additive Gaussian noise.
The wavelet denoising technique (Figure 6(d)) does yield
a lower root mean squared error (RMSE). However, it also
introduces ringing-like artifacts in smooth facial regions.

Figure 7 shows UINTA filtering on a noisy image of
hand-drawn curves. UINTA learns the pattern of black-on-
white curves and forces the image to adhere to this pattern.
However, UINTA does make mistakes when curves come
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(a) (b)

(c) (d)

(e) (f)

Figure 6. (a) Lena image (intensity range 0:100). (b) Noisy image
(RMSE 10). (c) UINTA filtered image (RMSE 4.6). (d) Wavelet
denoised [18] image (RMSE 3.6). (e) and (f) show zoomed insets
of (c) and (d) respectively.

too close, exhibit a very sharp bend, or when the noise in-
troduces ambiguous gaps. The wavelet processed image de-
picts significant artifacts around the edges.

Figure 8 shows a real image of a building facade that
exhibits a certain degree of redundancy. UINTA is able to
exploit this property to perform comparably (RMSE) with
the wavelet denoiser and with fewer visual artifacts.

UINTA is not designed with a particular noise model
in mind. We have observed empirically that it performs
best with i.i.d. additive noise. However, experiments with
correlated noise on natural images show that UINTA per-
forms better, qualitatively and quantitatively, as compared
to wavelet denoisers. How to incorporate specific noise
models within the UINTA framework is an area of future
research.

7. Conclusions and Discussion

UINTA is a novel, unsupervised, information-theoretic,
adaptive filter that improves the predictability of pixel inten-

(a) (b)

(c) (d)

Figure 7. (a) Hand drawn curves (intensity range 0 : 100).
Zoomed insets of the (b) noisy image (RMSE 25), (c) UINTA fil-
tered image (RMSE 15.4), and (d) wavelet denoised [18] image
(RMSE 16).

sities from the intensities in the neighborhoods by decreas-
ing the joint entropy. UINTA can preserve and enhance
structures in a way that resembles many nonlinear, varia-
tional filters, but does so without imposing strong models.
Because it is nonparametric, it can adapt to the statistics of
the input image, and thereby applies quite readily to new

(a) (b)

(c) (d)

Figure 8. (a) Building facade (intensity range 0 : 100). Zoomed
insets of the (b) noisy image (RMSE 10), (c) UINTA filtered image
(RMSE 4.5), and (d) wavelet denoised [18] image (RMSE 4.4).
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applications with very little parameter tuning.
The stochastic gradient-descent algorithm for mini-

mizing joint entropy entails density estimation in high-
dimensional spaces, and relies on Parzen windowing with
automatic parameter selection. In order to be effective for
image processing the UINTA algorithm operates with a
feature-space metric that preserves rotational symmetry and
allows for boundary conditions. The UINTA algorithm gen-
eralizes the mean-shift classification algorithm [2] by con-
ditioning the distribution based on the pixel neighborhood.
Results show that the statistics of image neighborhoods are
sufficiently regular for reliable image denoising.

Despite these promising results, this paper presents only
a preliminary implementation that could benefit from some
engineering advances. For instance, the method of density
estimation with single-scale isotropic Parzen-window ker-
nels is clearly insufficient for all situations, and it is rea-
sonable that kernels be chosen adaptively to accommodate
the signal and/or noise. The computation times for the im-
plementation are impractical for most applications, and im-
proving the computational scheme is an important area of
future work.

The empirical results in this paper have significant im-
plications. They show that it is possible to construct non-
parametric density estimations in the very high dimensional
spaces of image neighborhoods. The UINTA formulation
also generalizes in several different ways. All of the math-
ematics, statistics, and engineering in this paper is appro-
priate for higher-dimensional image domains and vector-
valued data. The same scheme could easily apply to other
image representations, such as image pyramids, wavelets,
or local geometric features.
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