
1

Image-Based Volume Rendering with Opacity Light

Fields

Miriah Meyer, Hanspeter Pfister, Charles Hansen, Chris Johnson

UUSCI-2005-002

Scientific Computing and Imaging Institute

University of Utah

Salt Lake City, UT 84112 USA

March 24, 2005

Abstract:

While low cost PC graphics hardware has proven valuable for volume rendering, large datasets

continue to overwhelm the capabilities of the graphics cards, reducing the interactivity of volume

rendering utilizing such hardware. We present a novel, image-based approach to volume rendering

that can render arbitrarily large datasets interactively on current graphics hardware. Our method

is independent of the volume rendering system and the dataset representation, and allows for

exploration of the interior structure of the volume. The process consists of three main steps, each

of which can be run independently. In the first step, a set of ray slices of the data are produced from

multiple viewpoints using a volume render, and a geometric proxy surface bounding the volume

is defined. Next, the ray slices and geometric proxy are processed to compute a set of key views.

Finally, the key views and proxy surface are rendered interactively as opacity light fields on current

graphics hardware. The user can change the proxy surface to reveal the interior structure of the

volume data. Our method has been tested on a variety of volume datasets and these results are

presented in this paper.



Image-Based Volume Rendering with Opacity Light Fields

Miriah Meyer1 Hanspeter Pfister2 Charles Hansen1 Chris Johnson1

1Scientific Computing and Imaging Institute 2Mitsubishi Electric Research Labs

University of Utah Cambridge, MA

Figure 1: IBVR of the visible woman.

Abstract

While low cost PC graphics hardware has proven valuable
for volume rendering, large datasets continue to overwhelm
the capabilities of the graphics cards, reducing the inter-
activity of volume rendering utilizing such hardware. We
present a novel, image-based approach to volume rendering
that can render arbitrarily large datasets interactively on
current graphics hardware. Our method is independent of
the volume rendering system and the dataset representation,
and allows for exploration of the interior structure of the vol-
ume. The process consists of three main steps, each of which
can be run independently. In the first step, a set of ray slices
of the data are produced from multiple viewpoints using a
volume renderer, and a geometric proxy surface bounding
the volume is defined. Next, the ray slices and geometric
proxy are processed to compute a set of key views. Finally,
the key views and proxy surface are rendered interactively as
opacity light fields on current graphics hardware. The user
can change the proxy surface to reveal the interior structure
of the volume data. Our method has been tested on a va-
riety of volume datasets and these results are presented in
this paper.

1 Introduction

With today’s rapid increase in computing power also comes
a drastic expansion in dataset size. This phenomenon is
especially prevalent in scientific, medical, and engineering
visualization, where the availability of increasingly power-
ful computers and high resolution scanners have resulted in
highly accurate and detailed data. For example, CT scan-
ners now capture thousands of images with 512×512 resolu-
tion, supercomputers are producing terabytes of simulation
data, and seismic scans for the oil and gas industry contain
gigabytes or terabytes of data [32].
Visualization of immense volume datasets remains a chal-

lenge despite technological advancements, and interactive vi-

sualizations of these datasets on a commodity desktop ma-
chine is currently not possible. The main challenges are
the massive computational power necessary for interactive
visualization, moving huge amounts of data from memory
to the GPU, and providing insightful, high quality images.
Interactive volume rendering of large datasets is presently
achieved using large multiprocessor machines or PC clus-
ters [26, 12, 23], but these systems are expensive and not
widely available.

On the desktop, graphics hardware is widely used for in-
teractive volume rendering [10, 29, 27]. But special-purpose
hardware is not commonly available, and on-board mem-
ory of commodity graphics cards is limited (currently 256
MB). One solution to rendering large datasets on memory
restricted graphics hardware is to downsample the volume
such that it fits in graphics memory, while another is to ag-
gressively compress the data [14]. However, both approaches
come with a significant loss of fidelity. There is also work
on multiresolution and out-of-core visualization on the desk-
top [33, 6, 7]. None of these methods allow the user to in-
teractively render arbitrarily large datasets.

We present a new, image-based approach to volume ren-
dering that can render arbitrarily large datasets on current
graphics hardware. Our method is independent of the vol-
ume rendering method and the dataset representation. For
example, image-based volume rendering (IBVR) works for
irregular grids as well as for rectilinear volumes. In contrast
to previous IBVR methods [22, 4], our technique places no
restriction on the viewpoints. It allows the user to place ar-
bitrary clipping surfaces through the volume, revealing the
interior structure of the volume data [34] without the need
to volumetrically re-render the data. We split the volume
visualization pipeline by separating the task of volume ren-
dering (which can run as a preprocessing step) from volume
viewing (which runs interactively on the desktop).

The overall process and main data structures of our sys-
tem are shown in Figure 2.

During volume rendering (step one), the volume data is



Figure 2: Processing pipeline of the IBVR system. Step 1 renders a volume and outputs ray slices from multiple viewpoints.
Step 2 takes the ray slices and a proxy surface to generate key views from the ray slice viewpoints. Step 3 interactively renders
the key views using an opacity light field.

rendered from multiple viewpoints using an arbitrary vol-
ume rendering system. The output of the volume rendering
system is a set of ray slices from each viewpoint. A ray slice
stores information about the volume for a specific viewing lo-
cation. As we will show in Section 3, ray slices can be easily
computed using any standard volume rendering application
on any type or size of data. Independently, a geometric proxy
surface is computed for the volume. The initial proxy can
be a bounding sphere or an isosurface.
In step two, new key views are generated using the ray

slices and geometric proxy for each ray slice viewpoint, as
described in Section 4. Each key view shows a composited
view of the volume intersected by the proxy surface from
a specific viewing location. The user can edit the proxy
surface, e.g., by adding new clipping planes that modify the
original proxy surface, to reveal the internal structure of the
data. Finally, during volume viewing (step three), key views
are rendered from arbitrary, novel viewpoints using opacity
light field rendering, as discussed in Section 5.
We present our results in Section 6, followed by a discus-

sion of our findings in Section 7. Future work is explored in
Section 8 along with our final conclusions.

2 Previous Work

Many techniques have been developed to interactively visu-
alize large datasets. Utilizing the parallelism of ray tracing
on multiprocessor machines, Parker et al. [26] allow render-
ing of volumes up to several gigabytes in size at multiple
frames per second. Similarly, Muraki et al. [23] allow ren-
dering of volumes up to 10243 interactively on PC Clusters.
However, these techniques require high-end parallel systems
to render the data interactively.
On PCs, most interactive volume rendering techniques

utilize the capabilities of modern graphics cards. The most
popular methods use 2D [29] and 3D texture mapping [35, 3].
Many extensions have been proposed, such as pre-integration
for more accurate reconstructions of the volume rendering
integral [10], advanced shading [20, 19], and cell-projection
rendering for irregular data [30]. Despite these improve-
ments, visualization of large datasets is still fundamentally

limited by the amount of texture memory available on the
graphics cards.

Some approaches have focused on compressing large
datasets to allow the data to fit into texture memory be-
fore rendering the volume. Guthe et al. [14] propose a very
effective method using wavelet compression. However, their
method results in an inherent loss of detail prior to render-
ing. Out-of-core visualization techniques [8] use some form
of virtual memory to access data that is larger than the size
of memory. Other out-of-core methods [6, 7] utilize hierar-
chical data indexing schemes and representations to enable
faster data retrieval. Nevertheless, none of these methods
achieve real-time frame rates on PCs for arbitrarily large
data, and most assume a rectilinear dataset.

Our method separates the task of volume rendering from
the task of interactive viewing, which eliminates the loss of
data before rendering, as well as any dependency on the
size or representation of the data. Volume rendering can be
run on massively parallel machines or on a cluster of PCs.
Our volume viewing application uses image-based rendering
with 2D texture mapping and can be run on any modern PC
graphics card in real-time, as described in Section 5.

Image-based representations have the advantage of cap-
turing and representing objects regardless of the complex-
ity of their geometry. Pure image-based methods [16, 13]
do not use any geometry, but require a large number of im-
ages. Gortler et al. [13] include a visual hull of the object for
improved ray interpolation. View-dependent texture map-
ping [28, 9] combines simple geometry and sparse texture
data to accurately interpolate between the images. Surface
light fields [21, 36, 24, 5] are a more efficient parameteri-
zation of view-dependent texture maps. Matusik et al. [18]
combine view-dependent opacity for every surface point with
surface light fields into opacity light fields to render objects
with arbitrarily complex shape and materials from arbitrary
viewpoints. As we will describe in Section 5, our system
uses interactive opacity light field rendering [31] with un-
structured lumigraph interpolation [2] on graphics hardware
for volume viewing.

Two recent methods have used image-based rendering for
volumes. Chen et al. [4] store preprocessed volume images



for on-the-fly reconstruction of surfaces, but do not allow
for opacity in the final rendering. Another method proposed
by Mueller et al. [22] blends preprocessed images including
opacity values to render external views of a volume within
a limited viewing cone. Neither of these recent techniques
store information about the volume integral for each view-
point. Our method stores information about the volume in-
tegral, allowing the user to view the internal structure of the
volume without having to recompute the input images. Fur-
thermore, our method places no restrictions on viewpoints
external to the proxy surface.
We will now describe each stage of our IBVR approach

that is shown in Figure 2.

3 Step 1: Volume Rendering

The volume rendering step can be accomplished with any ar-
bitrary volume rendering system, on any type of hardware.
For example, an oil and gas industry seismic dataset of sev-
eral terabytes in size could be rendered on a supercomputer
or large parallel system, or an irregular dataset from Com-
putational Fluid Dynamics (CFD) could be rendered on a
cluster of PCs. The volume data can be stored in an arbi-
trary grid representation, although we focus on rectilinear
volumes in this paper.
The volume renderer produces ray slices for a set of orig-

inal viewpoints. Ray slices are created by progressively
moving an image-aligned clipping plane through the volume
back-to-front, clipping away the volume between the clipping
plane and the viewpoint (see Figure 3).
Each pixel within a ray slice image represents a partial

ray projected from the slice location through the volume
along the corresponding viewing ray. Hence, the color and
opacity values at each pixel correspond to the accumulated
colors and opacities generated by the volume integral along
a viewing ray starting at the slice through the remainder
of the volumetric data. For a given viewpoint, multiple ray
slices can be stored for key view generation, the next step in
our viewing pipeline.
Ray slices are easily produced by any volume render-

ing application that computes RGBA images with back-
to-front compositing for arbitrary image-aligned clipping
planes. This requirement is easily fulfilled by any tradi-
tional volume rendering method, including irregular volume
rendering and splatting.
Ray slices can be compressed via standard image com-

pression schemes. We use the Portable Network Graphics
(PNG) [1] format for lossless compression. JPEG 2000 or
other methods could be used for lossy compression with
higher compression ratios.
The number of ray slices per viewpoint is one of the pa-

rameters that can be adjusted by the user. In general,
the number of slices is dataset dependent. For example,
anisotropic data can have more slices along one axis. Fur-
thermore, the distance between slices can be adapted to skip
empty space or acquire more detail at certain depths within
the volume. Each viewpoint can have as few as one ray slice,
or as many as memory restrictions will allow. We will show
results in Section 6 and discuss these trade-offs in Section 7.

4 Step 2: Key View Generation

The key view generation step takes the ray slices and as-
sociated viewpoint parameters as input, along with a ge-
ometric proxy surface, to calculate key views for each ray

Figure 3: Ray slices for a specific viewpoint. The top illustra-
tion indicates the relative position of each slice with respect
to the viewpoint, and following images are the example ray
slices from the head dataset.

slice viewpoint. Each key view represents a view of the vol-
ume bounded by the proxy surface from a specific viewpoint.
Similar to lumigraph rendering [13], the proxy surface is used
for ray interpolation to generate key views of the volume.
These key views are then rendered during volume viewing
as described Section 5.
The proxy surface can be a simplified isosurface, extracted

using the Marching Cubes algorithm [17], corresponding to
the exterior material exposed through the transfer function.
The choice of proxy surface has a significant impact on the
final image quality due to interpolation errors. Figure 4
illustrates this point. The image on the left contains ghost-
ing artifacts around the skin isosurface due to an inaccurate
proxy surface and inadequate number of key views. A bet-
ter proxy surface allows fewer key views for smooth output
images, while a more coarse proxy surface will require more
key views.
Typically, the proxy surface is computed only once per

volume. To reveal the interior structure of the original vol-
ume, the proxy can be modified by the user, e.g., by allow-
ing clipping planes to modify the initial proxy surface. This
modification effectively changes the bounding surface of the
volume, and thus reveals new views of the data. After defor-
mation of the proxy surface, key views must be recomputed
using the new proxy geometry.
The key views are interpolated from the ray slices for each



Figure 4: Comparison of two proxy surfaces for the same
number of key views. The image on the left has visible arti-
facts around the isosurface boundary due to poor isosurface
extraction, denoted by the red ellipse, while a more carefully
picked isovalue for the proxy surface on the right produces
better final images.

viewpoint as follows: First, the proxy surface is rendered to
the frame buffer for a specific viewpoint. Next, the depth
values are queried from the depth buffer to determine the
distance from the proxy surface to the viewpoint for each
pixel in the key view. These depth values are used to index
into the ray slices to determine which pixels of the ray slices
are required for interpolation of the resulting key view (see
Figure 5). We use linear interpolation between ray slice pix-

Figure 5: Key view generation from ray slices and the proxy
surface. Once the back and front ray slices for interpolation
are determined from the proxy depth value, the appropri-
ate pixel in each ray slice is weighted and summed to de-
termine the resulting key view pixel color for the geometric
proxy depth.

els, although higher order or nearest-neighbor interpolation
could be used. We interpolate RGB and alpha. The result
is a new key view, which is output in PNG RGBA image
format. The same procedure is repeated for every original
viewpoint.
The ray slices could also consist of only one slice per view-

point. In this case no interpolation is required for generat-
ing the key views. It suffices to render the proxy surface to
the depth buffer and color key view pixels black where the
depth of the pixel equals the far plane distance. This sin-
gle ray slice technique removes scanning artifacts, as well as
surfaces external to the proxy surface. We used this single
ray slice technique for the visible female and visible female
feet datasets presented in Section 6.
The number of key views can be adjusted, as can the

viewpoint locations (see Figure 6). These adjustments are
highly data, application, and system dependent. For ex-
ample, a surgical simulation may require highly accurate

renderings within a viewing cone (Figure 6a); seismic data
may need viewing along 360 degrees in longitude but only
for a limited range in latitude (Figure 6b); simulation data
exploration may require unlimited freedom for the viewing
location (Figure 6c). As we will discuss in Section 6, each
viewpoint arrangement requires a minimal number of key
views to achieve high image quality.

Figure 6: Viewpoint configurations used in our experiments.

5 Step 3: Volume Viewing

The key views and the proxy surface are used for image-
based rendering. Since each key view contains opacity and
color, the set of key views constitutes an opacity light field,
parameterized on the proxy surface. We use the system
by Vlasic et al. [31] and unstructured lumigraph rendering
(ULR) [2] to visualize the opacity light field. This method
is interactive on PCs using current graphics hardware.
The input to the algorithm is a triangular mesh (i.e., the

geometric proxy) and a set of RGBA key views with corre-
sponding camera parameters. First, we find the set of visible
key views for each mesh vertex v. A key view is visible if
all the neighboring triangles around v are completely unoc-
cluded in that view. For each vertex v, we then find the
k (k ≤ 3) visible views closest to the new viewing direc-
tion d. We call these the closest views for vertex v. Next
we compute the blending weights for the closest views us-
ing unstructured lumigraph interpolation. Higher blending
weights are assigned to views closer to d. Finally, we ren-
der each triangle by blending the key views from the closest
views of its three vertices. This amounts to blending up to
nine textures per triangle, which is carried out solely by the
graphics hardware.
To ensure correct alpha blending, the triangles must be

rendered in back-to-front order. We pre-compute a BSP tree
for the geometric proxy and traverse the tree while render-
ing. For geometric proxies with relatively small occlusions,
we consider all camera views for blending at each vertex,
resulting in a slight drop in performance but higher image
quality. The details of the implementation, including opti-
mizations and pseudo-code, can be found in [31].

6 Results

The volume rendered images of the ray slices were produced
with Kindlmann’s volume renderer miter [15]. While this
volume render produced highly detailed images, it is imple-
mented completely in software, resulting in a slower render-
ing phase than other implementations. The key view genera-
tion program was implemented in OpenGL, and the opacity
light field was rendered using DirectX 9.0 and ATI’s Radeon
9700 card with 128 MB of texture memory.
We used three datasets for our comparisons – the UNC

Chapel Hill CT head, the visible female [25], and the visible
female feet. The visible female was cropped from the original



Figure 7: Example key views for each of our datasets: UNC CT head (left) generated from a clipped proxy surface, the visible
female feet (center), the and visible female (right).

512 × 512 × 1734 dataset to eliminate empty voxels along
the sides of the volume. The size of each dataset is listed in
Table 1. Although our experiments focused on regular grids,
the IBVR method is easily extendible to irregular grids, as
well as dataset sizes of several gigabytes or terabytes.

Dataset Resolution Size

UNC CT Head 184 x 247 x 225 10 MB
Visible Female Feet 300 x 350 x 256 51 MB
Visible Female 483 x 275 x 1734 440 MB

Table 1: Volume data used in our experiments.

We found that using lossless PNG encoding for the ray
slices provided adequate compression, even for a large num-
ber of viewpoints. The volume viewing system uses BMP
images for the input key views. Due to texture memory lim-
itations on current graphics cards, key views are limited to
a resolution of 256× 256 pixels. Consequently, the ray slice
images were produced with the same resolution. Increased
memory capabilities on future graphics cards will allow for
higher resolution key views, and thus, higher resolution ray
slice images. For the visible female dataset, images were
initially rendered with a resolution of 1024 × 1024 and re-
sampled with a Blackman windowed sinc kernel to reduce
undersampling artifacts. Although resampling the images
to a smaller resolution resulted in a loss of detail, it is im-
portant to note that this reduction occurs after the rendering
phase, ensuring a more complete evaluation of the volume
integral.
The arrangement of viewpoints for the CT head was six

rings (see Figure 6b) spaced four degrees apart. For the vis-
ible female feet we used 545 views spanning the hemisphere
(see Figure 6c), and for the visible woman we used seven
rings spaced four degrees apart. Table 2 lists the number of
viewpoints, the number of ray slices per viewpoint, the total
memory size of the ray slices for each dataset, and the total
memory size of the key views for each dataset.
One set of 20 ray slices for a specific viewpoint for the

head dataset required approximately 831 KB of memory.
The same number of ray slices for the visible female required
426 KB. From these results it is clear that the memory re-
quirement for ray slice storage is independent of the original
dataset size. Instead, memory requirements depend on the

Dataset Nbr of Ray Slices Total Total
Views per View Ray Slices Key Views

Head 600 20 529 MB 154 MB
Feet 545 1 16 MB 105 MB
Female 630 1 18 MB 162 MB

Table 2: The number of viewpoints and slices per viewpoint
for the datasets used in our experiments, along with the
memory required for storage of the ray slices and key views.

number of ray slices and the number of empty or coherent
pixels per ray slice, which affects the compression efficiency
of PNG. The visible female’s non-uniform dimensions re-
quired fewer ray slices for most viewpoints, which meant the
total ray slice storage was less than for the CT head.
The volume rendering was computed on a 64 processor

SGI Origin 3800 with 32GB of RAM. Volume rendering of
all ray slices took between 1 and 12 hours, depending on the
dataset. Key view creation was done on a 2 GHz Pentium
4 PC with 1 GB of RAM. Table 3 lists the processing time
for key view generation for each dataset in our experiments,
and Figure 7 shows sample key views.

Dataset Viewpoints Slices Processing Time

Head 600 20 495 sec.
Feet 545 1 118 sec.
Female 630 1 135 sec.

Table 3: The number of viewpoints and slices per viewpoint
for the datasets used in our experiments, along with the num-
ber of seconds required to generate the key views.

Proxy surfaces for the datasets were generated using the
Marching Cubes algorithm [17]. The results of our experi-
ments indicate that the choice of isovalue (or more specifi-
cally, of the resulting isosurface) can greatly effect the qual-
ity of the final volume viewing image (see Figure 4). For
our datasets, isovalues that closely matched the outermost
surface specified by the transfer function produced the best
results. Table 4 lists the proxy surface mesh sizes for each
dataset in our experiments.
Figure 8 presents images of each dataset from novel view-



Dataset Mesh Size

Head 5827
Feet 9292
Female 11,143

Table 4: The sizes of the proxy surface mesh for each of
the datasets used in our experiments, given in number of
triangles.

points rendered as opacity light fields, along with their proxy
surfaces. The UNC CT head is shown twice with different
proxy surfaces to illustrate our method’s ability to reveal the
internal structure of a volume. All images where captured
during an interactive session on a PC. The performance var-
ied from 4.5 frames per second to 20.2 frames per second,
depending on the viewpoint.
As with any surface light field rendering method, our tech-

nique has problems in areas of concavities of the proxy geom-
etry. These problems are especially apparent when introduc-
ing a clipping plane due to the poor geometric approximation
of the interior surface. The lack of accurate geometry can
lead to jumping of features, also known as texture popping.
A solution to texture popping is to use more key views if
clipping planes are used or if the geometry has pronounced
concavities.
For example, we found that doubling the number of key

views minimizes popping artifacts for the UNC CT head
when using proxy geometry with a clipping plane. The top
row of the head dataset in Figure 8 was rendered using six
rings of key views spaced four degrees apart, while the second
row was rendered with the key views placed within a viewing
cone at two degrees apart. For good surface proxies we found
that a key view displacement of four degrees eliminated most
popping artifacts.

7 Discussion

Our image-based volume rendering (IBVR) approach of-
fers several advantages over traditional volume visualization
methods. An important advantage stems from the indepen-
dence of each step in the IBVR pipeline. Each of the three
stages could be run on separate machines, allowing the user
to take full advantage of access to multiprocessor systems or
high end workstations. For example, volume rendering could
be run on a parallel machine, key views could be generated
on a workstation, and the volume viewing could take place
on a laptop. If high end systems are not available, all three
steps could run on the same desktop PC.
Another advantage is the flexibility to control the amount

of data generated by a specific stage of the pipeline. The
output of one stage can be restricted based on the capa-
bilities of the system that runs the next stage. For exam-
ple, the number of ray slices, the amount of compression,
and the number of viewpoints in the volume rendering step
could be constrained based on the main memory available
for key view generation. Or, the number and resolution of
key views could depend on the texture memory available on
the PC graphics card used for volume viewing.
In contrast to other IBVR methods, our system allows

the user to view internal structures of the volume by edit-
ing the proxy surface. Although this step is currently non-
interactive, the key view generation time is several orders of
magnitude faster than re-rendering the volume. This speed-
up factor becomes greater as the volume dataset size in-

creases. For example, rendering 630 images of the visible
female on the system described in Section 6 required ∼12.25
hours using 32 processors. Generating key views for the
same number of viewpoints required only several hundred
seconds (see Table 3) on the desktop PC as described also in
Section 6. We believe that sufficient optimizations can lead
to interactive key view generation.
Presently, our system does not allow for interactive chang-

ing of the transfer function, which is a disadvantage for many
applications. However, there are currently no systems with
this capability that can render very large datasets interac-
tively on a desktop PC. One solution is to use a downsam-
pled version of the data to determine an acceptable transfer
function prior to the volume rendering step. The addition of
interactive transfer function editing is the subject of future
work.

8 Conclusions and Future Work

We have presented the first steps toward integrating opac-
ity light field rendering with volume rendering. Our IBVR
pipeline has three distinct stages that can be run on differ-
ent machines and with different parameters. This offers a lot
of flexibility in terms of image quality, speed, and required
memory footprint.
An important improvement will be the ability to inter-

actively change the transfer functions for the volume. One
possibility is to use pre-integration techniques with informa-
tion stored in the key views. Alternatively, recent work on
Plenoptic Opacity Functions (POFs) [11] as basis functions
in a multiprocessor volume rendering pipeline, could be in-
tegrated into the IBVR pipeline. Also, optimizing the key
view generation stage of the pipeline will allow interactive
updates of the proxy surface to reveal the internal structures
of the volume.

Acknowledgments

This material is based upon work supported in part by
the National Science Foundation under Grants: 9977218
and 9978099, and awards from DOE and NIH. We would
like to thank Gordon Kindlmann for the many discussions
and assistance with producing the volume renderings in this
work. We used his miter volume renderer from the teem

toolkit [15]. We would also like to thank Wojciech Ma-
tusik for the inspiring discussions that initiated this work,
and Daniel Vlasic for his opacity light field viewer. All
figures in the paper were graciously produced by Nathan
Galli (nathang@sci.utah.edu). Many thanks also to Stefan
Guthe who provided us with aligned versions of the visible
human datasets. The visible female dataset is courtesy of
the visible human project sponsored by the NIH National
Library of Medicine [25].

References

[1] Portable network graphics. http://www.libpng.org/pub/png/.

[2] C. Buehler, M. Bosse, L. McMillan, S. Gortler, and M. Cohen.

Unstructured lumigraph rendering. In Computer Graphics, SIG-

GRAPH 2001 Proceedings, pages 425–432, Los Angeles, CA,

2001.

[3] B. Cabral, N. Cam, and J. Foran. Accelerated volume render-

ing and tomographic reconstruction using texture mapping hard-

ware. In 1994 Workshop on Volume Visualization, pages 91–98,

Washington, DC, October 1994.



[4] B. Chen, A. Kaufman, and Q. Tang. Image-based rendering

of surfaces from volume data. In K. Mueller and A. Kaufman,

editors, Volume Graphics 2001, pages 279–295, Stony Brook,

NY, June 2001.

[5] W-C. Chen, J-Y. Bouguet, M. H. Chu, and R. Grzeszczuk. Light

Field Mapping: Efficient Representation and Hardware Render-

ing of Surface Light Fields. ACM Transactions on Graphics,

21(3):447–456, July 2002. ISSN 0730-0301 (Proceedings of ACM

SIGGRAPH 2002).

[6] Yi-Jen Chiang, Ricardo Farias, Cludio T. Silva, and Bin Wei. A

unified infrastructure for parallel out-of-core isosurface extrac-

tion and volume rendering of unstructured grids. In Proceedings

of the IEEE 2001 symposium on parallel and large-data visu-

alization and graphics, pages 59–66. IEEE Press, 2001.

[7] Wagner T. Corra, James T. Klosowski, and Cludio T. Silva. Out-

of-core sort-first parallel rendering for cluster-based tiled dis-

plays. In Proceedings of the Fourth Eurographics Workshop on

Parallel Graphics and Visualization, pages 89–96. Eurographics

Association, 2002.

[8] M. Cox and D. Ellsworth. Application-controlled demand paging

for out-of-core visualization. In IEEE Visualization, pages 235–

244, 1997.

[9] P. Debevec, Y. Yu, and G. Borshukov. Efficient view-dependent

image-based rendering with projective texture-mapping. In Pro-

ceedings of the 9th Eurographics Workshop on Rendering,

pages 105–116, Vienna, Austria, June 1998.

[10] K. Engel, M. Kraus, and T. Ertl. High-quality pre-integrated vol-

ume rendering using hardware-accelerated pixel shading. In Pro-

ceedings of the ACM SIGGRAPH/EUROGRAPHICS Work-

shop on Graphics hardware, pages 9–16. ACM Press, 2001.

[11] J. Gao, J. Huang, H. Shen, and J. Kohl. Visibility culling using

plenoptic opacity functions for large volume visualization. In

Proceedings of the IEEE Visualization ’03 Conference, pages

341–348, Seattle, WA, October 2003.

[12] Antonio Garcia and Han-Wei Shen. An interleaved parallel vol-

ume renderer with pc-clusters. In Proceedings of the Fourth Eu-

rographics Workshop on Parallel Graphics and Visualization,

pages 51–59. Eurographics Association, 2002.

[13] S. Gortler, R. Grzeszczuk, R. Szeliski, and M. Cohen. The lu-

migraph. In Computer Graphics, SIGGRAPH 96 Proceedings,

pages 43–54, New Orleans, LS, August 1996.

[14] S. Guthe, M. Wand, J. Gonser, and W. Strasser. Interactive

rendering of large volume data sets. In Proceedings of IEEE

Visualization ’02, pages 53–60. IEEE Press, 2002.

[15] Gordon Kindlmann. The teem toolkit.

http://www.cs.utah.edu/∼gk/teem.

[16] M. Levoy and P. Hanrahan. Light field rendering. In Computer

Graphics, SIGGRAPH 96 Proceedings, pages 31–42, New Or-

leans, LS, August 1996.

[17] W. E. Lorensen and H. E. Cline. Marching–cubes: A high resolu-

tion 3D surface construction algorithm. In Computer Graphics,

Proceedings of SIGGRAPH 87, pages 163–169, 1987.

[18] W. Matusik, H. Pfister, A. Ngan, P. Beardsley, R. Ziegler, and

L. McMillan. Image-based 3d photography using opacity hulls.

ACM Transaction on Graphics, 21(3):427–437, July 2002. ISSN

0730-0301 (Proceedings of ACM SIGGRAPH 2002).

[19] M. Meissner, S. Guthe, and W. Strasser. Interactive lighting

models and pre-integration for volume rendering on pc graphics

accelerators. In Proceedings of Graphics Interface 2002, pages

209–218, 2002.

[20] M. Meissner, U. Hoffmann, and W. Strasser. Enabling classifica-

tion and shading for 3d texture mapping based volume rendering

using opengl and extensions. In Proceedings of the 1999 IEEE

Visualization Conference, pages 207–214, San Francisco, CA,

October 1999.

[21] G. Miller, S. Rubin, and D. Ponceleon. Lazy decompression

of surface light fields for precomputed global illumination. In

Proceedings of the 9th Eurographics Workshop on Rendering,

pages 281–292, Vienna, Austria, June 1998.

[22] K. Mueller, N. Shareef, J. Huang, and R. Crawfis. Ibr-assisted

volume rendering. In Proceedings of IEEE Visualization Late

Breaking Hot Topics, pages 5–8, October 1999.

[23] Shigeru Muraki, Masato Ogata, Kwan-Liu Ma, Kenji Koshizuka,

Kagenori Kajihara, Xuezhen Liu, Yasutada Nagano, and Kazuro

Shimokawa. Next-generation visual supercomputing using pc

clusters with volume graphics hardware devices. In Proceed-

ings of the 2001 ACM/IEEE conference on Supercomputing

(CDROM), pages 51–51. ACM Press, 2001.

[24] K. Nishino, Y. Sato, and K. Ikeuchi. Appearance compression

and synthesis based on 3d model for mixed reality. In Proceedings

of IEEE ICCV ’99, pages 38–45, September 1999.

[25] NIH National Library of Medicine. The visible human project.

http://www.nlm.nih.gov/research/visible.

[26] S. Parker, M. Parker, Y. Livnat, P.-P. Sloan, C. Hansen, and

P. Shirley. Interactive ray tracing for volume visualization. IEEE

Transactions on Visualization and Computer Graphics, pages

238–255, July – September 1999.

[27] H. Pfister, J. Hardenbergh, J. Knittel, H. Lauer, and L. Seiler.

The volumepro real-time ray-casting system. In Proceedings of

the 26th Annual Conference on Computer Graphics and In-

teractive Techniques (SIGGRAPH 99), pages 251–260. ACM

Press/Addison-Wesley Publishing Co., 1999.

[28] K. Pulli, M. Cohen, T. Duchamp, H. Hoppe, L. Shapiro, and

W. Stuetzle. View-based rendering: Visualizing real objects from

scanned range and color data. In Eurographics Rendering Work-

shop 1997, pages 23–34, June 1997.

[29] C. Rezk-Salama, K. Engel, M. Bauer, G. Greiner, and T. Ertl.

Interactive volume rendering on standard pc graphics hardware

using multi-textures and multi-stage rasterization. In Eurograph-

ics/SIGGRAPH Workshop on Graphics Hardware, pages 109–

118, Interlaken, Switzerland, August 2000.

[30] S. Röttger, M. Kraus, and T. Ertl. Hardware-accelerated volume

and isosurface rendering based on cell-projection. In Proceedings

of IEEE Visualization ’00, pages 109–116. IEEE Computer So-

ciety Press, 2000.

[31] D. Vlasic, H. Pfister, S. Molinov, R. Grzeszczuk, and W. Ma-

tusik. Opacity light fields: Interactive rendering of surface light

fields with view-dependent opacity. In Proceedings of the Inter-

active 3D Graphics Symposium 2003, 2003.

[32] W. Volz. Gigabyte volume viewing using split software/hardware

interpolation. In Volume Visualization and Graphics Sympo-

sium 2000, pages 15–22, Salt Lake City, UT, October 2000.

[33] M. Weiler, R. Westermann, C. Hansen, K. Zimmerman, and

T. Ertl. Level-of-detail volume rendering via 3d textures. In

Volume Visualization and Graphics Symposium 2000, pages 7–

13, Salt Lake City, UT, October 2000.

[34] D. Weiskopf, K. Engel, and T. Ertl. Interactive Clipping

Techniques for Texture-Based Volume Visualization and Volume

Shading. IEEE Transactions on Visualization and Computer

Graphics, 9(3):298–312, 2003.

[35] O. Wilson, A. Van Gelder, and J. Wilhelms. Direct volume ren-

dering via 3D textures. Ucsc-crl-94-19, Jack Baskin School of

Eng., University of California at Santa Cruz, 1994.

[36] D. Wood, D. Azuma, K. Aldinger, B. Curless, T. Duchamp,

D. Salesin, and W. Stuetzle. Surface light fields for 3d photog-

raphy. In Computer Graphics, SIGGRAPH 2000 Proceedings,

pages 287–296, Los Angeles, CA, July 2000.



Figure 8: Results of IBVR using three datasets along with their proxy surface mesh. The first two rows show the UNC CT
head, the third row the Visible Female feet, and the fourth row is the Visible Female. The left column images are the proxy
surfaces used to generate the key views. All IBVR images were captured during an interactive volume viewing session.


