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Abstract:

Tetrahedral meshes are widely used in scientific computing for representing three-dimensional
scalar, vector, and tensor fields. Their size and complexity limit the performance of many
visualization algorithms, making it hard to achieve interactive visualization. The use of simplified
models is one way to enable the real-time exploration of these datasets. In this paper, we propose
a novel technique for simplifying large unstructured meshes.

Most current techniques simplify the geometry of the mesh using edge collapses. Our technique
simplifies the underlying scalar field directly. This is done by segmenting the original scalar field
into two pieces: the boundary of the original domain and the interior samples of the scalar field.
We then simplify each piece separately, taking into account proper error bounds. Finally, we
combine the simplified domain boundary and scalar field into a complete, simplified mesh that can
be visualized with standard unstructured data visualization tools.

Our technique tends to be faster than edge-collapse based approaches because we do not need to
construct a complete representation of the mesh in memory. Also, our memory consumption is
considerably lower when compared to edge-collapse approaches. We have been able to simplify
large meshes with about 1.4 million cells in less than 8 minutes. The most expensive step in our
technique is the computation of a conforming Delaunay tetrahedralization for the simplified data,
which consumes over 75% of the time.
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Figure 1: Graphical representation of our simplification pipeline. Our technique separates the original scalar field (shown on the left) into two
pieces: the boundary of the original domain and the interior samples of the scalar field. We then simplify each piece separately, taking into
account proper error bounds. Finally, we combine the simplified domain boundary and scalar field into a complete, simplified mesh (shown on
the right) by computing a conforming Delaunay tetrahedralization and removing the external tetrahedra.

ABSTRACT

Tetrahedral meshes are widely used in scientific computing for rep-
resenting three-dimensional scalar, vector, and tensor fields. Their
size and complexity limit the performance of many visualization al-
gorithms, making it hard to achieve interactive visualization. The
use ofsimplified modelsis one way to enable the real-time explo-
ration of these datasets. In this paper, we propose a novel technique
for simplifying large unstructured meshes.

Most current techniques simplify the geometry of the mesh using
edge collapses. Our technique simplifies the underlying scalar field
directly. This is done by segmenting the original scalar field into
two pieces: the boundary of the original domain and the interior
samples of the scalar field. We then simplify each piece separately,
taking into account proper error bounds. Finally, we combine the
simplified domain boundary and scalar field into a complete, sim-
plified mesh that can be visualized with standard unstructured data
visualization tools.

Our technique tends to be faster than edge-collapse based ap-
proaches because we do not need to construct a complete repre-
sentation of the mesh in memory. Also, our memory consumption
is considerably lower when compared to edge-collapse approaches.
We have been able to simplify large meshes with about 1.4 million
cells in less than 8 minutes. The most expensive step in our tech-
nique is the computation of a conforming Delaunay tetrahedraliza-
tion for the simplified data, which consumes over 75% of the time.

1 INTRODUCTION

In scientific computing, it is common to represent a scalar function
f : D ⊆ R3 → R as sampled data by defining it over a domainD,
which is represented as a tetrahedral mesh. For visualization pur-
poses, many choose to define the functionf as linear inside each
tetrahedron of the mesh. In this case, the function is completely
defined by assigning values at each vertexvi(x,y,z), and is piece-
wise linear over the whole domain. The domainD becomes a 3-
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dimensional simplicial complex defined by a collection of simplices
ci . It is important to distinguish the domainD from the scalar field
f . The purpose of visualization techniques, such as isosurface gen-
eration [17] and direct volume rendering [18] are to study intrinsic
properties of the scalar fieldf . The time and space complexity of
these techniques are heavily dependent on the size and shape of the
domainD.

For large datasets, it is not possible to achieve interactive visu-
alization. In these cases, it is often useful to generate a reduced-
resolution scalar field̄f : D̄ ⊆ R3 → R, such that:

• the new scalar field̄f approximatesf in some natural way,
i.e., | f̄ − f | ≤ ε;

• the new domain̄D is smaller thanD.

There are many possible ways to computēf from f . Re-
cently, many techniques have been proposed that simplify tetra-
hedral meshes by the use of edge (1-simplex) and tetrahedron (3-
simplex) collapses (see,e.g., [4, 20, 25]) on the domainD. These
techniques work similarly to triangle-based simplification tech-
niques [14, 11] and use connectivity information to incrementally
cull simplicesci from the domain (i.e., when a 1-complex is col-
lapsed, several 2- and 3-simplices become degenerate and can be
removed from the tetrahedralization). Most techniques order the
collapses using some type of error criteria, stopping when the size
of the domain|D̄| reaches a user-defined target number of simplices
n (i.e., the simplification stops once|D̄| < n) or when the func-
tion f̄ reaches a maximum user-defined error boundε > 0 (i.e.,
| f̄ − f | ≤ ε).

With surfaces embedded in three-dimensions, it is quite natural
to try to maintain the shape of the overall mesh during simplifica-
tion. For scalar fields, the overall geometry of the domainD is not
nearly as important. The domain is used to represent the subset of
R3 where the scalar fieldf is defined. For this, we only need to
maintain the shape and topology of the boundary∂D. In our work,
instead of slowly buildingD̄ from D using a series of collapses, we
build the boundary of̄D, B̄, by simplifying ∂D, while completely
ignoring the connectivity of the interior. For the interior, we use a



Figure 2: Comparison with [10]: The result of Farias et al. for the
SPX dataset is shown on the left; observe the damaged boundary.
The result of the algorithm proposed in this paper is shown of the
right.

point-sampling approach to build the 0-simplicesV̄ = {v̄i} that are
used to define the final domain of̄f . Then we use a tetrahedraliza-
tion algorithm to create the simplicial complex̄D by combiningB̄
and the set̄V.

To summarize, our technique works directly on the underlying
scalar field. This is done by segmenting the original scalar field
into two pieces: the boundary of the original domain and the inte-
rior samples of the scalar field. We simplify each piece separately,
taking into account proper error bounds. Finally, we combine the
simplified domain boundary and scalar field into a complete sim-
plified mesh. Our technique tends to be faster than edge-collapse
based approaches because we do not need to construct a complete
representation of the mesh in memory. Also, note that our mem-
ory consumption is considerably lower when compared to edge-
collapse approaches.

Our new algorithm builds on our previous work presented in
[10]. Although based on related ideas, our previous method was
quite rudimentary, and was meant to be used primarily for low-
quality renderings. In particular, it did not provide error bounds on
either the interior or boundary of the simplified mesh.

The remainder of this paper is organized as follows. We sum-
marize related work in Section 2. In Section 3, we describe our
algorithm. Section 4 presents our results. In Section 5, we dis-
cuss different trade-offs of our approach. Finally, in Section 6, we
provide final remarks and directions for future work.

2 RELATED WORK

Most of tetrahedral mesh simplification to date uses the edge-
collapse approach. These algorithms employ various edge-cost
functions to preserve the boundary. Trottset al. [25] extend the
technique of Gienget al. [13] for the simplification of triangle
meshes to tetrahedral meshes. They collapse individual tetrahe-
dron by collapsing three edges and evaluating the resulting error.
Their technique attempts to preserve the boundary of the tetrahe-
dral mesh, as much as possible, by the use of boundary constraints.
In their followup work, Trottset al. [24] improve upon their pre-
vious methods by avoiding the topological problems created from
collapsing a tetrahedron. Their strategy was to use only one edge
collapse instead of a sequence of three edge collapses. They pre-
sented two algorithms: the first uses a priority queue which sorts the

tetrahedron by error cost; the second uses a greedy strategy which
computes the local error resulting from the edge collapses such that
the mesh remains within a tolerance of the original.

Staadt and Gross [23] extend the work of Hoppe [14] for pro-
gressive tetrahedralization. They discuss intersections, inversions,
and degenerations of tetrahedra for a robust implementation of edge
collapsing. They also redefine the cost function by considering the
volume preservation and gradient.

Van Gelderet al. [12] evaluate the effect of decimation by
comparing two data-based error metrics: the mass-metric and the
density-metric.

Chopra and Meyer [4] propose a fast algorithm to progressive
simplification: TetFusion. The idea of this algorithm is to use a
tetrahedral collapse operation in which one tetrahedron is collapsed
onto its barycenter. In their work they preserve the boundary sur-
face by avoiding a simplification of any tetrahedron on the bound-
ary.

Chiang and Lu [3] construct multiple levels of the tetrahedral
volume, preserving the topology of all isosurfaces. The algorithm
simplifies the tetrahedral mesh in two phases. In the segmentation
phase, it classifies each vertex into critical or non-critical points
and uses the contour tree algorithm of Carret al. [2] to compute the
fully augmented contour tree. The augmented contour tree is used
to identify topologically equivalent regions. In the simplification
phase, the algorithm uses edge collapse operations in which each
topological equivalent region is simplified independently. Note that
any change to the transfer-function requires a recomputation of the
simplification algorithm.

In the tetrahedral mesh simplification of Natarajan and Edels-
brunner [20], they use edge contractions with the modified
quadratic error metric of Garland and Heckbert [11]. The quadratic
cost function preserves the density map, improves the mesh quality
in terms of angles, and preserves the global topological type of the
mesh.

All of the papers mentioned use mesh connectivity to simplify
the tetrahedral mesh. Our work uses a different approach, we sim-
plify the boundary surface and simplify the interior points indepen-
dently, then rebuild the connectivity using Delaunay tetrahedraliza-
tion.

Fariaset al. [10] present an algorithm to improve the speed of
volume rendering for unstructured grids using an approach similar
to the one proposed in this paper. This technique uses the following
steps. First, a set of sample points are generated by sampling the in-
terior points. Second, the boundary is simplified separately, leading
to a collection of simplified points. From the simplified boundary, a
set of external “ghost” vertices are generated. They then discard the
geometry of the boundary (unlike our technique). The final pass is
a Delaunay tetrahedralization of all the points, where any cell that
contains a “ghost” vertex is discarded. A key difference between
this algorithm and ours is that we preserve the boundary surface
of the mesh, using a conforming Delaunay tetrahedralization algo-
rithm [7, 19]. Because the geometry of the boundary is discarded,
the algorithm employed by Fariaset al. [10] could suffer from se-
vere boundary anomalies. See Figure 2.

Evaluating the quality of the simplification is as important as
the simplification algorithm. We adopt the approach of Cignoni
et al. [5] who presented a methodology to evaluate the approxima-
tion error of the simplification. Their multi-variate error function
uses both the domain error (geometry of the boundary) and the field
error components.

3 OUR SIMPLIFICATION ALGORITHM

In this work, we consider the tetrahedral mesh as a functionf :
D ⊆ R3 → R, therefore, we simplify the function rather than the
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Figure 3: Main steps of our simplification algorithm described in
detail in Section 3.

geometry of the tetrahedral mesh. We present a multi-stage algo-
rithm (see Figure 3). First, we separate the interior points from the
boundary. We simplify the boundary using a modified surface sim-
plification algorithm that takes into account the scalar field defined
at the vertices, and we use the output of the simplification process
to generate some extra ghost vertices (our use of ghost vertices is
a bit different than in the Fariaset al. [10] algorithm, here they are
used mostly for robustness). We simplify the interior points using a
k-d tree partition of the points of the mesh. Then, we reconstruct a
simplified tetrahedral mesh by using conforming Delaunay tetrahe-
dralization (CDT) on the interior points while taking into consider-
ation the simplified boundary. At this point, we have a convex mesh
that approximatesD in a subset. Next, we remove all the tetrahedra
that lie outside of the boundary ofD (to be precise, outside of a sim-
plified version of the boundary ofD). A side effect of the CDT is a
collection of unwanted Steiner points. Our final step is to remove as
many of these points as possible. All these steps are further detailed
below.

3.1 Interior simplification

Our goal is to build a simplification of the volumetric scalar field
in such a way thatfeatures(e.g., isosurfaces) of the volume are
well preserved. We know that the function reconstructed from the
simplified model is a linear interpolation of tetrahedra, and thus,
we do not consider higher order interpolation techniques such as
radial basis functioninterpolation. Our approach is to sub-sample
the input vertices using a space-partitioning data structure, where
the scalar values of each node have a bounded variation. We build
a hierarchy of the scalar function using ak-d tree, trying to group
points with similar scalar values together. The final level of detail
is obtained by sampling each leaf of the tree by the point that has
a value that is closest to the mean scalar value of the cell. (See
Figure 5.)

The method for splitting a node of the tree determines the quality
of the simplification of the interior,i.e. the error in the reconstructed
scalar-function is a function of the number of sampled points. A
node is split if the variation of the values in the node is larger than
a user-defined threshold. To subdivide the nodes, we have to de-
termine an axis and a position on this axis. To determine the axis
among the three possible, we find the pointsxmin andxmax of mini-
mum and maximum scalar values, and we take the axisei for which
the norm of the projection of the vectorg= xmax−xmin is the great-
est. This direction is the direction along which the scalar value
varies the most. The problem is then to determine where to cut the
bounding box of the node along the chosen axis. Assuming that the
sampling of the subdivided nodes is perfect, the best position to cut
is where the sum of the maximum variations of the scalar values
on both sides is minimal. As shown on Figure 4, only picking one
point per subdivided cell can introduce a significant error if the size
of the cell is big. This can be solved by limiting the geometric size
of the cells, but this would introduce another parameter, which we
prefer to avoid. We have tested the exact computation using an ex-
haustive search over all of the points in the node, but have decided
to use a heuristic that works well in practice. We cut the selected

Figure 4: An example of splitting a cell that only contains coplanar
points, with the x-axis as the splitting direction. The plain line is the
original scalar field, the dash line is the approximation from sampling
one point on each side of the split.

axis at the middle of the vectorg.

3.2 Simplification of the boundary meshes

The boundary surface is defined by the faces of the tetrahedral mesh
that belong to a single tetrahedron. It comprises the geometric and
topological aspects of the shape, therefore, we apply geometric con-
straints for the boundary simplification to preserve these qualities.
A boundary simplification algorithm should meet the following cri-
teria:

• preserve the shape of the object, that is, the Hausdorff distance
between the simplified model and the input model should be
as small as possible,

• preserve the topology of the object (some of the most impor-
tant features in tetrahedral volumes lie near holes and cavi-
ties),

• preserve the scalar function on the boundary. Therefore, ge-
ometric simplification algorithms like theSimplification En-
velopestechnique [6] which creates large triangles on flat sur-
faces are not appropriate.

In addition, the algorithm of the conforming Delaunay tetrahe-
dralization works better with well-shaped triangulations. Skinny
triangles make this process more time consuming and less effi-
cient because of the addition of Steiner points on sharp corners [7].
Therefore, we also try to generate simplified boundary meshes with
regular triangles.

We use the programcoarsen provided by the GTS library [21],
which is based on edge collapses. The potential edges to be col-
lapsed are inserted into a priority queue. Each edge has a cost
function, which is computed by simulating the edge collapse and
estimating the quality of the result. The edge with the lowest cost
is collapsed until the target number of edges is reached.

GTS implements the edge-collapse algorithm described in [16].
As with any edge-collapse algorithm, it is characterized by the
placement algorithm of the new vertices resulting from a collapse,
and by the cost functionfC(e,v).

The position of a new vertex can be computed by using the dif-
ferent methods described in [16]: volume preservation, boundary
preservation, weighted average of volume and boundary optimiza-
tion, and triangle shape. Moreover, GTS has code for a weighted
average for volume and shape optimization. We use the volume
preservation constraint, followed by the coupled volume and shape
optimization. Finally, the shape optimization constraint is applied
if necessary.

The weight of the volume optimization is fixed to 1, and the
weight of the shape optimization for an edgee is

ws(e) = λ ·L(e)2



Figure 5: One slice of sampled points for “fighter” LODs highlighting our adaptive sampling technique.

Figure 6: A torus with Steiner points in red.

whereλ is a parameter which we will refer to later as theshape
optimization weight. For the cost function we use:

fC(e,v) = fS(e,v) ·L(e)2

where fS(e,v) is the measure of the triangle shape quality intro-
duced by [16].

The scalar value of a new vertex resulting from an edge collapse
is computed by a linear interpolation of the two adjacent vertices.

3.3 Tetrahedral mesh reconstruction

We wish to remain in the same domain that we started with, allow-
ing further processing and visualization of the simplified model;
thus we reconstruct a tetrahedral mesh from the simplified bound-
ary mesh and the simplified scalar function of the interior.

The reconstruction algorithm is based on Delaunay tetrahedral-
ization of the boundary faces and the simplified interior points. De-
launay tetrahedralizations (DT) are very well known and studied
geometric entities (see, e.g., [9, Chapter 5]). A basic property that
characterizes this geometric structure is that a tetrahedron belongs
to the DT of a point set if the circumsphere passing through the
four vertices is empty, meaning no other point lies inside the cir-
cumsphere. Under some non-degeneracy conditions (no 5 points
co-spherical), this property completely characterizes DTs and the
DT is unique.

Since the shape formed by Delaunay tetrahedralization is the
convex hull of the input set of points and we wish to be able to han-
dle non-convex shapes, we use conforming Delaunay tetrahedral-
ization (CDT) (see below) to make sure that the boundary is indeed
part of the tetrahedralization. In a post-processing step, we remove
tetrahedra that are outside the object as well as Steiner points in-
serted on the boundary by conforming Delaunay tetrahedralization.
For removing the outside tetrahedra, we add ghost vertices prior to
the tetrahedralization of the points. Following is a detailed descrip-
tion of each step.

Conforming Delaunay Tetrahedralization In order to pre-
serve the simplified boundarȳS in the building of the Delaunay
tetrahedralization, we use the conforming Delaunay tetrahedraliza-
tion algorithm introduced by Cohen-Steineret al. [7]. Given a set
of faces{ fi} that need to be included in a DT, the idea behindcon-
formingDelaunay tetrahedralizations is to add points to the original

Figure 7: The simplified boundary of the “blunt fin” dataset with
ghost vertices.

input set so that the DT of the new point set (consisting of the origi-
nal pointsplusthe newly added points) is such that each facefi can
be expressed as the union of a collection of faces of the DT. The
newly added points are often calledSteinerpoints.

A challenge in computing a conforming DT is minimizing the
number of Steiner points and avoiding the generation of very small
tetrahedra. While techniques for computing the traditional DT of
point sites are well known, and reliable code exists, conforming DT
algorithms are still in active development [19, 7]. This particular
technique for adding Steiner points affects the termination of the
algorithm and also the quantity and quality of added geometry.

Consider the dataset with the simplified boundary surfaceS̄, the
set of simplified interior vertices and ghost vertices. The conform-
ing Delaunay tetrahedralization finds a new set of points whose De-
launay tetrahedralization conforms tōS. This set of points includes
the vertices ofS̄and a number of additional Steiner points, shown
in Figure 6.

The added Steiner points are not part of the simplified bound-
ary that we wish to preserve, thus we remove them as well as the
tetrahedra that lie outside of the shape.

Removing external tetrahedra The Delaunay tetrahedral-
ization of non-convex objects tetrahedralizes the convex hull of the
points. Thus, we need to remove the additional tetrahedra generated
in the nonconvex regions.

Ghost vertices provide one additional accurate criterion for iden-
tifying external tetrahedra, since any tetrahedron with at least one
ghost vertex is an external tetrahedron.

Given a vertexv of the boundary surfacēS and the set of faces
F adjacent tov. For each vertexv, we define aghost vertexgv of
v as a point outside of̄S in the direction of the average outward
normal to the faces inF . The distance betweengv andv is set to
be less than the distance betweenv and the closest vertex to it in̄S.
Figure 7 shows the ghost vertices for the “blunt fin” dataset.

First, we remove every tetrahedron with at least one ghost vertex.
Because the Delaunay tetrahedralization is conforming, all tetrahe-
dra with one ghost vertex are external tetrahedra and can be directly
removed. Simultaneously, we mark every tetrahedron that has at
least one interior vertex asinsidethe volumetric mesh.

Next, we classify each tetrahedron asinside, outsideor unde-
cided. Each interior tetrahedront is marked as inside, every adja-



Dataset fighter delta f117

Parameters:
Boundary LOD

8% 8% 8% 8% 6% 6% 6% 6% 10% 10% 10% 10%
(% of edges)
Clustering bound

0.5% 1.2% 2.3% 4.7% 0.5% 2.0% 5.5% 10% 0.3% 1.4% 2.9% 7.1%
(% of range)
Level of detail:
Num. of tetrahedra 598K 326K 172K 78K 474K 228K 109K 71K 162K 77K 42K 14K
Percentage of the

42% 23% 12% 6% 47% 22% 11% 7% 72% 34% 19% 7%
original tetrahedra
Field error:
Maximum error (%) 51.1 51.3 53.0 53.0 64.8 81.2 64.5 78.6 66.9 66.9 64.0 62.6
Mean error (%) 0.42 0.50 0.65 0.91 0.72 1.00 1.21 1.86 0.49 0.65 0.80 1.21
Standard deviation (%) 1.63 1.67 1.77 1.90 3.76 4.64 3.85 4.65 1.50 1.54 1.61 1.87
RMS error (%) 1.68 1.74 1.88 2.11 3.83 4.74 4.04 5.01 1.58 1.67 1.80 2.23

Table 1: Field error of the LODs presented in Figure 10. The field errors are in percentage of the range of the scalar values of the reference
mesh, and the geometric error in percentage of the bounding-box diagonal of the reference mesh. We use a shape optimization weight of 0.1
for the simplifications of the boundary surfaces. The clustering bound is the maximal variation of the scalar values in each cell of the k-d tree
of the sample points. The RMS error is the Root-Mean-Square error.

Figure 8: The convex hull of the “torus” (left). The torus with
external tetrahedra partially removed (right).

Figure 9: Collapsing Steiner points: a Steiner point on an edge is
shown on the left, this point must collapse to a vertex of the original
mesh. The right figures illustrates a Steiner point in the middle of a
face; this point can collapse to any of its neighbors.

cent tetrahedron to the faces oft are marked as inside if the adja-
cent face is not a boundary face. For each outside tetrahedron, we
repeat the same process marking its adjacent tetrahedra as outside.
Figure 8 shows the convex hull of the “torus” dataset with ghost
vertices and a partial result from the process.

Removing Steiner points The conforming Delaunay tetra-
hedralization adds some Steiner points, as described above. Our
final step is to remove these points. We use an edge collapse ap-
proach to simplify the boundary with Steiner pointsS̄∗ to the sim-
plified boundaryS̄. Each edgee that has at least one Steiner vertex
is collapsed.

An edge collapse can cause self-intersections of tetrahedra that
can be identified if the sign of the volume of the tetrahedron is in-
verted [23, 25]. An edge collapse is performed only if it does not
cause self-intersection. In this case we have avalid edge collapse.

We have to consider two cases. First, Steiner vertices that are on
an edge of̄Sare collapsed only along an edge ofS̄. Second, Steiner
vertices that are inside a face ofS̄ use the first valid edge collapse

that we find. See Figure 9. We continue this process until there are
no additional valid edge collapses.

4 RESULTS

We have implemented the algorithms described in Section 3 in C++
with the exception of the boundary simplification code, which is
based on the simplification code available in GTS [21], and the
conforming Delaunay tetrahedralization code, which is a CGAL-
based implementation of the Cohen-Steineret al. [7] algorithm
(graciously provided to us by David Cohen-Steiner). Everything
is integrated to allow for simple use. In order to assess the speed
and quality of our technique, we ran a large number of tests using
diverse datasets. We briefly summarize some of our results below.

We used a Pentium 4 at 3.20 GHz with 2 GB of RAM to generate
our results. Our simplification times are quite fast. For instance, as
Table 2 shows, we can simplify the “fighter” dataset, which has over
1.4 million tetrahedra, to 23% of the original number of tetrahedra
in less than 2 minutes, using a maximum of 335 MB.

We found that global error estimation numbers (see next sec-
tion) do not necessarily give a good measure of the simplification
results, making it difficult to understand the similarities and dis-
crepancies between the different simplified models. Others (e.g.,
[3, 20]) have used one isosurface of the data to compare the dif-
ferent LODs. Here, we use semi-transparent volume rendering of
the models to present holistic views of the overall simplification
quality. The images shown in Figure 10 have been generated with
a high-quality volume rendering approach [1]. Using a histogram,
shown in Figure 11, we can see that our technique preserves the
global structure of the scalar field.

4.1 Error estimation

The error of the simplification of a tetrahedra mesh is estimated by a
field error, which is the variation of the scalar values in the interior
of a reference mesh and a simplified mesh, and a domain error,
which is the variation of the geometry of the boundary surface [5].
We report the maximum error, the absolute mean error, the standard
deviation of the error, and the mean squared error, in percent of the
range of scalar values ofM1. See Table 1.

To measure the domain error, we use the toolMeshDev[22]. It
measures the geometric deviation between two surfaces. It uses
the vertices of the reference mesh as samples to compute the er-
ror. In addition, we use its subsampling option with a density of
0.1 to add samples inside the triangles. For the field error, we
use a similar approach to [5]. Given a reference tetrahedral mesh



Figure 10: Volume rendering of LODs of different datasets. First row: “fighter” – 1.4M tets (100%), 598K tets (42%), 326K tets (23%), 172K
tets (12%), 78K tets (6%). Second row: “delta” – 1M tets (100%), 474M tets (47%), 228K tets (22%), 109K tets (11%) 71K tets (7%).
Third row: “f117” – 224K tets (100%), 162K tets (72%), 77K tets (34%), 42K tets, (19%), 15K tets (7%).

Figure 11: Histograms of the scalar values of LODs of the “fighter”
dataset. 1.4M tets (100%); 354K tets (25%); 99K tets (7%). The
white graph is linearly scaled histogram, the gray graph is log-scaled
histogram, and the horizontal lines are the decades on the log scale.

M1 and a simplified version of itM2, we sample the domain of
M1 at the vertices ofM1. At each sampled point(x,y,z), an error
valuee(x,y,z) = |M1(x,y,z)−M2(x,y,z)| is computed. Contrary to
Cignoni’s approach [5], when a sample taken in the domain ofM1 is
outside of the domain ofM2, we ignore that point, since the point is
undefined inM2 and the domain error accounts for this error. This
leads us to ignore 6.8% of the samples on our simplification of the
“fighter” dataset with 10,000 boundary edges.

Error-value computation The value at a sample pointp in
the volume ofM1 is computed by a linear interpolation of the scalar
values at the vertices of the tetrahedron in which it was picked,
using barycentric coordinates. To find the value ofp on the second
mesh, it is first necessary to find a tetrahedron that containsp in
this mesh. To do this efficiently, we build ak-d tree ofM2 in a way
that if p is in a tetrahedron, then this tetrahedron is in the cell of
thek-d tree containingp. Then, to get the value of the scalar field,

we find the cell containingp and for every tetrahedront of this
cell, we check ifp is insidet by computing the signed distances to
the oriented planes defined by the faces. These planes are oriented
using the fourth vertex of each tetrahedron. To determine ifp is in
t, we could also compute the barycentric coordinates ofp inside of
t and check if all the barycentric coordinates are positive. However,
using the distances to the planes is faster by a factor of ten.

5 DISCUSSION

Our main motivation in doing this work is to search for an accurate
simplification technique that is faster than existing edge-collapse
based approaches. Those have shown to be quite slow, taking be-
tween one to two orders of magnitute longer to compute simplifica-
tions than our approach. From our results presented in this paper,
it appears that the quality of a point-sampling approach like the
one outlined here can be quite competitive with the quality of the
previous techniques, while our technique is substantially cheaper to
compute. In a nutshell, the main advantages of our approach are the
lower memory consumption and the overall improved speed. Still,
there are many nice features of other techniques that our current
technique does not possess. In particular, we do not have fine con-
trol of topological features, such as the work of Chiang and Lu [3].
One way to potentially address this shortcoming of our technique is
to explore domain segmentation along user-defined features, and to
take these extra “surfaces” into consideration when performing the
sampling and the reconstruction of the final mesh.

An important issue is the use of the conforming Delaunay tetra-
hedralization. This is a powerful geometric operation that we use
in our algorithm to be able to preserve the boundary of the do-
main. It greatly simplifies the implementation of our technique.



Figure 12: Top-left: Simplified boundary of spx; Bottom-left: detail
of simplified boundary (two denegerated triangles are shown in red);
Top-right: Steiner points added by CDT; Bottom-right: too many
Steiner points added on degenerated triangles.

We need to stress that there is an interplay between the quality of
the simplified surface that we get back from GTS and the speed and
quality of the final CDT. We noticed that artifacts in the simplified
surface, including degenerate triangles (skinny, small, or otherwise
malformed triangles), cause the CDT to misbehave and sometimes
produce unexpected results. See Figure 12. The shape of the tri-
angles greatly affects the number of added Steiner points, which in
turn causes it to take longer to compute the CDT. Because of this
dependency on the quality of the approximation, we actually spend
a considerable amount of time evaluating the different surface sim-
plification codes available, and in the end, we chose to modify GTS
to improve the quality of the simplified models. Still, we believe
there is work to be done to develop a definite solution to this prob-
lem. Part of the problem is that surface simplification codes are
developed with a goal towards maintaining visual acuity instead of
true geometric and topological quality and strict error bounds. Also,
current simplification codes do not allow us to take into account the
scalar field defined at vertices, forcing us into using indirect param-
eters (e.g., number of edges) when trying to achieve a given scalar
field error bound.

The CDT is the most expensive part of the overall algorithm.
One option to further improve simplification times would be to de-
velop custom tetrahedralization code that maintains the boundary
surface. Another potential use for this type of work is maintaining
certain features of the original tetrahedralization such as direction-
ality and/or shape of original cells. Our sampling procedure is quite
fast, one of the reasons that it is not even faster is that as a result
of boundary simplification some of the sampled interior points can
be outside. In the same way, some of the ghost vertices can be in-
side. We used ak-d tree with 200 tetrahedra per node to speed-up
the removal of external sample points and interior ghost vertices.
Moreover, we used a minimum distance to avoid sample points to
be on the surface. The threshold is set to 1/1000 the diagonal of the
simplified boundary.

6 CONCLUSIONS AND FUTURE WORK

In this paper we introduced a new technique for simplifying large
unstructured meshes. The basic idea is to focus on the scalar field,
and to simplify its domain and sample points separately, taking into
account proper error bounds in each case. The simplified function is
computed as a piecewise linear extension of the simplified sampled
data inside the simplified domain. Given certain high-level pieces,
our algorithm is relatively simple to implement. Our experimen-
tal results show the effectiveness of our technique both in terms of
simplification quality and speed. In particular, our technique is one
to two orders of magnitude faster than existing edge-collapse sim-
plification codes.

There are many avenues for future work. A particularly impor-
tant one for practical use of our approach (discussed in Section 5) is
to develop a geometry and topology accurate surface simplification
technique. We are also interested in developing an out-of-core ver-
sion of our approach in order to simplify extremely large datasets
along the lines of the work of [8]. Finally, we are very interested in
exploring better feature-aware sampling techniques, including the
possibility of preserving major topological features of the scalar
field.
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