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A SURVEY OF THE ITANIUM ARCHITECTURE

FROM A PROGRAMMER’S PERSPECTIVE

Preface

The Itanium family of processors represents Intel’s foray into the world of Explicitly Parallel Instruction
Computing and 64-bit system design. Within this survey is contained an introduction to the Itanium architec-
ture and instruction set, as well as some of the available implementations. We have attempted to distill the
relevant information from the thousands of pages of Itanium documentation and reference materials cited at
the end of this work by taking a programmer’s perspective.

This survey largely follows the structure, form, and content of an excellent book by James Evans and
Gregory Trimper, entitled Itanium Architecture for Programmers. We have, of course, taken the liberty to
rearrange the topics, omit the less important details, and expand the most relevant discussions with appropriate
information from other sources; in other words, we do more than simply summarize the book. Nevertheless,
we gratefully acknowledge the significant impact that their work has had on this survey.

We cover the following topics in varying levels of detail:

� the important characteristics of the Itanium architecture (Sections 1–3),

� programming with the Itanium instruction set (Sections 4–11),

� program performance factors and optimization techniques (Section 12), and

� several implementations of the Itanium architecture (Section 13).

It is not our intention to provide exhaustive discussions of the Itanium architecture, its instruction set, or
any of the available implementations. We have made an effort to include those topics and details that we
found most useful during our initial experimentation with the Itanium architecture. Likewise, where useful
or important details have been omitted intentionally, due either to space and formatting constraints or to the
intended scope of this work, we have made an effort to cite specific sections and pages within the reference
materials that will enhance the included discussion.

Our hope is that this survey will serve as a practical introduction to creating new applications for the
Itanium architecture.

Salt Lake City, Utah
August 2003
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A SURVEY OF THE ITANIUM ARCHITECTURE

FROM A PROGRAMMER’S PERSPECTIVE THE ITANIUM ARCHITECTURE

1 The Itanium Architecture

A computer system may be categorized in terms of two basic characteristics: its organization and its archi-
tecture. The organization of a computer system describes its overall structure and the elements of which the
system is composed. In this survey, we are concerned with the details of Intel’s Itanium architecture and
not the more general topic of computer organization. Many instructive resources cover both of these topics
simultaneously; in particular, we recommend the well-known texts by John Hennessy and David Patterson
(see the section entitled “Bibliography and Additional Resources” on page 70).

The architecture of a computer system, on the other hand, describes the structure and operation of the
system as visible to an assembly language programmer. A computer architecture is therefore an abstraction,
consisting of the programming interface for controlling the operation of the system.

A related, but wholly distinct, concept is that of an implementation. An implementation is the realization
of the structure and operation prescribed by a computer architecture using various hardware and software
components. For example, the Itanium 2 processor is just one of the several available implementations of the
Itanium architecture.

An Analogy from Evans and Trimper. In their book, Itanium Architecture for Programmers, James Evans
and Gregory Trimper offer a useful analogy, based on pianos, to help clarify the distinction between an
architecture and an implementation. We paraphrase their example and include it here:

A piano architecture is defined by the specification of the keyboard. The keyboard is the player’s interface
to the instrument, and it consists of 88 keys: 36 black keys and 52 white keys. Notes of various specified
frequencies are sounded by striking a particular key. The size and arrangement of the keys are identical for
all modern piano keyboards, so a person who can play the piano can play any piano.

Many implementations of the piano architecture are possible. Implementations may be distinguished by
the types of materials used to construct the piano, by the size and shape of the instrument, or any number
of other decisions made by a particular manufacturer concerning the details of the piano. Nevertheless, any
piano player will be able to play the final product.

Likewise, a computer architecture specifies the programmer’s interface for controlling the operation of
the system. Many implementations of the computer architecture are possible, and they are distinguished by
size, cost, and performance characteristics. However, any computer program that runs on one machine should
run on any machine conforming to the same architecture.

Explicitly Parallel Instruction Computing. Modern computer architectures are generally classified as one
of three types. Complex Instruction Set Computers (CISC) usually provide a large number of machine in-
structions, each of which may exhibit many different styles. CISC machines are often difficult to implement
because each type of instruction may require a large portion of the available die area. In contrast, Reduced In-
struction Set Computers (RISC) provide far fewer machine instructions and far fewer instruction styles. As a
result, faster circuitry may be possible, and RISC programs may execute faster than their CISC counterparts,
even though they are typically composed of a larger number of machine instructions.

A few, mostly experimental, RISC architectures employ very long instruction words (VLIW) to guide
the simultaneous execution of several RISC-like instructions. In the past, the advantages of the VLIW ap-
proach were overshadowed by its disadvantages. Analyzing and implementing instruction-level parallelism
required very sophisticated compilers, and accommodating the architectural latency among the instructions
required that software programs be recompiled (and thus redistributed) for each new hardware implementa-
tion. However, after a thorough analysis by B. Rau, minimal modifications to the VLIW approach enabled the
architecture-implementation difficulties to be overcome. These results lead directly to the third, and newest,
class of modern computer architecture: Explicitly Parallel Instruction Computer (EPIC). Intel’s Itanium ar-
chitecture is the first EPIC design.

1



A SURVEY OF THE ITANIUM ARCHITECTURE

FROM A PROGRAMMER’S PERSPECTIVE THE ITANIUM ARCHITECTURE

64-Bit Systems. A computer system may also be classified according to the width of its datapath. This width
describes the number of bits that can “flow” through the computer’s internal conduits in parallel.

Although EPIC architectures are a relatively recent development, processors built around a 64-bit data-
path are not. The Alpha processor, marketed by Digital Equipment Corporation, was the first 64-bit RISC
computer to find commercial success. Other manufacturers, such as Hewlett-Packard, have also marketed
64-bit systems with varying degrees of success.

The Itanium architecture is Intel’s first 64-bit design. While it is too soon to declare the Itanium architec-
ture an overwhelming success, we are hopeful that the implications of EPIC principles, when combined with
a 64-bit design, will lead to a viable and affordable platform for building and running large-scale scientific
and high-performance computing applications.

In the following pages, we discuss those aspects of the Itanium architecture that are most relevant to both
high-level and assembly language programmers. If our hope is realized, you will be well-prepared to face the
new programming challenges.
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2 Instruction Set Architecture

Just as a computer architecture abstracts the structure and operation of a computer system, an instruction set
architecture (ISA) abstracts the interface between a computer’s hardware and lowest-level software. With an
understanding of the ISA, a programmer knows, in principle, what the computer system can and cannot do
and how to accomplish a given task efficiently.

Instruction sets may be classified according to the number of addresses contained within the typical
instruction. Like most RISC designs, the Itanium architecture describes a two-address machine with respect
to its load and store operations: one operand is a memory address and the other is a processor register. Most
other Itanium instructions involve at least three addresses (for example, the add r1=r2,r3 instruction)
and therefore specify two source operands (r2, r3) and one destination operand (r1).

2.1 Information Units and Data Types

The basic unit of information in the Itanium architecture is the 8-bit byte. Unlike previous Intel architectures,
the Itanium architecture assigns each byte a 64-bit address. The architecture also describes several multi-byte
units that are composed of groups of adjacent bytes: the 16-bit word (2 bytes), the 32-bit double word (4
bytes), and the 64-bit quad word (8 bytes). Each of these multi-byte units is also addressable.

2.1.1 Integers

Although the Itanium load and store instructions are able to manipulate information units smaller than 64
bits in width, integer arithmetic instructions only operate on quad word data. Likewise, Itanium logical
instructions only work with quad word data; these instructions, however, provide some access to the data at
the bit or group-of-bits level. Table 1 expresses the size and numeric range of the available Itanium integer
data types.

Unit Bits Bytes Signed Integer Unsigned Integer

Byte 8 1 -128 to +127 0 to 255

Word 16 2 -32,768 to +32,767 0 to 65,535

Double word 32 4 -2,147,483,648 to 0 to
+2,147,483,647 4,294,967,295

Quad word 64 8 -9,223,372,036,854,775,808 to 0 to
+9,223,372,036,854,775,807 18,445,744,073,709,551,615

Table 1: Size and numeric range (in decimal notation) of Itanium integer data types

2.1.2 Floating-Point Numbers

In addition to integers, the Itanium architecture provides instructions for manipulating floating-point numbers.
These numbers are typically represented by a significand that is multiplied by some power of two. An
exponent and sign are also packed with the significand.

Historically, computer manufacturers defined their own formats for floating-point numbers. Only after
the set of standards documented in ANSI/IEEE 754, IEEE Standard for Binary Floating-Point Arithmetic,
emerged was there any agreement between manufactures concerning floating-point representation.

The standard defines four floating-point formats: single, double, extended single, and extended double.
The former two formats have been supported by nearly every new architecture that has been developed in
the time since the standard was defined, while the latter two offer flexibility for supporting older, proprietary
floating-point representations. For the purposes of this survey, we only consider the widely supported IEEE
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single- and double-precision floating-point numbers. Table 2 lists some important characteristics of each
floating-point format that we consider here. Note that in IEEE representation, the significand consists of an
implicit “hidden bit” followed by the fraction; this bit is suppressed to reduce storage requirements.

Characteristic Single Double

Size in memory
Sign 1 bit 1 bit
Exponent 8 bits 11 bits
Fraction 23 bits 52 bits
Total 32 bits 64 bits

Bias for exponent 127 1023

Minimum magnitude
���������	�
�������� ��� �������
����������

Maximum magnitude � � ��� � ������� ��� ��� �����	�	����� �����

Precision
Binary 24 bits 53 bits
Decimal 6 digits 16 digits

Table 2: IEEE floating-point representation

Single precision. An IEEE single-precision floating-point number consists of four adjacent bytes in memory.
In a little-endian representation the bits are labeled from right to left, as follows:

Generally, the value of the number is given by

 "!$#&%('*),+-'.!�/ 01'*%�243,57698

where
)

is the sign of the number (0 for positive, 1 for negative),
0

is the binary fraction, 1.
0

is the sig-
nificand, : is the true exponent, and ; is the bias. There are special cases when these bits are interpreted
differently, for example, when manipulating an integer value stored in a floating-point register.

When an IEEE single-precision floating-point number is stored in an Itanium processor register, the re-
gions are arranged as follows:

Note that the “hidden bit” in the IEEE representation is made explicit in an Itanium processor register.
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Double precision. An IEEE double-precision floating-point number consists of eight adjacent bytes in mem-
ory. In a little-endian representation the bits are labeled from right to left, as follows:

Again, the value of the number is generally given by

 "!$#&%('*),+-'.!�/ 01'*% 243,57698

where
)

,
0

, 1.
0

, : , and ; are as before. There are again special cases when these bits are interpreted
differently.

When an IEEE double-precision floating-point number is stored in an Itanium processor register, the
regions are arranged as follows:

As with single-precision floating-point numbers, the hidden bit is made explicit in an Itanium processor
register.

2.1.3 Alphanumeric Characters

Binary numbers can encode any information, including alphanumeric characters (letters, numerals, punctua-
tion marks, etc.). Numerous encoding schemes exist, and the supported schemes are largely dependent upon
which operating system and programming environment are used. For this reason, we omit any further discus-
sion of this data type, except to say that the Itanium architecture features instructions for manipulating narrow
information units (that is, bytes, words, and double words), many of which are discussed in later sections.
Managing strings of alphanumeric data is relegated to the programmer or compiler.

We recommend that consult your system’s documentation to see which encoding schemes and character
sets are supported.

2.2 Instruction Formats

The Itanium architecture specifies a seemingly awkward 41-bit instruction width. While the rationale behind
this choice is largely unimportant to the discussion at hand, it suffices to say that, in the final design, Itanium
instructions are always fetched in groups of three and are packaged with a 5-bit instruction template, as
follows:

This layout yields a 128-bit instruction bundle, where the template supplies additional information in-
structing the CPU how to decode and execute the three instructions. Instruction bundles are always treated
as little-endian structures, as shown in the figure above, and are always 16-byte aligned; that is, the four
lowest-numbered bits of a bundle’s address are always zeros.

Instruction templates are one of 32 predefined bit patterns that describe the three instructions contained
within the bundle. We defer any further discussion of these structures until Section 12.
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While we are more concerned with the actual function of the Itanium instructions, it is useful to consider
briefly the bit-field layout of a single Itanium instruction:

Itanium load and store operations require two operand specifiers (a source and a destination), and the
arithmetic and logic operations require three operand specifiers (two sources and a destination). Some Ita-
nium instructions have two destination operands, and so require four operand specifiers. Thus, the Itanium
instruction layout may have as many as six main bit-fields.

The field labeled qp provides for a qualifying predicate, the fields labeled field1 to field4 provide
for up to four operands, and the highest four bits specify the major opcode. Bits may be reinterpreted when an
instruction requires less than four operands, or when numeric constants are packaged within the instruction
itself as immediate data.

2.3 Instruction Classes

Itanium instructions can be divided into six basic classes:

� Type A instructions include standard arithmetic and logic operations on integers (add, multiply, Boolean
AND, etc.), as well as comparison operations on data values.

� Type I instructions include other operations on integer data types, for example, bit-shifting, moving
data to and from special purpose registers, and multimedia instructions.

� Type M instructions include the load and store operations for both integer and floating-point data,
the operations for moving data between general-purpose integer registers and floating-point registers,
and the instructions that give the programmer a limited degree of control over the system’s memory
hierarchy.

� Type B instructions include the branching and jumping operations, as well as those for calling and
returning from functions or procedures.

� Type F instructions include those operations on floating-point data that are not Type M instructions.

� Type X instructions include a few special Itanium instructions that encode more information than would
normally fit into the 41-bit instruction width. These instructions consume two slots in an instruction
bundle.

Table 3 (next page) shows the Itanium instruction types and the execution units that actually perform the
operations. Not surprisingly, there is a correspondence between the I, M, B, and F instructions and the I, M,
B, and F execution units that decode and execute them. Type A instructions, which are the most common, can
be executed by both I- and M-units, providing the potential for a high degree of instruction-level parallelism.

An implementation of the Itanium architecture may include more than one of each type of execution unit.
As an example, the Itanium 2 processor includes four M-units (two load, two store) and two I-units, but only
one F-unit.
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Operation Instruction Type Execution Unit

Arithmetic, logic, comparison A any available I- or M-unit

Other integer operations I I-unit

Memory access and data movement M M-unit

Branches and calls B B-unit

Floating-point operations F F-unit

Special two-slot instructions X I- or B-unit, depending on operation

Table 3: Itanium instruction types and the corresponding execution units

2.4 Addressing Modes

The Itanium ISA supports four addressing modes: immediate, register direct, register indirect, and autoincre-
ment. Table 4 (next page) captures the important characteristics of the available Itanium addressing modes,
each of which we describe fully below.

2.4.1 Immediate Addressing

When immediate addressing is used, the instruction itself contains the operand data. Because the data is
already in the CPU, no additional address calculations or memory fetches are required.

We have already encountered immediate addressing briefly: numeric constants whose values are known
at the time of program assembly or compilation can packaged within the bit-field of a given instruction. Im-
mediate addressing is almost always used for these sorts of operands. Also, you will recognize that immediate
addressing is useful only for source, and not destination, operands.

2.4.2 Register Direct Addressing

An instruction may contain an address that points to the operand data; this addressing mode is called direct
addressing. The Itanium ISA is a register-to-register architecture and allows only the load and store instruc-
tions to operate on data in memory. Thus, only register direct addressing, where the bits within the instruction
specify the “address” (name or number) of a processor register that contains the operand data, is permitted
by the Itanium architecture.

2.4.3 Register Indirect Addressing

An instruction may also contain an address pointer to the operand data; this addressing mode is called indirect
addressing. The bits within the instruction contain the register address, say rX. When the instruction executes,
the contents of this register rX interpreted as the effective address of the information unit containing the actual
data. For the Itanium architecture, this two-phase addressing mode is more strictly called register indirect
addressing.

2.4.4 Autoincrement Addressing

Often it is useful to refer to operand data using register indirect addressing and then adjust the address con-
tained within that register to point to the next identically sized information unit. Stepping through an array of
data is an example of a common task where this addressing mode proves useful.

The Itanium ISA supports this capability with its autoincrement addressing mode. The postincrement
value is not limited to the size of particular data types. For store operations, the value is expressed as a 9-bit
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Addressing Mode Assembler Syntax Effective Address

Immediate imm Bits packaged within the instruction are
interpreted as an integer value, typically
signed, or as an instruction “subcode”
that is used to select specific cases of
the instruction

Register Direct rX The named register

Register Indirect [rX] Contents of the named register

Autoincrement [rX], imm Contents of the named register; the
or register value is then postincremented

[rX], rY by the signed quantity given statically
as imm (load and store operations)
or dynamically in register rY (load
operations only)

Table 4: Itanium addressing modes and effective addresses

signed immediate constant within the instruction. For load operations, it can also be specified dynamically
using a value in an Itanium general-purpose register.

Specifying the postincrement value as a signed constant allows the programmer to step through an array
in either direction, depending on whether the register points to the first or last data element.
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3 Architectural Registers

The Itanium architecture includes an unprecedented number of registers, including an instruction pointer, 128
general-purpose registers, 128 floating-point registers, 8 branch registers, 64 predicate registers, as many as
128 special-purpose (application) registers, various system information registers, and many others. Such a
large number of registers enables numerous computations to be performed without the need to repeatedly
spill and fill intermediate results to memory.

The Itanium registers vary greatly in their size, features, and uses. Following the nomenclature used by
Evans and Trimper, we characterize the Itanium registers with the following terms:

� A register is constant if its value has been permanently defined at the hardware level.

� A register is special if it has some purpose assigned to it, either at the hardware level or by software
convention.

� A register is scratch if it may be used freely by a procedure or function at any calling level; the caller
must save any important contents of these registers.

� A register is preserved if a calling routine depends on its contents; any called procedure must save and
restore the contents of these registers for its caller.

� A register is automatic if its name only has a dynamic correspondence to a physical register; these
registers are automatically spilled to and filled from memory during allocation by the hardware, as
necessary.

� A register is read-only if its value is dynamically maintained at the hardware level or by the operating
system; read-only registers cannot be modified by an application program.

Please refer to these descriptions as we detail the Itanium architectural registers.

3.1 Instruction Pointer

The Itanium instruction pointer (IP) supports the instruction fetch cycle; it points to the currently executing
instruction bundle. In most other architectures, this register is called the program counter. The Itanium IP is
64 bits wide and can accommodate full address pointers:

Itanium instructions are always fetched three at a time, as 128-bit instruction bundles. The lowest four
bits of the IP are, therefore, always zero.

3.2 General-Purpose Registers

The Itanium architecture specifies 128 general-purpose registers, named Gr � –Gr ����� . Each of these registers
is 64 bits wide and can accommodate both full address pointers and either signed or unsigned integers:

Each general register has an associated 65
���

bit, called the Not a Thing (NaT) bit. This bit is used to
indicate whether the value stored in a register is valid. When the contents of a marked register are used by
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an operation, the NaT bit of the destination register will automatically be set. The invalid condition may
be carried through a sequence of instructions, to be dealt with when convenient. NaT bits are important for
software that utilizes speculative loads.

Table 5 lists the names and standardized uses of the Itanium general-purpose registers.

Register Assembler Name Other Name Class Notes

Gr � r0 Constant Always contains 0; writes are illegal

Gr � r1 gp Special Global data pointer

Gr � , Gr � r2, r3 Scratch Often useful with addl instruction

Gr � –Gr� r4–r7 Preserved

Gr � –Gr ��� r8–r11 ret0–ret3 Scratch Integer values returned by a function

Gr � � r12 sp Special Stack pointer (always modulo 16)

Gr � � r13 tp Special Thread pointer (requires operating
system support)

Gr ��� –Gr� � r14–r31 Scratch

Gr � � –Gr��� r32–r39 in0–in7 Automatic Up to 8 input arguments to a function

Gr � � –Gr � � � r32–r127 Automatic Stacked input registers; safe

Gr � � –Gr � � � r32–r127 loc0–loc95 Automatic Stacked local registers; safe

Gr � � –Gr � � � r32–r127 out0–out95 Automatic Stacked output registers

Gr � � –Gr � � � r32–r127 Automatic Rotating registers (groups of 8); they
overwrite the stacked registers of the
current procedure

Table 5: The names and uses of the Itanium general-purpose registers

3.3 Floating-Point Registers

The Itanium architecture specifies 128 floating-point registers, named Fr � –Fr � ��� . Each of these registers is 82
bits wide and can accommodate expanded forms of IEEE single- or double-precision floating-point values,
as well as signed or unsigned 64-bit integers:

The floating-point registers do not have an associated invalidity bit; rather, a special value called Not a
Thing Value (NaTVal) indicates whether the contents of a floating-point register are valid.

Table 6 (next page) lists the names and standardized uses of the Itanium floating-point registers.
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Register Assembler Name Other Name Class Notes

Fr � f0 Constant Always +0.0; writes are illegal

Fr � f1 Constant Always +1.0; writes are illegal

Fr � –Fr� f2–f5 Preserved

Fr � –Fr� f6–f7 Scratch

Fr � –Fr � � f8–f15 Scratch Floating-point arguments to a function
and values return by a function

Fr ��� –Fr� � f16–f31 Preserved

Fr � � –Fr � � � f32–f127 Scratch Rotating registers

Table 6: The names and uses of the Itanium floating-point registers

3.4 Branch Registers

The Itanium architecture specifies eight branch registers, named Br � –Br � . Each of these registers is 64 bits
wide and can therefore accommodate full address pointers:

Itanium instructions are always fetched three at a time, as 128-bit instruction bundles. The lowest four
bits of a branch register are, therefore, always zero.

Branch registers specify the target address of indirect branches. Table 7 lists the names and standardized
uses of the Itanium branch registers.

Register Assembler Name Other Name Class Notes

Br � b0 rp Scratch Return link

Br � –Br� b1–b5 Preserved

Br � –Br� b6–b7 Scratch

Table 7: The names and uses of the Itanium branch registers
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3.5 Predicate Registers

The Itanium architecture specifies 64 predicate registers, named Pr � –Pr ��� . Each of these registers is only one
bit wide and can therefore accommodate either a Boolean true (1) or false (0) value:

These registers control the conditional execution of instructions and conditional branches. Table 8 lists
the names and standardized uses of the Itanium predicate registers. Each bit in the 64-bit predicate vector is
individually addressable. No predicate registers are automatically stacked at the time of a procedure call; if
necessary, the entire predicate vector may be saved to a general-purpose register.

Register Assembler Name Other Name Class Notes

Pr � p0 Constant Always true (1); writes are discarded

Pr � –Pr� p1–p5 Preserved Fixed; safe

Pr � –Pr � � p6–p15 Scratch Fixed; unsafe

Pr ��� –Pr� � p16–p63 pr.rot Preserved Rotating registers

Table 8: The names and uses of the Itanium predicate registers

3.6 Application Registers

The Itanium architecture allows for as many as 128 application registers (named Ar � –Ar � ��� ) to be defined.
These 64-bit registers can accommodate full address pointers and either signed or unsigned integers:

Application registers perform specific tasks associated with various instructions in an application-level
program. We omit any further details of the Itanium application registers here. Consult the Intel Itanium
architecture documentation for more information.

3.7 System Information Registers

The Itanium architecture also includes registers that provide information concerning the hardware implemen-
tation to application programs.

For example, an application can determine implementation-dependent features, such as the processor’s
manufacturer or its family and model numbers, by reading the cpuid (processor identification) registers.

The Itanium architecture also allows for as many as 256 64-bit pmd (performance monitor data) registers.
These registers record certain aspects of the system’s performance that can be used for tuning applications.
An operating system may allow read-only access to these registers by application-level code. The Itanium
architecture requires that, at a minimum, eight pmd registers be implemented.
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3.8 Other Processor Registers

In addition to those we have discussed, the Itanium architecture includes a number of other registers:

� Various state management registers, like the ar.pfs (previous function state) register, where prior
state information can be preserved in hardware rather than a slower memory stack.

� Various system control registers, like the psr (processor status) register, where the operating system
and hardware can track critical aspects of machine state.

� Several more, highly specialized registers that generally require privileged instructions to access them.

For more details concerning these other Itanium registers, we recommend the Intel Itanium architecture doc-
umentation.
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4 Itanium Assembler Statements

Before diving into a detailed discussion of the available instructions, we introduce the basic syntax of Itanium
assembler statements:

[label:] [(qp)] mnemonic[.comp] dst=src[;;] [// comment]

where [ ] denotes an optional syntactical element and:

� label is a symbolic address in the form of a character string terminated by a colon (:),

� (qp) specifies a qualifying predicate register,

� mnemonic specifies a name that uniquely identifies an Itanium instruction,

� comp specifies one or more instruction completers to indicate variations on a base instruction mnemonic,

� dst specifies the destination operand(s),

� src specifies the source operand(s),

� ;; is an explicit stop used to identify Itanium instruction bundles or data dependencies, and

� // comment is a human-language description of the assembler statement.

While not altogether void of traits in common with assembly statements for other architectures, many of these
elements are unique to the Itanium architecture.

Typically, each line in an assembly language program is one statement that may be imperative, declarative,
or controlling:

� Imperative statements represent machine instructions in symbolic form. These statements are the most
common type.

� Declarative statements control the allocation of memory or perform naming functions. These state-
ments do not generate machine instructions to be executed at runtime; rather, they set aside space,
define symbols, or initialize the contents of particular memory locations.

� Controlling statements give the programmer a limited degree of control over certain aspects of the
assembly process.

To illustrate the Itanium assembly language, we include a (slightly modified) example program from
Evans and Trimper called SQUARES. The program populates a table in memory with the squares of the first
three integers using tabular differences. The SQUARES code is given in Figure 1 (next page).

Even without any knowledge of particular Itanium instructions, you should be able to recognize many
elements of the Itanium architecture that we have already discussed: various processor registers, like the
general-purpose registers Gr � � –Gr � � and the branch register Br � , or perhaps the use of register indirect ad-
dressing, as in st8 [r14]=r20;;. You will see, too, that the SQUARES program includes imperative,
declarative, and controlling assembler statements.

While SQUARES is a trivial example and is not particularly useful except for illustrative purposes, the
program sets the stage nicely for our discussion of the Itanium instruction set.
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// SQUARES: Populate a table of squares

.data // Declare data section

.align 8 // Specify desired alignment
sq1: .skip 8 // To store 1 squared
sq2: .skip 8 // To store 2 squared
sq3: .skip 8 // To store 3 squared

.text // Declare code section

.align 32 // Specify desired alignment

.global main // Mark mandatory program entry

.proc main
main:

.body // Begin procedure ’main’
first: mov r21=1;; // Gr21 = 1st tabular difference

mov r22=2;; // Gr22 = 2nd tabular difference
mov r20=1;; // Gr20 = 1st square
addl r14=@gprel(sq1),gp;; // Point to storage for 1st square
st8 [r14]=r20;; // Store 1st square

add r21=r22,r21;; // Adjust 1st tabular difference
add r20=r21,r20;; // Gr20 = 2nd square
addl r14=@gprel(sq2),gp;; // Point to storage for 2nd square
st8 [r14]=r20;; // Store 2nd square

add r21=r22,r21;; // Adjust 1st tabular difference
add r20=r21,r20;; // Gr20 = 3rd square
addl r14=@gprel(sq3),gp;; // Point to storage for 3rd square
st8 [r14]=r20;; // Store 3rd square

done: mov r8=0;; // Signal completion
br.ret.sptk.many b0;; // Return to command line
.endp main // End procedure ‘main‘

Figure 1: A slightly modified version of the SQUARES program from Evans and Trimper
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5 Integer Instructions

A large number of computer programs run simply by manipulating integer data types. Many integer opera-
tions are provided by the Itanium ISA, so we being our discussion of the architecture’s instruction set with
these instructions.

5.1 Arithmetic Instructions

The Itanium integer arithmetic instructions include addition, subtraction, bit-shift left with addition, and
parallel multiplication of 16-bit values. These Type A instructions are among the most commonly used.

5.1.1 Addition

Several forms of the Itanium addition instruction are available:

add r1=r2,r3 // r1 <- r2 + r3
add r1=r2,r3,1 // r1 <- r2 + r3 + 1
adds r1=imm14,r3 // r1 <- sext(imm14) + r3
addl r1=imm22,r3 // r1 <- sext(imm22) + r3
add r1=imm,r3 // r1 <- sext(imm) + r3

where sext denotes that the immediate constant is sign-extended to 64 bits before being used in the oper-
ation. The register designations r1, r2, and r3 refer to the particular encoding found in fields in the bit
layout of an instruction. Any one of the Itanium general-purpose registers Gr � –Gr ����� may be specified with
this instruction; however, only Gr � –Gr � may be used with the addl form.

The last form of the Itanium add instruction is an example of an assembler pseudo-op. A pseudo-op is
a convenient form of an instruction that the assembler will “transform” according to context. For example, if
the constant imm can be represented as a two’s complement integer using 14 or fewer bits, the assembler will
generate the appropriate adds instruction. On the other hand, if the representation of that constant requires
more than 14 bits, the appropriate addl instruction will be generated. Note that in this case, the choice of
registers for the second source operand is constrained to one of Gr � –Gr � , as mentioned above.

5.1.2 Subtraction

Fewer forms of the Itanium subtraction instruction are available:

sub r1=r2,r3 // r1 <- r2 - r3
sub r1=r2,r3,1 // r1 <- r2 - r3 - 1
sub r1=imm8,r3 // r1 <- sext(imm8) - r3

where the notational conventions are the same as for addition. Note that only one, relatively narrow, repre-
sentation can be used for the immediate constant.

5.1.3 Shift Left and Add

A third integer arithmetic operation is available, and it combines a bit-shift left with addition, as follows:

shladd r1=r2,count,r3 // r1 <- 2count � r2 + r3

where count specifies the number of bit positions, ranging from a minimum of one to a maximum of four,
that the value in first source register will be shifted to the left.
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Special cases of integer multiplication. When Gr � is specified as the second source register, the shladd
instruction can compute 2, 4, 8, or 16 times the value contained in the first source register, depending on
the value of count. When the two source registers are the same general-purpose register, say Gr � , this
instruction can compute 3, 5, 9, or 17 times the value contained in Gr � , again, depending on the value of
count.

Array indexing. Computing the address of a particular element in an array can be completed in one step
with the shladd instruction:

address = (element index) � (size of data type)
�

(starting address of array)

becomes

shladd addr=index,count,array addr

where addr is the general-purpose register used to hold the element’s computed address, index is a general-
purpose register holding the element number (zero-based indexing), count corresponds to the size of the
individual array elements, and array addr is a general-purpose register holding the starting address of
the array. With the shladd instruction, it is possible to work with the whole array using only two general-
purpose registers: one containing the array’s starting address and one containing the current element number.

5.1.4 Multiplication and Division of 64-bit Integers

A multiply or divide instruction requires more stages to implement at the digital logic level than a simple
addition or subtraction instruction. This requirement implies that multiplication and division instructions
will take longer to execute than other instructions. RISC and EPIC architectures strive to make instruction
execution times as consistent as possible across the entire instruction set. As a result, the Itanium architecture
does not provide instructions for full width integer multiplication or division.

The Itanium ISA does include a special instruction that will perform integer multiplication using the
floating-point registers. We discuss this topic further in Section 8. No such instruction is available for integer
division, but virtually all programming environments provide some form of a software substitute. Consult
your system’s documentation to see which (possibly unpublished) internal routine or inline instruction se-
quence is used.

5.1.5 Multiplication of 16-bit Integers

The Itanium ISA includes two forms of a parallel instruction that multiplies two 16-bit signed integer pairs
and produces two independent 32-bit signed integer products:

pmpy2.l r1=r2,r3 // parallel multiply, left form
pmpy2.r r1=r2,r3 // parallel multiply, right form

With the left form, the result of multiplying bits � 63:48 � of each source register is placed in bits
� 63:32 � of the destination register, while the result of multiplying bits � 31:16 � of both sources is placed
in � 31:0 � of the destination.

In contrast, with the right form, the result of multiplying bits � 47:32 � of each source register is placed
in bits � 63:32 � of the destination register, while the result of multiplying bits � 15:0 � of both sources is
placed in � 31:0 � of the destination.

The Itanium ISA provides a number of other parallel operations; these instructions are introduced in
Section 9.

17



A SURVEY OF THE ITANIUM ARCHITECTURE

FROM A PROGRAMMER’S PERSPECTIVE ARITHMETIC INSTRUCTIONS

5.1.6 Special-Case Arithmetic Operations

We saw earlier that the Itanium assembler provides a pseudo-op for the add instruction with an immedi-
ate constant. Assembler pseudo-ops may be provided for very common or useful operations, largely as a
convenience to the programmer.

An ISA will typically provide instructions for general operations that include the more common opera-
tions as special-cases. Some architectures may provide machine instructions for the special cases, others may
provide pseudo-ops, and others still may not provide either. Here, we discuss some common operations for
which the Itanium ISA does not provide actual machine instructions but that can be written as special cases
of more general instructions or as assembler pseudo-ops.

Negation. Many architectures include an operation for arithmetic negation of integers in two’s complement
notation. The Itanium ISA, however, includes neither a machine instruction nor an assembler pseudo-op
to accomplish this task. Arithmetic negation can be accomplished using either one of two special cases of
subtraction:

sub r1=0,r3 // r1 <- 0 - r3 = -r3
sub r1=r0,r3 // r1 <- r0 - r3 = 0 - r3 = -r3

With either form, the value contained in r3 is subtracted from zero, and r1 will contain the negated value.

Complementation. Likewise, the Itanium ISA does not include an instruction for computing the one’s
complement (bitwise complement) of a value. Again, either one of two special cases of subtraction can be
used to accomplish this common task:

sub r1=-1,r3 // r1 <- -1 - r3
sub r1=r0,r3,1 // r1 <- r0 - r3 - 1 = 0 - r3 - 1 = -1 - r3

Having examined both negation and complementation, it should now be clear why the sub instruction syntax
specifies that the value in register r3 be subtracted from the immediate constant.

Copying. The mov instruction used in the SQUARES program is actually an assembler pseudo-op. The
Itanium ISA lacks a machine instruction that moves data between general-purpose registers or that moves a
constant value into a register. However, the assembler recognizes the mov pseudo-op and implements two
forms:

mov r1=imm22 becomes addl r1=imm22,r0
mov r1=r3 becomes adds r1=0,r3

The second form results in having copies of the same data value in both registers.

Clearing. The Itanium ISA also lacks an instruction to clear the contents of a general-purpose register.
However, any one of several other instructions will suffice:

mov r1=0 // becomes adds r1=0,r0
sub r1=rn,rn // r1 <- rn - rn = 0
shladd r1=r0,count,r0 // the value of count is irrelevant

In all cases, register r1 will contain zero.
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5.2 Data Access Instructions

Most modern computer designs include cache structures that attempt to reduce the time required to access
data stored in memory. In some designs, the presence and type of cache are only matters of concern for the
implementation, and the ISA will not include instructions for interacting with the cache structures. In other
designs, the presence and type of cache are matters of concern for both the architecture and the implementa-
tion. In this case, the ISA may include instructions for influencing the behavior of the cache structures.

The Itanium architectures specifies that the cache structures be explicitly visible to the assembly language
programmer. The Itanium ISA includes instructions for prefetching a line of data that will soon be needed by
a program into the cache and for flushing a line of data that is no longer needed back to memory. We defer
any further discussion of the Itanium cache structures until Section 13.

At the moment, our concern with the cache structures involves the instruction completers that can be used
with the integer load and store operations to provide hints to these structures. We discuss the load and store
instructions below.

5.2.1 Load Instructions

The Itanium ISA includes two forms of the integer load instruction:

ldsz.ldtype.ldhint r1=[r3] // r1 <- mem[r3]
ldsz.ldtype.ldhint r1=[r3],r2 // r1 <- mem[r3]

// r3 <- r3 + r2
ldsz.ldtype.ldhint r1=[r3],imm9 // r1 <- mem[r3]

// r3 <- r3 + sext(imm9)

ld8.fill.ldhint r1=[r3] // fill data and NaT bit
ld8.fill.ldhint r1=[r3],r2 // fill data and NaT bit

// r3 <- r3 + r2
ld8.fill.ldhint r1=[r3],imm9 // fill data and NaT bit

// r3 <- r3 + sext(imm9)

where sz is the size of the information unit in memory at the location specified by register r3 from which
1, 2, 4, or 8 bytes are to be copied into the lowest-order 1, 2, 4, or 8 bytes of register r1. The loaded data
is zero-extended to the full width of the register, as necessary. Note that the load instructions use register
indirect addressing for the source operand and register direct addressing for the destination operand.

Several valid values for ldtype, the load type completer, are available. If this instruction completer is
omitted, then an ordinary load is executed. Some of the other values can be used to indicated ordered, biased,
speculative, and/or advanced loads and are discussed in Section 12.

There are three valid values for ldhint, the load hint completer: none, nt1, and nta. None, which
corresponds to omitting the load hint completer, indicates an ordinary load operation; the processor hardware
then assumes that the program associates temporal locality in the L1 cache with the loaded value. nt1
provides the hint that the program considers the loaded value to have nontemporal locality in just the L1
cache, while nta hints that the program considers the loaded value to have nontemporal locality in all levels
of the memory hierarchy. Using the load hint completers may avoid knocking out of the cache structures data
that might be reused.

The load instructions provide for postmodification of the pointer value in register r3 by a full 64-bit
signed value stored in register r2 or by a 9-bit signed constant, with values ranging from -256 to +255.

Finally, the fill form of this instruction loads 8 bytes and the NaT bit associated with register r1. This
form is used to restore register contents when an operating system switches process contexts or when an
application uses a preserved register.
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5.2.2 Store Instructions

The Itanium ISA includes two forms of the integer store instruction:

stsz.sttype.sthint [r3]=r2 // mem[r3] <- r2
stsz.sttype.sthint [r3]=r2,imm9 // mem[r3] <- r2

// r3 <- r3 + sext(imm9)

st8.spill.sthint [r3]=r2 // spill data and NaT bit
st8.spill.sthint [r3]=r2,imm9 // spill data and NaT bit

// r3 <- r3 + sext(imm9)

where sz is the size of information unit in memory into which the lowest-order 1, 2, 4, or 8 bytes of the
quantity in register r2 are to be copied to the memory address specified in register r3. Note that the store
instruction uses register direct addressing for the source operand and register indirect addressing for the
destination operand.

There are two valid values for sttype, the store type completer: none and rel. None, which corre-
sponds to omitting the store type completer, indicates an ordinary store operation. We omit any discussion of
the rel store type completer but recommend the Itanium architecture documentation for further details.

There are two valid values for sthint, the store hint completer: none and nta. None, which corre-
sponds to omitting the store hint completer, indicates an ordinary store operation; the processor hardware
then assumes that the program associates temporal locality in the L1 cache with the stored value. nta pro-
vides the hint that the program considers the stored value to have nontemporal locality at all levels of the
memory hierarchy. The use of nta may avoid knocking out of the cache structures data that might be reused.

The store instructions provide for postmodification of the pointer value in register r3 by a 9-bit signed
constant, with values ranging from -256 to +255.

Finally, the spill form of this instruction stores 8 bytes and the validity bit associated with register r2.
This form is used to save register contents when an operating system switches process contexts or when an
application uses a preserved register.

5.2.3 Move Long Immediate Instruction

The Itanium ISA provides a special instruction, called movl, that can accommodate a 64-bit immediate
value:

movl r1=imm64 // r1 <- imm64
movl r1=label // r1 <- 64-bit address for label

The 64-bit immediate value, or the full 64-bit address of label (determined by the linker), is copied into
the general-purpose register r1. The movl instruction can use any general-purpose register in the range
Gr � –Gr � � � , unlike the addl instruction we discussed previously. It is often used to establish pointers for
subsequent load and store operations. Note that movl occupies two slots in an Itanium instruction bundle as
a result of the 64-bit immediate value and is therefore one of the few Type X instructions.

5.2.4 Accessing Specialized Registers

Many of the Itanium’s specialized registers contain information that is useful to an application-level program.
Three mov assembler pseudo-ops provide the ability to copy values between specialized registers and general-
purpose registers:

mov r1=reg // r1 <- contents of reg
mov reg=r2 // reg <- contents of r2
mov reg=imm8 // reg <- sext(imm8)
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Note that the Itanium IP can be read, but not modified, using a mov instruction. Also, the last form, which
uses an 8-bit immediate value as the source operand, can only be employed when the destination is one of the
Itanium application registers (Ar � –Ar � ��� ).

5.3 Miscellaneous Integer Instructions

While most of the Itanium integer instructions operate on full 64-bit data, we have seen that the load and store
operations can also manipulate narrower information units. The load instruction automatically zero-extends
data that is less than 64 bits wide, but the Itanium ISA also includes a separate instruction to zero-extended
data in a register to the full width. A similar instruction is provided for sign-extension.

5.3.1 Zero-Extend Instruction

Bit-masking is often used to force some bits of a register value to zero. This task can be accomplished with a
Boolean AND operation. The Itanium architecture also includes an instruction to zero-extend a value to the
full width of a register:

zxtxsz r1=r3 // r1 <- zext(r3)

where xsz is 1, 2, or 4 to select the range of bit positions ( � 63:8 � , � 63:16 � , or � 63:32 � ) in the destination
register r1 that will be set to zero. The lowest-order 1, 2, or 4 bytes are copied from the source register r3.

A full width load followed by zero-extension is preferable to using the narrow load instructions when
accessing individual bytes in memory is slower than this instruction pair. Which method is faster will typically
depend on the implementation; nevertheless, either instruction sequence will produce the desired result on
any Itanium implementation.

5.3.2 Sign-Extend Instruction

Similarly, the Itanium ISA includes an instruction that sign-extends a value to the full width of a register:

sxtxsz r1=r3 // r1 <- sext(r3)

where xsz is 1, 2, or 4 to select the bit position (7, 15, or 31) in the source register r3 that will be propagated
as the sign bit in the destination register r1. Sign-extension is useful for constructing signed quantities from
small information units that have been loaded by a narrow load instruction.

5.3.3 Instructions for Narrow Data Types

If the full numeric precision or large address space of the Itanium architecture are not necessary, the effective-
ness of the Itanium’s cache structures can actually improve if 32-bit address pointers and narrow information
units are used. The Itanium provides arithmetic instructions for smaller data widths:

� Several parallel instructions, like the pmpy2 instruction that we have already encountered, that operate
on multiple narrow integer values simultaneously using the Itanium’s 64-bit datapath; and

� addp4 and shladdp4, which produce 64-bit address pointers from 32-bit addresses; these instruc-
tions are useful for migrating 32-bit code.

We discuss the parallel operations in Section 9 but omit any further details of the other narrow integer
instructions. Consult the Itanium architecture documentation for more information.
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6 Comparison and Branching Instructions

The power and flexibility of computer programming lies in the ability to control the logical flow of execution
based upon currently calculated conditions. We now consider the features of the Itanium architecture that
enable programmers to control the program’s flow of execution.

6.1 Comparison Instructions

The Boolean true or false outcome of a comparison operation is typically used to choose between two alter-
native code sequences. Comparison operations are thus intimately tied to the concept of predication, where
one set of actions is executed if a given premise is true and a different set is completed if that premise is false.
The Itanium architecture supports predication more fully than any previous architecture. The Itanium predi-
cate registers, which we introduced in Section 3, can capture the Boolean true or false result of a comparison
operation and thus “control” which statements execute.

The Itanium ISA includes a number of 32- and 64-bit integer, double-precision floating-point, and parallel
comparison instructions. We discuss the more common integer versions here; Section 8 and Section 9 cover
the remaining versions.

6.1.1 Signed Comparison

There are six useful cases for comparing two values: equal (=), not equal (!=), less than ( � ), less than or
equal ( � =), greater than or equal ( � =), and greater than ( � ).

Two versions of the signed comparison instruction are supported: cmp, for 64-bit quad word data values,
and cmp4, for 32-bit double word data values. We describe only the syntax for the 64-bit instruction; the
32-bit cmp4 operates in exactly the same manner.

Several forms of the instruction are available:

cmp.crel.ctype p1,p2=r2,r3 // two registers
cmp.crel.ctype p1,p2=imm8,r3 // immediate and one register
cmp.crel.ctype p1,p2=r0,r3 // compare 0 to one register
cmp.crel.ctype p1,p2=r3,r0 // compare one register to 0

where two predicate registers (Pr � –Pr � � ) must always be specified for p1 and p2. Pr � , which is always true,
may be used in either position.

Typically, the comparison statements are read from left to right: In the two-register form, for example,
p1 is set to true and p2 to false if r2 crel r3 is true, and vice versa if the comparison is false.

There are six valid values for crel, the comparison relationship completer, each of which corresponds
to one of the six comparison cases described above: eq, ne, lt, le, ge, and gt.

Several valid values for ctype, the comparison type completer, exist: none, unc, or, and, or.andcm,
orcm, andcm, and and.orcm. None, which corresponds to omitting the comparison type completer, in-
dicates an ordinary comparison operation, like the one described above. We discuss the unconditional com-
parison type completer unc momentarily. The remaining completers are used with the parallel comparison
operations; parallel operations are introduced in Section 9.

6.1.2 Unsigned Comparison

When comparing two unsigned quantities for equality, the same instructions used for signed values will
suffice: If the two bit patterns match at all bit positions, then the quantities are equal; otherwise, the quantities
are not equal.

However, because of the two’s complement representation used by most binary computers, the signed
versions of the comparison instructions will not work for the remaining cases. The Itanium ISA provides four
additional crel completers for dealing with unsigned values: ltu, leu, geu, and gtu.
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6.1.3 Unconditional Comparison

We introduced the unconditional comparison type completer unc above. Valid forms of the compare instruc-
tion using this completer include:

cmp.crel.unc p1,p2=r2,r3 // two registers
cmp.crel.unc p1,p2=imm8,r3 // immediate and one register
cmp.crel.unc p1,p2=r0,r3 // compare 0 to one register
cmp.crel.unc p1,p2=r3,r0 // compare one register to 0

where the valid crel values are as before.
An ordinary comparison instruction executes and sets both predicate registers according to the compar-

ative test when predicated true, but does nothing at all when predicated false. In the latter case, the values
contained in the predicate registers will not change.

The unconditional comparison instruction behaves in the exact same manner when predicated true. How-
ever, if predicated false, this form sets the values in both predicate registers to false without actually per-
forming a comparison. This form of the instruction is useful for constructing nested if...then...else
structures, as we show in Section 10.

6.2 Branch Instructions

The Itanium ISA provides numerous branching abilities, among them the simple conditional and uncondi-
tional branch types. Five forms involving several instruction completers are available:

(qp) br.brtype.bwh.ph.dh target25 // relative to IP
(qp) br.brtype.bwh.ph.dh b2 // indirect addressing

br.ph.dh target25 // unconditional (pseudo-op)
br.ph.dh b2 // unconditional (pseudo-op)

(qp) brl.brtype.bwh.ph.dh target64 // relative to IP

where qp specifies the qualifying predicate register.
The branch target address can be specified using IP-relative addressing or indirect addressing with the

branch register b2. If IP-relative addressing is used, the programmer can specify the address of the target
instruction bundle using a symbolic label. The compiler or assembler will compute the appropriate 25-bit
signed offset as target25 � IP, resulting in a branch range of

� ��� bytes (
� � � instruction bundles).

To execute longer-range jumps, it is possible to load a full 64-bit address into one of the eight branch
registers (Br � –Br � ) and then specify that register as the branch target. The Itanium 2 processor includes
hardware support for the brl instruction, which encodes a 64-bit offset using two slots of an instruction
bundle.

There are a total of ten valid values for brtype, the branch type completer: none, cond, call, ret,
ia, cloop, ctop, cexit, wtop, and wexit. Note that none is synonymous with cond. We defer
discussions of some of the remaining completers until we describe the programming constructs that utilize
them, while discussions of other branch type completers are omitted altogether; for these, we recommend the
Itanium architecture documentation.

There are four valid values for bwh, the branch whether completer: spnt, sptk, dpnt, and dptk. The
programmer or compiler can statically (s) predict (p) whether a branch will be taken (tk) or not taken (nt);
prediction can also be completed dynamically (d) by the hardware. Branch prediction is an implementation-
dependent feature, so the sptk hint is always available.

There are three valid values for ph, the prefetch hint completer: none, few, and many. Note that none is
synonymous with few. This hint indicates how many lines should be prefetched into the Itanium instruction
cache, beginning with the target instruction bundle.

There are two choices for dh, the branch cache deallocation hint completer: none and clr. This hints
indicates whether the small cache dedicated to branch target addresses should be left alone (none) or flushed
(clr). Note that the existence of such a cache is an implementation-dependent feature.
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All branches incur time penalties. The Itanium architecture takes great pains to reduce the impact of
branch instructions and includes many features that improve branch performance. For instance, the execution
of a predicated branch instruction in a B-unit can be overlapped with the immediately prior comparison
instruction that is computing the branch’s predicate result in an I- or M-unit. The impact of the time required
to compute the branch target’s address is thus reduced by executing these instructions in parallel. This ability
allows zero latency between the compare and branch instructions.

When combined with predication, the branching instructions give the programmer a powerful tool for
controlling the logical flow of their programs.
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7 Logical and Bit-Level Instructions

As we have seen, most Itanium instructions operate on the full 64-bit data value contained in a register.
However, several instructions that can be used to manipulate individual bits within a register are also available;
we discuss these instructions here.

7.1 Logical Instructions

Several Itanium logical instructions are available:

and r1=r2,r3 // r1 <- r2 & r3
and r1=imm8,r3 // r1 <- sext(imm8) & r3
andcm r1=r2,r3 // r1 <- r2 & r3
andcm r1=imm8,r3 // r1 <- sext(imm8) & r3
or r1=r2,r3 // r1 <- r2 | r3
or r1=imm8,r3 // r1 <- sext(imm8) | r3
xor r1=r2,r3 // r1 <- r2 ˆ r3
xor r1=imm8,r3 // r1 <- sext(imm8) ˆ r3

where &, |, and ˆ denote the Boolean AND, OR, and XOR operations.
The logical functions supported by the Itanium ISA can be used to set, clear, toggle, and test individual

bits within a value using bit-masking techniques. Evans and Trimper discuss the details of using the Itanium
logical instructions to accomplish these common programming tasks (Section 6.1.3, page 158).

7.2 Bit-Level Instructions

We have already seen the shladd arithmetic instruction, which combines bit-shifting with integer addition.
The Itanium ISA includes several other useful bit manipulation instructions.

7.2.1 Bit-Shift Instructions

Several forms of the Itanium bit-shift instructions are available:

shl r1=r3,r2 // r1 <- r3 shifted left r2 bits
shl r1=r3,count6 // r1 <- r3 shifted left count6 bits
shr r1=r3,r2 // r1 <- r3 shifted right r2 bits
shr r1=r3,count6 // r1 <- r3 shifted right count6 bits
shr.u r1=r3,r2 // r1 <- r3 shifted right r2 bits

// unsigned
shr.u r1=r3,count6 // r1 <- r3 shifted right count6 bits

// unsigned

where count6 is a 6-bit unsigned immediate that specifies the shift count. Note that left shifts with shl are
always unsigned, while shr produces an arithmetic shift, unless the .u instruction completer is specified.

If an immediate value is used with these instructions, then shl is actually an assembler pseudo-op for a
special case of the Itanium deposit instruction, while shr and shr.u are pseudo-ops for special cases of the
Itanium extract instruction. These instructions are introduced momentarily.
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7.2.2 Shift Right Pair Instruction

The Itanium ISA also includes a “long shift” instruction, which shifts a bit pattern that is twice the width of
a single register:

shrp r1=r2,r3,count6 // r1 = [r2:r3] shifted right count6 bits

This instruction treats the two 64-bit source registers r2 and r3 as a “single” 128-bit value and shifts the bits
count6 positions to the right. The rightmost 64 bits of the result are placed in the destination register r1.

The shrp instruction can be used to rotate the bit pattern if the same register is specified for both source
operands.

7.2.3 Extract and Deposit Instructions

Two instructions that enable the programmer to read or write any number of bits within a register are available.
The Itanium extract instruction isolates some contiguous block of bits from the source register and places

those bits, right-justified, into the destination register:

extr r1=r3,pos6,len6 // signed form
extr.u r1=r3,pos6,len6 // unsigned form

where pos6 is a bit position (in the range � 63:0 � ) and len6 specifies the number of bits to extract. Bits
� pos6+len6-1:pos6 � from the source register r3 are copied into the destination register r1 as bits
� len6-1:0 � . If the .u instruction completer is used, the remaining bits in the destination are set to zero;
otherwise, bit � pos6+len6-1 � from the source is propagated as the sign bit.

The Itanium deposit instruction isolates a contiguous span of bits from the right-hand side of the source
register and repositions that span anywhere within the destination register:

dep.z r1=r2,pos6,len6 // zero form
dep.z r1=imm8,pos6,len6 // zero form, with immediate
dep r1=r2,r3,pos6,len4 // merge form
dep r1=imm1,r3,pos6,len6 // merge form, with immediate

where pos6 is a bit position (in the range � 63:0 � ), len4 and len6 specify the number of bits to deposit,
and imm1 and imm8 are 1- and 8-bit immediate values.

The zero form copies bits � len6-1:0 � from the source register r2 into the destination register r1,
setting all other bits of the destination to zero. If an immediate value is used, it is first sign-extended before
bits � len6-1:0 � are deposited into the destination.

The merge form copies bits � len6-1:0 � from the source register r2 into the destination register r1
as bits � post

�
len6-1:pos6 � , and all other bits of the destination are copied from the corresponding

positions within the source register r3. Note that at most 16 bits can be copied from register r2, a result of
the 4-bit width of len4. If an immediate value is used, it is sign-extended and bits � len6-1:0 � serve as
the first source segment.

Figure 2 (next page) demonstrates how these instructions operate, using quad word operands. In this
figure, pos6=32 and len6=16.
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Figure 2: The Itanium extract and deposit instructions

7.2.4 Single-Bit Test Instruction

The Itanium ISA also provides the tbit instruction to set qualifying predicates based on a test of any single
bit within a 64-bit register:

tbit.trel.ctype pt,pf=r3,pos6

where pt and pf are predicate registers and pos6 is an unsigned value that encodes the particular bit position
(in the range � 63:0 � ) within the register r3 that will be tested.

There are two valid values for trel, the test relationship completer: nz (nonzero) and z (zero). The
predicate register pt is set to true and pf to false depending on the specified trel completer.

The valid values for the ctype completer are the same as those for the other comparison operations,
which were discussed in Section 6.
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8 Floating-Point Instructions

Floating-point data types and the now standard IEEE representations were introduced in Section 2, while the
Itanium floating-point registers were introduced in Section 3. We turn our attention to the Itanium instructions
that operate on the floating-point data types using the associated registers.

Many of the Itanium integer instructions have direct floating-point counterparts, while others do not.
Those that do are listed in Table 9 with their floating-point analogues. Those integer instructions that do
not have similar floating-point versions include the bit-shift instructions and data-independent branching
instructions. Similarly, many floating-point instructions that we will discuss have no corresponding integer
version.

Type of Instruction Integer Floating-Point

Arithmetic add fadd (pseudo-op)
sub fsub (pseudo-op)
xmpy (pseudo-op) fmpy (pseudo-op)

Load & Store ld1, ld2, ld4, ld8 ldfs, ldfd, ldfe, ldf8
st1, st2, st4, st8 stfs, stfd, stfe, stf8

Compare cmp fcmp

Logical and fand
andcm fandcm
or for
xor fxor

Table 9: Comparison of the Itanium integer and floating-point instructions

You will recall from our earlier discussions that the Itanium’s 128 floating-point registers are 82 bits wide.
This seemingly strange 82-bit width was chosen to accommodate Intel’s 80-bit extended double-precision
format, which has been carried over from the IA-32 architecture. As a consequence, these registers enable
greater accuracy when using intermediate, “register-only” results. Floating-point values are converted to the
appropriate IEEE format only when storing the final results of a calculation in memory.

In addition to the single- and double-precision floating-point formats, the IEEE standard defines en-
codings for various “special” values, like positive and negative infinity, for example. Table 10 lists these
encodings and their meanings. Note that denormal numbers are those whose fractions have not been shifted
far enough to the left to give the significand the “hidden bit” mentioned in Section 2. These numbers have a
value between zero and the smallest of the normalized numbers given in Table 2 (on page 4).

Biased Exponent Fraction Meaning

All ones Nonzero NaN

All ones Zero � Infinity

Zero Nonzero � Denormal

Zero Zero � Zero

Other Any Nonzero, normalized

Table 10: Meanings of the special IEEE floating-point representations
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8.1 Arithmetic Instructions

The Itanium architecture, like most modern designs, includes native support for some common floating-point
arithmetic operations.

8.1.1 Addition, Subtraction, and Multiplication

The Itanium ISA provides for addition, subtraction, and multiplication for floating-point data types:

fadd.pc.sf f1=f3,f2 // f1 <- f3 + f2
fsub.pc.sf f1=f3,f2 // f1 <- f3 - f2
fmpy.pc.sf f1=f3,f4 // f1 <- f3*f4
fnmpy.pc.sf f1=f3,f4 // f1 <- -(f3*f4)

where f1, f2, f3, and f4 can be any of the Itanium floating-point registers (Fr � –Fr � ��� ). However, unlike
their integer counterparts, these floating-point instructions do not support immediate constants of any sort.

There are three valid values for pc, the precision completer: none, s, and d. None, which corresponds
to omitting the precision completer, is used to handle special circumstances like the IA-32 double extended
format. Our focus will be on the IEEE single- (s) and double- (d) precision.

Five valid values for sf, the status field completer, are available: none, s0, s1, s2, and s3. None
is synonymous with s0. These values refer to four settings in a floating-point status register that we do
not describe further. The default value (none) is used throughout the remainder of this section. Evans and
Trimper describe the status field completer briefly (Section 8.4.5 on page 242). For the details concerning the
floating-point status registers, consult the Itanium architecture documentation.

Each of the basic arithmetic operations described here is actually an assembler pseudo-op for special cases
of the more general “fused” floating-point arithmetic instructions. We introduce these powerful instructions
next.

8.1.2 Fused Multiply-Add and Multiply-Subtract

Three instructions that multiply two source operands and then add or subtract a third operand are also avail-
able:

fma.pc.sf f1=f3,f4,f2 // f1 <- f3*f4 + f2
fms.pc.sf f1=f3,f4,f2 // f1 <- f3*f4 - f2
fnma.pc.sf f1=f3,f4,f2 // f1 <- -(f3*f4) + f2

where f1, f2, f3, and f4 can again be any of the Itanium floating-point registers (Fr � –Fr � � � ). Note that the
intermediate product of f3 and f4 is not rounded in any way before adding or subtracting f2, producing a
final value that is to the optimal precision.

The valid values for pc and sf are the same as those for the non-fused assembler pseudo-ops described
above.

8.1.3 Reciprocal and Square Root Approximations

The IEEE standard also includes requirements for division, remainder, and unary square root operations with
floating-point data types. Some RISC architectures provide full hardware support for these operations, but
because they take longer to execute than other instructions, these operations tend to cause pipeline stalls.

In contrast, the Itanium architecture employs lookup tables that store approximations to reciprocals and
reciprocal square roots with a known accuracy. The execution time for a table lookup is the same as for the
fma instruction. The approximation obtained by these instructions can be refined to the desired accuracy
using series expansion. As a result of instruction-level parallelism, this approach can be as fast as, if not
faster than, the hardware-only implementations.
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Floating-Point Reciprocal Approximation. Using two source operands and two destination operands, the
reciprocal approximation instruction can compute either an approximate reciprocal or an IEEE-mandated
quotient:

frcpa.sf f1,p2=f2,f3 // p2 = 1 and f1 = 1/f3 or
// p2 = 0 and f1 <- f2/f3

where sf can take on any of the valid values from the previously discussed floating-point instructions. If the
instruction is used with a qualifying predicate and that predicate is zero, then the predicate register p2 is set
to zero and the contents of f1 remain unmodified. If the qualifying predicate is one, then either:

� p2 is set to one and f1 is set to the reciprocal of f3, or

� p2 is set to zero and f1 is set to the IEEE-mandated quotient, f2/f3.

Evans and Trimper include a brief discussion demonstrating how this instruction can be used to compute
a refined result (Section 8.8.1, page 254). Their example follows that given by Peter Markstein in his book
IA-64 and Elementary Functions: Speed and Precision. We recommend both of these resources for more
details concerning the use of the frcpa instruction.

Floating-Point Reciprocal Square Root Approximation. In the same manner, the frsqrta instruction
computes either an approximate reciprocal square root or an IEEE-mandated square root:

frsqrta.sf f1,p2=f2,f3 // p2 = 1 and f1 = 1/sqrt(f3) or
// p2 = 0 and f1 <- sqrt(f3)

where the valid values for sf are as before. If the instruction is used with a qualifying predicate and that
predicate is zero, then the predicate register p2 is set to zero and the contents of f1 remain unmodified. If
the qualifying predicate is one, then either:

� p2 is set to one and f1 is set to the reciprocal of sqrt(f3), or

� p2 is set to zero and f1 is set to the IEEE-mandated square root, sqrt(f3).

Here, too, Evans and Trimper include a brief discussion demonstrating how this instruction can be used to
compute a refined result (Section 8.8.2, page 255), again following Markstein. For the details, please consult
either of these excellent resources.

Floating-Point Division. As noted, the Itanium architecture does not include an instruction for floating-point
division, but virtually all programming environments provide some form of a software substitute. Consult
your system’s documentation to see which (possibly unpublished) internal routine or inline instruction se-
quence is used.

Markstein discusses numerous algorithms that compute these and various other mathematical functions
using the Itanium instruction set while conforming to the IEEE conventions for rounding and exception
reporting. Refer to his book for the details of using the Itanium floating-point instructions to compute refined
arithmetic results.
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8.1.4 Maximum and Minimum Instructions

The Itanium ISA includes instructions for determining the maximum or minimum of two floating-point val-
ues:

famax.sf f1=f2,f3 // f1 <- larger of f2 and f3 (absolute value)
famin.sf f1=f2,f3 // f1 <- smaller of f2 and f3 (absolute value)
fmax.sf f1=f2,f3 // f1 <- larger of f2 and f3
fmin.sf f1=f2,f3 // f1 <- smaller of f2 and f3

where the valid values for sf are as before. If the values in registers f2 and f3 are equal in value (fmax,
fmin) or magnitude (famax, famin), then register f1 is set to the value of f3.

8.1.5 Normalization

The Itanium ISA includes an assembler pseudo-op for “normalizing” and rounding a floating-point value
after a series of calculations:

fnorm.pc.sf f1=f3 becomes fma.pc.sf f1=f3,f1,f0

where the valid values for pc and sf are as before.

8.2 Data Access Instructions

Like their integer analogues, the floating-point load and store operations can use instruction completers to
provide hints to the Itanium cache structures regarding how the program expects the values to be used. We
discuss the available floating-point load and store instructions below.

8.2.1 Load Instructions

The Itanium ISA includes instructions for loading floating-point values in several different forms.

Standard floating-point load. There are three forms of the standard floating-point load instructions:

ldffsz.fldtype.ldhint f1=[r3] // f1 <- mem[r3]
ldffsz.fldtype.ldhint f1=[r3],r2 // f1 <- mem[r3]

// r3 <- r3 + r2
ldffsz.fldtype.ldhint f1=[r3],imm9 // f1 <- mem[r3]

// r3 <- r3 + sext(imm9)

ldf8.fldtype.ldhint f1=[r3] // f1 � 63:0 � <- mem[r3]
ldf8.fldtype.ldhint f1=[r3],r2 // f1 � 63:0 � <- mem[r3]

// r3 <- r3 + r2
ldf8.fldtype.ldhint f1=[r3],imm9 // f1 � 63:0 � <- mem[r3]

// r3 <- r3 + sext(imm9)

ldf.fill.ldhint f1=[r3] // f1 <- mem[r3]
ldf.fill.ldhint f1=[r3],r2 // f1 <- mem[r3]

// r3 <- r3 + r2
ldf.fill.ldhint f1=[r3],imm9 // f1 <- mem[r3]

// r3 <- r3 + sext(imm9)
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where fsz is the size of the information unit at the address specified in register r3 from which a converted
value is placed into register f1. The valid values for fsz are s for a single-precision value, d for a double-
precision value, and e for an IA-32 80-bit extended double-precision value. Note that the load instruction
uses register indirect addressing for the source operand and register direct addressing for the destination.

There are several valid values for fldtype, the load type completer. None, which corresponds to omit-
ting the load type completer, indicates an ordinary load operation. The remaining types correspond to a check
load, speculative load, or advanced load, and are considered further in Section 12.

Three valid values for ldhint, the load hint completer, exist: none, nt1, and nta. These completers
provide the same hints to the Itanium cache structures as their integer counterparts, which were discussed in
Section 5.

Also like the integer versions, the floating-point load instructions provide for postmodification of the
pointer value in register r3 by a full 64-bit signed value stored in register r2 or by a 9-bit signed constant,
with values ranging from -256 to +255.

The ldf8 form of this instruction loads 8 bytes from the quad word memory location specified in register
r3 into the significand bits ( � 63:0 � ) of register f1. This form is typically used to load integer data types
into a floating-point register. Accordingly, the sign bit ( � 81 � ) is set to zero and the biased exponent field
(bits � 80:64 � ) is set to 0x1003E (2 ��� ) to indicate that the value in the significand bits should be interpreted
as a 64-bit integer.

Finally, the fill form of this instruction loads 16 bytes and the appropriate fields are placed into register
f1 without conversion. This form is used to restore register contents when an operating system switches
process contexts or when an application uses a preserved register.

Floating-point load pair. The Itanium ISA includes an instruction that will load a pair of floating-point
values. Several forms are available:

ldfps.fldtype.ldhint f1,f2=[r3] // f1 <- mem[r3]
// f2 <- mem[r3+4]

ldfps.fldtype.ldhint f1,f2=[r3],8 // f1 <- mem[r3]
// f2 <- mem[r3+4]
// r3 <- r3 + 8

ldfpd.fldtype.ldhint f1,f2=[r3] // f1 <- mem[r3]
// f2 <- mem[r3+8]

ldfpd.fldtype.ldhint f1,f2=[r3],16 // f1 <- mem[r3]
// f2 <- mem[r3+8]
// r3 <- r3 + 16

ldfp8.fldtype.ldhint f1,f2=[r3] // f1 � 63:0 � <- mem[r3]
// f2 � 63:0 � <- mem[r3+8]

ldfp8.fldtype.ldhint f1,f2=[r3],16 // f1 � 63:0 � <- mem[r3]
// f2 � 63:0 � <- mem[r3+8]
// r3 <- r3 + 16

Data from two successive information units (starting at the address specified in register r3) are converted
and placed into the destination registers f1 and f2. Note that one of the destination registers must be an
odd-numbered register and the other even-numbered, but they do not have to be consecutively numbered.
(For example, specifying f9 and f12 as the destination registers is valid.) Other restrictions apply; consult
the the Itanium architecture documentation for the details.

Like the standard floating-point load instruction, this operation provides for postmodification of the
pointer value in register r3 by an amount equal to the aggregate size of the two values, and is useful for
stepping through an array, for example.

The valid values for fldtype and ldhint are the same as those for the standard floating-point load
instructions.
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8.2.2 Store Instructions

The Itanium ISA provides three forms of the floating-point store instruction:

stffsz.sthint [r3]=f2 // mem[r3] <- f2
stffsz.sthint [r3]=f2,imm9 // mem[r3] <- f2

// r3 <- r3 + sext(imm9)

stf8.sthint [r3]=f2 // mem[r3] <- f2 � 63:0 �
stf8.sthint [r3]=f2,imm9 // mem[r3] <- f2 � 63:0 �

// r3 <- r3 + sext(imm9)

stf.spill.sthint [r3]=f2 // mem[r3] <- f2
stf.spill.sthint [r3]=f2,imm9 // mem[r3] <- f2

// r3 <- r3 + sext(imm9)

where fsz is the size of the information unit at the address specified by register r3 into which the value in
register f2 is converted and stored. The valid values for fsz are s for a single-precision value, d for a double-
precision value, and e for an IA-32 80-bit extended double-precision value. Note that the store instruction
uses register direct addressing for the source operand and register indirect addressing for the destination.

There are several valid values for fldtype, the load type completer. None, which corresponds to omit-
ting the load type completer, indicates an ordinary load operation. The remaining types correspond to a check
load, speculative load, or advanced load, and are considered further in Section 12.

Two valid values for sthint, the store hint completer, exist: none and nta. These completers provide
the same hints to the Itanium cache structures as their integer counterparts, which were discussed in Section 5.

Also like the integer versions, the floating-point store instructions provide for postmodification of the
pointer value in register r3 by a 9-bit signed constant, with values ranging from -256 to +255.

The stf8 form of this instruction stores the significand bits ( � 63:0 � ) of register f2 in the quad word
memory location specified by register r3.

Finally, the spill form of this instruction stores the contents of register f2 into the 16-byte memory
location specified by r3. This form is used to save register contents when an operating system switches
process contexts or when an application uses a preserved register.

8.3 Miscellaneous Floating-Point Instructions

The Itanium ISA includes a few other instructions that operate on floating-point data types. We discuss these
here.

8.3.1 Floating-Point Compare Instruction

In Section 6, the notion of predication was introduced. The Itanium ISA includes a floating-point compare
instruction that can be used to set qualifying predicate registers based on the value in a floating-point register.
The behavior and syntax of this instruction is similar to that of its integer analogue:

fcmp.fcrel.fctype p1,p2=f2,f3 // always uses two registers

where two predicate registers p1 and p2 must always be specified and can be any of Pr � –Pr ��� .
Typically, a comparison statements is read from left to right: p1 is set to true and p2 to false if r2 crel r3

is true, and vice versa if the comparison is false.
There are several valid values for fcrel, the conditional relationship completer, including: eq, ne, lt,

le, ge, gt. Each of these has the same meaning as the corresponding symbol in the integer versions of the
compare instruction. A number of other values for the conditional relationship completer are also available:
nlt, nle, nge, and ngt. Here, n stands for “not”, so these completers provide mnemonics for the logically
opposite relationships.
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The IEEE standard also defines a special “unordered” relation that is true if one or both operand values
are NaN (not a number). The fcmp instruction can use the unord completer to test for this relationship and
the ord completer for the Boolean opposite.

Two valid values for fctype, the comparison type, exist: none and unc. None, which corresponds to
omitting the comparison type completer, indicates an ordinary comparison, like that just described. The unc
completer indicates and unconditional comparison and behaves just like the unconditional integer comparison
operation, which was described in Section 6.

8.3.2 Logical Instructions

The Itanium ISA includes logical instructions that operate on the significand of a floating-point value:

fand f1=f2,f3 // significand of f1 <- f2 & f3
fandcm f1=f2,f3 // significand of f1 <- f2 & f3
for f1=f2,f3 // significand of f1 <- f2 | f3
fxor f1=f2,f3 // significand of f1 <- f2 ˆ f3
fselect f1=f3,f4,f2 // significand of f1 <- (f3&f2) ˆ (f4&f2)

where &, |, and ˆ denote the Boolean AND, OR, and XOR operations. Each instruction sets the sign of f1
to positive and the biased exponent field to 0x1003E.

The fselect instruction copies significand bits of f3 from the positions where the bits of f2 are one
and it copies the bits of f4 from the positions where the bits of f2 are zero.

8.3.3 Assembler Pseudo-Ops

The Itanium ISA also provides a number of assembler pseudo-ops for copying floating-point values between
registers. These include:

mov f1=f3 // f1 <- f3
fabs f1=f3 // f1 <- abs(f3)
fneg f1=f3 // f1 <- -f3
fnegabs f1=f3 // f1 <- -abs(f3)

where f1 and f3 may be any of the Itanium floating-point registers (Fr � –Fr � � � ). Like all assembler pseudo-
ops, these represent common special cases of the more general floating-point instructions discussed above.

8.3.4 Floating-Point Merge Instruction

We know that floating-point numbers are stored and manipulated as sign and magnitude quantities. There
are several forms of a merge instruction to manipulate the sign bit of a floating-point number, both with and
without the biased exponent field:

fmerge.s f1=f2,f3 // f1 <- sign(f2) with rest(f3)
fmerge.ns f1=f2,f3 // f1 <- -sign(f2) with rest(f3)
fmerge.se f1=f2,f3 // f1 <- sign(f2) and exp(f2) with rest(f3)

where f1, f2, and f3 may any of the Itanium floating-point registers (Fr � –Fr ����� ). These instructions are
useful for composing a new floating-point value using a combination of the various elements from the source
operands.
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8.3.5 Floating-Point Value Classification

The fclass instruction allows the programmer to determine the (nature) of the current value in a floating-
point register:

fclass.fcrel.fctype p1,p2=f2,fclass9 // is f2 as expected?

where two predicate registers must always be specified and fclass9 is a bit pattern encoding the character-
istics sought about the contents of register f2.

Predicate register p1 is set to true and p2 to false if f2 fcrel fclass9 is true, and vice versa if the
relationship is false.

There are two valid values for fcrel, the conditional relationship completer: m (is a member) and nm
(is not a member).

There are two valid values for fctype, the comparison type completer: none and unc. None, which
corresponds to omitting the completer, indicates an ordinary comparison. The unc completer indicates an
unconditional comparison, and behaves as previously described.

Itanium assemblers will recognize the mnemonics in Table 11 for the fclass9 bit pattern. These
mnemonics can be OR’d together using the | operator.

Floating-Point Class Mnemonic Bit Value in fclass9

NaTVal @nat 0x100

Quiet NaN @qnan 0x080

Signaling NaN @snan 0x040

Positive @pos 0x001

Negative @neg 0x002

Zero @zero 0x004

Un-normalized @unorm 0x008

Normalized @norm 0x010

Infinity @inf 0x020

Table 11: Assembler mnemonics for the fclass instruction

The floating-point number will agree with the fclass9 pattern if one of the following three conditions
is true:

� The value is NaTVal and @nat was specified.

� The value is NaN and either @qnan or @snan was specified.

� The value’s sign agrees with @pos or @neg, if specified, and the value’s type agrees with the remainder
of the specified characteristics.

Note that a value of 0x1ff for fclass9 will test whether the value in register f2 is any supported floating-
point type.
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8.4 Floating-Point Operations on Integer Values

We noted in Section 5 that the Itanium floating-point registers could be used to do full width multiplication of
64-bit integers. Before investigating the several forms of the floating-point instruction that makes this opera-
tion possible, we introduce the instructions for converting between integer and floating-point representations.

8.4.1 Data Conversion

We have already seen that the floating-point load and store operations will convert data to and from the IEEE
single- and double-precision formats when working with data in the floating-point registers. The Itanium ISA
also includes instructions for converting quad word signed integer values as well.

Rounding and truncation. Several instructions that modify the format of a floating-point value as it moves
between Itanium registers are available:

fcvt.fx.sf f1=f2 // round to integer
fcvt.fx.trunc.sf f1=f2 // truncate to integer
fcvt.fxu.sf f1=f2 // round to unsigned integer
fcvt.fxu.trunc.sf f1=f2 // truncate to unsigned integer

where the result of each operation is placed into the significand of register f1. The biased exponent of f1 is
set to 0x1003E and the sign bit is set to zero. If the floating-point value in register f2 is negative, then the
sign of the result in f1 is given by bit � 63 � of the significand. This qualification applies only to the signed
forms of these instructions.

The valid values for sf are the same as those previously described for the floating-point arithmetic in-
structions.

Integer to floating-point conversion. The Itanium ISA also provides an instruction for converting a 64-bit
integer (stored in the significand of a floating-point register) into a normalized floating-point value:

fcvt.xf f1=f2 // convert to normalized floating-point

This operation is always exact, a result of the extended exponent range of the Itanium floating-point registers.
Note that no instruction completers are necessary. An assembler pseudo-op that converts a 64-bit integer into
a floating-point value using the fma instruction is also available:

fcvt.xuf.pc.sf f1=f2 becomes fma f1=f3,f1,f0

Rounding may be necessary if the integer value is too large; a truncation operation is not available.
The valid values for pc and sf are the same as those for the floating-point arithmetic operations.

Data movement. Several forms of the getf instruction, which moves values from the floating-point regis-
ters to the general-purpose registers, are available:

getf.s r1=f2 // r1 <- single-precision representation of f2
getf.d r1=f2 // r1 <- double-precision representation of f2
getf.exp r1=f2 // r1 � 17:0 � <- sign and exponent of f2
getf.sig r1=f2 // r1 <- significand of f2
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Bits � 63:32 � of r1 are set to zero with getf.s. Likewise, bits � 63:18 � of r1 are set to zero with
getf.exp. If f2 contains NaTVal, then the NaT bit of r1 is marked for all forms of this instruction.

Similar instructions are available for moving values from a general-purpose register to a floating-point
register:

setf.s f1=r2 // f1 <- single-precision value in r2
setf.d f1=r2 // f1 <- double-precision value in r2
setf.exp f1=r2 // sign and exponent of f1 <- r2 � 17:0 �
setf.sig f1=r2 // significand of f2 <- r2

Here, bits � 17:0 � of r2 are set in the sign and exponent fields of f1, and its significand is set to the
hexadecimal value 1 followed by 15 zeros (0x1000000000000000) with the setf.exp instruction. With
setf.sig, the value in r2 is copied into the significand of f1, its sign filed is set to zero, and the biased
exponent is set to 0x1003E. If the NaT bit of register r2 is set, then the conversion is skipped and register f1
is set to NaTVal.

8.4.2 Integer Multiplication

The Itanium ISA provides a fused multiply-add instruction for multiply 64-bit integer data types stored in
floating-point registers. Several forms of the xma instruction are available (some of which are assembler
pseudo-ops):

xma.l f1=f3,f4,f2 // low form
xma.lu f1=f3,f4,f2 // unsigned low form
xma.h f1=f3,f4,f2 // high form
xma.hu f1=f3,f4,f2 // unsigned high form
xmpy.l f1=f3,f4 // low form (pseudo-op)
xmpy.lu f1=f3,f4 // unsigned low form (pseudo-op)
xmpy.h f1=f3,f4 // high form (pseudo-op)
xmpy.hu f1=f3,f4 // unsigned high form (pseudo-op)

where a 128-bit intermediate result is formed by either a signed or unsigned multiplication of the significands
of registers f3 and f4 and (possibly) adding the significand of register f2. Note that the significand of f2 is
zero-extended as necessary. Either the lower or the upper 64 bits of this results are then stored in significand
of register f1.

There is no fused multiply-subtract instruction for 64-bit integer data types, a result of zero-extending,
and not sign-extending, the significand of f2.

The sign bit of f1 is set to zero, and the biased exponent to 0x1003E. If any source operand’s value is
NaTVal, then the conversion is skipped and f1 is set to NaTVal.
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9 Parallel Instructions

As we know, the Itanium architecture operates on 64-bit integer and 82-bit floating-point data types. Some-
times, however, the precision or range of values enabled by the full width of the appropriate registers are not
necessary. To optimize the circumstances where this situation is true, many modern architectures offer par-
allel (sometimes called “multimedia”) instructions. These instructions operate on several narrow data types,
packed into a full-width architectural register, in parallel.

The Itanium architecture provides several integer and floating-point parallel instructions. The use of
parallel instructions is extremely complex and often requires special algorithms and data layouts to achieve
optimal execution. As a result, we give only a cursory overview of these instructions here.

For further details concerning the Itanium parallel instructions, consult the appropriate entries in Section 3
of the Itanium Instruction Set Reference.

9.1 Integer Instructions

A large number of parallel integer instructions, which perform their specified operations on multiple bytes,
words, and double words packed into a 64-bit general-purpose register, are available, but we do not list the
instruction mnemonics here.

The parallel integer instructions include: typical arithmetic operations, like add, subtract, multiply; many
useful others, such as maximum, minimum, average, bit shifts, comparisons, etc.; and the necessary instruc-
tions for packing and unpacking general-purpose registers with multiple narrow data types.

Note that these instructions have latencies greater than one and may require execution unit I0 in par-
ticular. There use is further complicated by interdependencies with other Itanium instructions. It is possi-
ble that the analogous nonparallel instructions will exhibit better performance, but this result is, of course,
implementation-dependent.

9.2 Floating-Point Instructions

Similarly, many parallel floating-point instructions, which perform their specified operations on two single-
precision floating-point values packed into an 82-bit Itanium floating-point register, are available, but we do
not list the instruction mnemonics here.

The parallel floating-point instructions include: typical arithmetic operations, like the fused multiply-add
and multiply-subtract; many useful others, such as maximum, minimum, negation, comparison, the reciprocal
approximations, etc.; and the necessary instructions for loading and storing the packed data values.

These instructions have a four-cycle latency. In principle, then, the Itanium architecture can sustain twice
as many parallel single-precision operations as nonparallel double-precision operations. Of course, data
dependencies and other factors, like the number of F-units, will limit the achievable speed-up provided by
the parallel instructions.
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10 Structured Programming Constructs

We saw in Section 6 that the Itanium ISA includes several comparison and branching instructions to control
the flow of a program’s execution. Many of the common control structures provided by high-level languages,
including logical or data-dependent constructs (if...then...else and case selection structures) and
loops (do...until or while...do), can benefit from implementation using the Itanium’s advanced
features. We turn our attention to the low-level bases for building these high-level constructs using the
Itanium ISA.

10.1 If...Then...Else Structures

The if...then...else block is one of the simplest structured programming constructs. It is also one of
the most powerful.

10.1.1 Standard Implementation

An assembly level if...then...else construct will typically look like the following:

� prior code �
if: cmp.crel pt,pf=ra,rb // predicates for a rel b

(pf) br.cond else;; // skip THEN block
then: � do THEN block � ;;

br end;; // skip ELSE block
else: � do ELSE block � ;;
end: � subsequent code �

where pt and pf are the predicate registers set for the true and false outcomes of the compare instruction.
When the outcome is true, pf will contain a zero, the first conditional branch will fall through, the THEN
block will execute, and the unconditional branch will skip the ELSE block. When the outcome is false, pf
will contain a one, the first conditional branch skips the THEN block, and the ELSE block will execute. Note
that in either case one branch must execute, which is very time-consuming.

10.1.2 Predicated Implementation

Most Itanium instructions can be predicated, so both branch instructions encountered above can be elimi-
nated:

� prior code �
if: cmp.crel pt,pf=ra,rb;; // predicates for a rel b
then: (pt) � do THEN block �
else: (pf) � do ELSE block �
end: � subsequent code �

Predication of the THEN and ELSE blocks can impact performance significantly. The CPU executes both
streams of instructions, but the values in the predicate registers determine which stream actually has an effect
when results written into destination registers or memory.

Instructions that are to execute regardless of the construct’s comparison outcome can be interleaved at the
desired position within the instruction sequence. Most other architectures would require that these instruc-
tions be duplicated in each code block.

You will recall that the Itanium architecture enables zero latency between compare and branch instructions
by performing the operations in separate I- or M-units (the compare) and B-units (the branch). Without
an explicit stop (;;) after the compare instruction, the CPU is permitted to execute the compare and the
predicated instructions of the if...then...else construct in parallel, possibly using stale values in
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the predicate registers. The explicit stop ensures that the comparison has completed before the qualifying
predicates are used.

When there are only a few instruction in the THEN and ELSE blocks, the programmer or compiler should
remove as many stops as possible. Also, interleaving the small number of instructions from the THEN block
with those from the ELSE block can ensure that instruction bundles are filled with useful work rather than
no-ops.

Because the CPU actually executes the instructions from both code blocks and uses predication to deter-
mine which instructions have an effect, lengthy THEN and ELSE blocks may negatively impact the CPU’s
overall throughput. Although branch instructions are expensive, there is a performance trade-off between
the predicated and standard implementations of the if...then...else construct, and at some point the
standard version will execute more quickly. Where this crossover point lies is, of course, an implementation-
dependent result.

Similarly, when the number of instructions in each block is severely imbalanced, using the standard
if...then...else implementation may be more effective. This situation is particularly true if the
shorter block belongs to the more probable outcome, because the CPU is executing a large number of in-
structions that have no effect (those that are predicated false) only to ensure the effect of a small number of
instructions (those that are predicated true). With the standard implementation, the execution time will reflect
only those few instructions and the one branch taken.

10.1.3 Nested If...Then...Else Structures Using Predication

You learned earlier that the unconditional comparison instruction, when predicated false, sets the values in
both predicate registers to false without actually performing a comparison. This form of the comparison
instruction is useful for implementing nested if...then...else structures, as follows:

� prior code �
if: cmp.crel pt,pf=ru,rv // outer conditional test
then: (pt) cmp.crel.unc pa,pb=rw,rx // THEN-block conditional test

(pa) � do inner THEN block A �
(pb) � do inner ELSE block B �

else: (pf) cmp.crel pc,pd=ry,rz // ELSE-block conditional test
(pc) � do inner THEN block C �
(pd) � do inner ELSE block D �

end: � subsequent code �

This branch-free implementation can be very useful for short code blocks. As before, all code blocks are
loaded and executed, but only the sequence that has been predicated true will have an effect. If one or more
of the code blocks is very long, consider using a branching implementation.
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10.2 Case Selection Structures

Case selection structures can be implemented very compactly using the Itanium compare instructions and
predication. Consider the following simple example, expressed in the C programming language:

switch ( W )�

case 1:
R = P - Q;
break;

case 2:
R = P + Q;
break;

case 4:
R = P;
break;�

Using a sequence of compare instructions with predication, this code becomes:

cmp.eq p1,p0=1,rW // if rW == 1, p1 <- 1
cmp.eq p2,p0=2,rW // if rW == 2, p2 <- 1
cmp.eq p4,p0=3,rW;; // if rW == 4, p4 <- 1

case1: (p1) sub rR=rP,rQ // R = P - Q
case2: (p2) add rR=rP,rQ // R = P + Q
case4: (p4) mov rR=rP;; // R = P

where the notation rRmeans the general-purpose register containing the value of R, and so forth. The Itanium
architecture allows more than one instruction to target the same register (in this example, the register rR) if
those instructions are mutually exclusive; that is, if only one of the instructions will be predicated true. If this
were not the case, then more stops would be required.

10.3 Loop Structures

Like the if...then...else construct and case selection structures, various types of loop structures can
be implemented using predicated instruction execution.

10.3.1 Counter-controlled Loops

A counter-controlled loop can be expressed as follows:

� enter loop with rc = number of traversals �
loop: � instructions of loop body �

add rc=-1,rc;; // decrement loop counter
cmp.eq p0,pf=rc,0 // is loop counter == 0?
(pf) br.cond.sptk loop;; // no, execute loop again

� subsequent code � // yes, continue

This loop uses only one predicate register. Furthermore, the static prediction hint (sptk) is given, so this
loop assumes many traversals.
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10.3.2 Loops Controlled by an Address Limit

An address can also be used to control the execution of a loop. For example, consider the following code that
processes the quad word elements of an array:

� enter loop with rc = address of first element �
loop: ld8 rt=[rc],8;; // load current element and

// increment pointer
� process current element �
cmp.gtu p0,pf=rc,rl // past the last element?
(pf) br.cond.sptk loop;; // no, execute loop again

� subsequent code � // yes, continue

where rl contains the address of the last element. Note that an unsigned comparison is used for the addresses.
Also, a loop of this sort implicitly assumes that the array is non-null.

10.3.3 Loops with a Conditional Entrance

Suppose that it is permissible for the array in the previous example to be null. Clearly this situation calls for
a different sort of loop, one that would not attempt to operate on an empty array. We can remedy the situation
by positioning the conditional test at top of the loop:

� enter loop with rc = address of first element �
loop: cmp.gtu pt,p0=rc,rl // past the last element?

(pt) br.cond.spnt leave;; // yes, exit the loop
ld8 rt=[rc],8;; // load current element and

// increment pointer
� process current element �
br loop;; // look for next element

leave: � subsequent code �

where the notational conventions are as before. Here, we provide the static prediction hint spnt, indicating
that the branch will not be taken.

10.3.4 Using the Loop Count Register

Counter-controlled loops are very common structures in application programming. Often, these structures
are nested, so the need to handle the innermost loops efficiently is very important.

The Itanium architecture provides two mechanisms to implement loops efficiently: the ar.lc (loop
count) application register and the br.cloop branch instruction.

The ar.lc register must be initialized, prior to entering the loop body, to one less than the total number
of desired traversals using a mov pseudo-op. The br.cloop instruction, placed at the bottom of the loop,
tests the value of ar.lc against zero after each traversal. If ar.lc is not zero, it is decremented and the
branch is taken. If ar.lc is zero, the branch is not taken and execution falls through to the next instruction.

Here, the body of the loop will be executed at least once. If this is not the desired behavior, programmers
or compilers must add the appropriate tests prior to the beginning of the loop body.

We have included another (slightly modified) example from Evans and Trimper to illustrate how ar.lc
and br.cloop are used. The program, called DOTCLOOP, computes the scalar product of two vectors. The
DOTCLOOP code is given in Figure 3 (next page).

The Itanium architecture provides only one ar.lc register, so any routine that uses the register must
save and restore its contents for the calling routine. In this example, the general-purpose register r9 can
be used because the program’s main procedure is a “leaf” procedure; that is, main does not call any other
routines. Generally, however, a stack-based mechanism should be used to save and restore register contents
for previous calling levels.
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// DOTCLOOP: Compute the scalar product of two vectors

N = 3 // Declare a constant
.data // Declare data section
.align 8 // Specify desired alignment

P: .skip 8 // To store the product
X: data2 -1,+3,+5 // First vector of 16-bit values
Y: data2 -2,-4,+6 // Second vector of 16-bit values

.text // Declare code section

.align 32 // Specify desired alignment

.global main // Mark mandatory ’main’ program entry

.proc main
main:

.prologue // Begin prologue section

.save ar.lc,r9
mov r9=ar.lc;; // Save caller’s ar.lc
.body // Begin procedure ’main’

first: movl r14=X;; // Gr14 = pointer to X
movl r15=Y;; // Gr15 = pointer to Y
movl r16=P;; // Gr16 = pointer to P
mov r20=0 // r20 = scalar product
mov r17=N-1;; // One less than the number of traversals
mov ar.lc=r17 // Initialize ar.lc

top: ld2 r21=[r14],2 // Load element from X and increment pointer
ld2 r22=[r15],2;; // Load element from Y and increment pointer
pmpy2.r r21=r22,r21;; // Multiply element from X by element from Y
sxt4 r21=r21;; // Sign-extend result to 64 bits
add r20=r20,r21 // Update scalar product
br.cloop.sptk.few top // More elements to process?
st8 [r16]=r20;; // No, store the scalar product

done: mov r8=0;; // Signal completion
mov ar.lc=r9 // Restore caller’s ar.lc
br.ret.sptk.many b0;; // Return to command line
.endp main // End procedure ‘main‘

Figure 3: A slightly modified version of the DOTCLOOP program from Evans and Trimper

In addition, the DOTCLOOP program introduces the prologue section of a program. The prologue, marked
by .prologue, occurs at the beginning of the text segment and extends until the .body directive. You can
see that the prologue includes both assembler directives (.save, for example) and actual Itanium instruc-
tions. Programs may require an epilogue section as well. Not surprisingly, the epilogue occurs at the bottom
of the text segment, but there are no special directives to explicitly mark the epilogue section.
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11 Using Procedures and Functions

We now turn out attention to the Itanium mechanisms, instructions, and calling conventions that support
procedures and functions.

11.1 Itanium Stack Structures

The Itanium architecture includes support for both memory-based stacks and register stacks. We describe
both types here, highlighting only those details necessary to provide a basic understanding of the low-level
mechanisms prescribed by the Itanium architecture that support the use of procedures and functions.

11.1.1 Itanium Memory Stacks

By convention, the general-purpose register Gr � � serves as the Itanium stack pointer, and it is initialized to
point to the memory stack when a program is loaded. The stack pointer requires 16-byte alignment, also by
convention. Note that Itanium assemblers will recognize sp as a synonym for Gr ��� .

Calling procedures will automatically provide a 16-byte “scratch” area for the callee. If more than
16 bytes are required, a procedure frame must be established: the called procedure must decrement sp
by the frame size in its prologue section.

The procedure frame contains five areas: the local storage region, a dynamic allocation region, the frame
marker region, and an outgoing parameters region. We omit any further details of the procedure frame, but
Evans and Trimper cover the topic thoroughly (Section 7.1.3, page 191). We note that:

� The frame size must always be a multiple of 16 bytes.

� It is the responsibility of the programmer (or compiler) to save the previous stack pointer in the prologue
and restore it in the epilogue.

� The Itanium architecture allows the programmer or compiler to define any number or type of stack
structures in a program’s data segment and to use the general-purpose registers as user-maintained
stack pointers.

Evans and Trimper also cover more details of user-defined stacks (Section 7.1.4, page 192).

11.1.2 Itanium Register Stacks

In addition to memory stacks, the Itanium architecture supports a hardware-based register stack. The archi-
tecture prescribes that 32 static registers and a register stack of at least 96 registers (managed by the register
stack engine, which we discuss momentarily) be provided by any implementation. We discuss this topic
briefly, leaving the details to Evans and Trimper (Section 7.3, page 196) and other resources.

The alloc instruction. A new stack frame on the Itanium register stack is allocated using the following
instruction:

alloc r1=ar.pfs,ins,locs,outs,rots

where ins, locs, outs, and rots specify the sizes of the input, local, output, and rotating regions of the
stack frame. The size of the frame (sof ) is given by ins + locs + outs. The size of the local region
(sol) is given by ins + locs; there is no distinction between the inputs and the locals. The size of the
rotating region (sor) is given by rots, which must be a multiple of eight and cannot exceed sof.

The alloc instruction has introduced the idea of rotating registers. This powerful concept allows data in
registers to remain accessible by incrementing the logical names of the registers within the set using special
instructions. We defer any further discussion of rotating register sets until Section 12.
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The Register Stack Engine. The Itanium Register Stack Engine (RSE) provides transparent access to a
large virtual register stack in memory. In this sense, it functions similarly to a typical cache structure. Using
cues from the operating system, the RSE manages the limited number of physical registers in the stack by
spilling and filling register contents to a backing store (typically a dedicated region of memory) when a new
allocation or procedure return requires that action.

The RSE asynchronously moves data to and from memory without direct intervention by the CPU using
direct memory access. In this sense, the RSE functions as an I/O device that is active only periodically and
whose operation is largely decoupled from instruction execution. Of course, if the RSE is waiting for data
from the CPU, or vice versa, execution may stall.

11.2 Calling Procedures and Functions

In order to reduce possible contention over the vast register resources provided by the Itanium architecture,
programmers and compilers must follow the conventions for using these resources. Section 3 touched on the
standardized uses of each type of Itanium register. Here, we describe the conventions for calling procedures
and functions more fully.

11.2.1 Register Conventions

Many conventions reflect differences at the hardware level. For example, some registers are global in scope
(Gr � –Gr ��� ), others have constant values (Gr � , Fr � –Fr � ), and yet others are managed by the RSE. Follow-
ing Evans and Trimper, we characterized the Itanium registers according to their size, features, and uses in
Section 3. We reiterate the characterizations pertaining to the use of procedures and functions:

� A register is scratch if it may be used freely by a procedure or function at any calling level; the caller
must save any important contents of these registers.

� A register is preserved if a calling routine depends on its contents; any called procedure must save and
restore the contents of these registers for its caller.

� A register is automatic if its name only has a dynamic correspondence to a physical register; these
registers are automatically spilled to and filled from memory during allocation by the hardware, as
necessary.

Note that the location within the program where the contents of important registers are saved depends upon
the programming language and environment, as well as the operating system.

11.2.2 Call and Return Branch Instructions

The Itanium architecture provides instruction completers for the more general branch instructions to indicate
a call or return from a function:

br.call.bwh.ph.dh b1=target25 // IP-relative
br.call.bwh.ph.dh b1=b2 // indirect addressing
br.ret.bwh.ph.dh b2 // indirect addressing only

where the valid values for bwh, ph, and dh are the same as those for the branch instructions described in
Section 6. Note that the target address must be aligned with an instruction bundle; that is, the four lowest-
order bits of the address must be zero. Also, note that calls and returns may have a qualifying predicate.

As a result of the br.call instruction, the return address becomes IP+16 and is stored in register b1.
Then, several values are saved into the ar.pfs application register; we do not provide the details of this
step, but they can be found in Appendix D.7 of Evans and Trimper. The register stack is adjusted and, finally,
the IP is set to the target address either by adding the sign-extended offset, target25, or by copying the
address in register b2.

The br.ret instruction copies the value of b2 into the IP and restores from ar.pfs those values saved
by br.call. The calling procedure’s stack frame is also restored.
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Figure 4: Passing arguments via registers and the memory stack

11.2.3 Argument Passing

The power of procedures and functions comes from their ability to take input arguments, operate on those
arguments, and possibly return a result to the calling procedure.

Calling routines can pass as many as eight input arguments using registers; beyond eight, they must be
passed using the memory stack. Up to eight general-purpose registers are therefore allocated as outs and are
used to pass 64-bit arguments. Floating-point registers Fr � –Fr ��� are used to pass single- or double-precision
floating-point arguments. Stack space for passing more than eight arguments can be claimed by decrementing
the stack pointer by the appropriate amount (including the required 16-byte scratch space). Figure 4 shows
schematically how argument passing works.

The rules for passing integer and floating-point data types differ. For instance, suppose we make the
following C function call:

result = my function( a, b, r, s, t, c, x, d, y );

where a, b, c, and d are integer values and r, s, t, x, and y are floating-point values. These arguments
must correspond to the sequentially numbered argument slots, as depicted in Figure 4: a with arg0, b with
arg1, and so forth.

Integer arguments in arg0–arg7 are placed in the corresponding output registers out0–out7. Other
output registers are not used. In contrast, floating-point arguments are placed in sequentially numbered
floating-point registers f8–f15; registers are not skipped. Any remaining arguments (arg8 and above) are
stored in quad word information units beginning at sp+16, where sp is the decremented stack pointer that
will be used by the callee.

So, for my function, a is passed in out0, b in out2, r in f8, s in f9, t in f10, c in out5, x
in f11, d in out7, and y, the ninth argument, is stored at sp+16. Note that out3, out4 and out6 are
unused.

11.2.4 A Practical Example

To illustrate the preceding topics, we again include some (slightly modified) example code from Evans and
Trimper. Two listings, BOOTH and DECNUM3, combine to form a program for converting a positive integer
value into a string of ASCII encoded decimal digits. Figure 5 (page 48) shows the code for a function that
computes a 128-bit signed product from two 64-bit inputs using Booth’s algorithm, and Figure 6 (page 49)
shows the code for the test program.

Rather than concentrate on the algorithms, we choose to highlight only those features of the code that
are pertinent to the discussion at hand. The details of Booth’s algorithm, as well as the process of converting
integers in hexadecimal representation into ASCII encoded decimal digits, are covered by Evans and Trimper
(Section 6.5.1, pages 170–173; Section 6.6, pages 175–178; Section 7.2, pages 194–196; Section 7.6, pages
214–218).
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BOOTH. The booth function takes two 64-bit integers, multiplies them together, and produces a 128-bit
signed product. The function expects the multiplicand to be in the first argument slot and the multiplier to
be in the the second. To satisfy these requirements, the calling procedure must place the multiplicand on the
register stack in out0 and the multiplier in out1; these registers are accessible within the booth function
as in0 and in1. The function “claims” these two input registers using the .regstk directive:

.regstk ins, locs, outs, rots

where ins, locs, and outs determine the sof, and rots specifies the number of rotating registers.
Typically, integer functions will return a value to their caller in register r8 (ret0). The Itanium archi-

tecture permits up to four integer return values to be placed in general-purpose registers. Booth’s algorithm
computes a full, 128-bit product, which is clearly larger than a single general-purpose register. Thus, the
function makes the low-order bits of the resulting product available to the caller by placing it in ret0; the
high-order bits are placed in register r9 (ret1).

Note that the booth function largely uses the scratch registers and does not allocate a new stack frame.
The function does save the caller’s ar.lc register (a preserved register) in r31.

DECNUM3. The DECNUM3 test program also makes use of the scratch registers. However, because the
contents of these registers is undefined upon the return from a procedure call (in this example, the call to
booth), the calling routine is responsible for saving and restoring any important values of these registers.
As a consequence, Evans and Trimper point out that, when designing and using procedure calls, it is important
to enumerate the registers that must be preserved and then devise an efficient way to save and restore their
contents.

The DECNUM3 program allocates a new stack frame, using the alloc instruction, that will hold the six
local and two output values. Table 12 lists the registers in the DECNUM3 stack frame and their uses.

Register Purpose

loc0 (r32) Preserve rp

loc1 (r33) Preserve ar.pfs

loc2 (r34) Pointer to user-defined stack

loc3 (r35) Approximation to 0.8

loc4 (r36) Previous quotient for the remainder calculation

loc5 (r37) Preserve gp (r1)

out0 (r38) Pass multiplicand to booth

out1 (r39) Pass multiplier to booth

Table 12: The registers, and their uses, of the DECNUM3 stack frame

We close this discussion by noting that the expected result is 4,888,718,345, the decimal representation
of 0x123456789. The program can be tested by using the debugger included with your programming envi-
ronment to inspect the contents of the 80 bytes starting at address A3.
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// BOOTH: Full-width integer multiplication using Booth’s algorithm

W = 64 // Declare a constant
.text // Declare code section
.align 32 // Specify desired alignment
.global booth // Mark entry point for ’booth’
.proc booth

booth:
.prologue // Begin procedure ’main’
.regstk 2,0,0,0 // Declare 2 ins
.save ar.lc,r31
mov r31=ar.lc // Save caller’s ar.lc
.body // Begin procedure ’booth’

first: add r2=W-1,r0;; // Number of traversals
mov ar.lc=r2 // Initialize ar.lc
mov r19=0 // Set bit n-1 to zero
mov ret0=in1 // Set R to multiplier
mov re1=0;; // Store first square

cycle: and r22=0x1,ret0 // Isolate lowest bit of R
xor r23=r19,r22;; // r23 <- whether to act
cmp.ne p6,p0=0,r23 // p6 <- whether to act
mov r19=r22 // Bit n - 1 for next iteration

(p6) cmp.eq.unc p7,p8=0,r22 // Add, subtract, or no-op?
(p7) add ret1=ret1,in0 // Add X to L
(p8) sub ret1=ret1,in0;; // Subtract X from L

shrp ret0=ret1,ret0,1 // New R of shifted LR
shr ret1=ret1,1 // New L of shifted LR

done: mov ar.lc=31 // Restore caller’s ar.lc
br.ret.sptk.many b0;; // Return to caller
.endp booth // End procedure ‘booth‘

Figure 5: A slightly modified version of the BOOTH function from Evans and Trimper
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// DECNUM3: Convert a positive hexadecimal integer into a
string of ASCII encoded decimal digits

LEN = 20 // Declare a constant
DOT8 = 0xcccccccccccccccd // approximately 0.8
.global booth // External reference to ’booth’
.data // Declare data section
.align 8 // Specify desired alignment

X3: data8 0x123456789 // Number to convert
A3: .skip 80 // Storage for ASCII string
STACK: .skip LEN // User-defined stack

.text // Declare code section

.align 32 // Specify desired alignment

.global main // Mark the mandatory program entry

.proc main
main:

.prologue 12,r32 // Begin procedure ’main’
alloc loc1=ar.pfs,0,6,2,0 // Allocate a new stack frame
.save rp,loc0
mov loc0=b0 // Save return address
.body // Begin procedure ’booth’

first: add loc2=@gprel(STACK),gp // loc2 points to STACK
movl loc3=DOT8 // loc3 points to DOT8
mov loc5,gp // Save global pointer

new: add r15=@gprel(X3),gp;; // r15 points to input number
ld8 r9=[r15] // Load input number
st1 [loc2]=r0,1;; // Push zero as a flag

again: mov loc4=r9 // Save previous quotient
mov out0=r9 // arg0 of ’booth’ is multiplicand
mov out1=loc3 // arg1 of ’booth’ is multiplier
br.call.sptk.many b0=booth // Call ’booth’, r8:r9 <- out0*out1
mov gp=loc5 // Restore global pointer

nosign: add r9=r9,loc4;; // Add X to L
shr.u r9=r9,3;; // r9 <- quotient = loc4/10
shladd r3=r9,2,r9;; // r3 <- 5*quotient
add r3=r3,r3;; // r3 <- 10*quotient
sub r3=r3,r3;; // r3 <- remainder
or r3=0x30,r3;; // Convert to ASCII
st1 [loc2]=r3,1 // Store the character
cmp.ne p6,p0=r9,r0 // Is quotient non-zero?

(p6) br.cond.sptk.few again // Yes, repeat the cycle
st1 [r16]=r0 // No, NULL-terminate A3 (stringz)
add loc2=1,loc2 // Adjust stack pointer

done: mov r8=0 // Signal completion
mov b0=loc0 // Restore return address
mov ar.pfs=loc1 // Restore caller’s ar.pfs
br.ret.sptk.many b0;; // Return to command line
.endp main // End procedure ‘main‘

Figure 6: A slightly modified version of the DECNUM3 program from Evans and Trimper
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12 Program Performance

Performance is typically the driving factor behind the development of new hardware and software designs.
Science and engineering applications, where large-scale simulations and time consuming computations dom-
inate, often demand optimal performance from both the low-level hardware and the user-level code.

We now examine the mechanisms provided by the Itanium architecture for software optimization, as well
as more general optimization guidelines that can be applied to a variety of applications. We leave hardware
optimization considerations to expert sources such as Hennessy and Patterson.

Where possible, we discuss these topics in an implementation-independent manner; however, several of
the more advanced topics require at least minor consideration of the architecture’s implementation. When
this is true, we use the Itanium 2 processor as our guide. For these sections, it may be useful to refer to the
details of that implementation, which can be found in Section 13.

12.1 Processor-Level Parallelism

At various points throughout this survey, we have alluded to a feature of modern processor designs called
instruction pipelining. Pipelining can be likened to an assembly line in a manufacturing process: At each
stage of the pipeline, a highly specialized component receives an input from the preceding state, performs
one highly specialized function on that input, and produces an output for the next stage. To achieve maximum
throughput, each component in the pipeline must perform some sort of useful work at each time-step; this is
often referred to as “keeping the pipe full”.

Instruction pipelining, then, involves specialized hardware components executing one stage of the instruc-
tion cycle. Pipelines have an associated depth, which describes the number of stages that perform distinct
operations. For example, the instruction pipeline of the Itanium 2 processor involves eight distinct stages; the
pipeline’s depth is thus eight.

Ideally, each stage performs its operation in the same amount of time as all of the other stages in the
pipeline. However, if any one stage takes longer to execute than any other, the steady flow of input-operate-
output is temporarily interrupted because at least one stage is left waiting for input; such a situation is known
as a pipeline stall or bubble. We describe several factors that contribute to these stalls shortly.

Three additional terms are often used to characterize instructions in the context instruction pipelining:
An instruction is issued when it permitted to pass from one stage to the next. The latency of a pipeline stage
describes the number of time-steps actually required by that stage to perform its operation on an instruction.
Finally, an instruction is retired when it has passed through the final stage of the pipeline.

We have already mentioned that pipeline stalls can negatively impact the performance of modern CPUs.
These stalls typically result from resource conflicts, procedural dependencies, or data dependencies.

Resource conflicts result when instructions in different stages of the pipeline require access to the same
area in memory or the same functional unit, for example. Procedural dependencies generally result from
branching instructions because partially completed instructions must be halted without altering the state of
the machine. Finally, data dependencies typically arise when an instruction requires data that has not yet been
computed, loaded, or otherwise made accessible.

The steady flow of input-operate-output in pipelined processors enables maximum performance but can
be interrupted by any of the following:

� multiple-issue conflicts,

� branch-induced pipeline flushing,

� producer-consumer dependencies, and

� data stalls from the cache and memory hierarchy.

In EPIC designs, the programmer or compiler must ensure that these situations are avoided whenever possible.
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Code Slot Unit Code Slot Unit Code Slot Unit Code Slot Unit

0x0 0 M 0x8 0 M 0x10 0 M 0x18 0 M
1 I 1 M 1 I 1 M
2 I 2 I 2 B 2 B

0x1 0 M 0x9 0 M 0x11 0 M 0x19 0 M
1 I 1 M 1 I 1 M
2 I;; 2 I;; 2 B;; 2 B;;

0x2 0 M 0xa 0 M;; 0x12 0 M 0x1a 0
�

1 I;; 1 M 1 B 1
2 I 2 I 2 B 2

0x3 0 M 0xb 0 M;; 0x13 0 M 0xb 0
�

1 I;; 1 M 1 B 1
2 I;; 2 I;; 1 B;; 2

0x4 0 M 0xc 0 M 0x14 0
�

0x1c 0 M
1 L 1 F 1 1 F
2 X 2 I 2 2 B

0x5 0 M 0xd 0 M 0x15 0
�

0x1d 0 M
1 L 1 F 1 1 F
2 X;; 2 I;; 2 2 B;;

0x6 0
�

0xe 0 M 0x16 0 B 0x1e 0
�

1 1 M 1 B 1
2 2 F 2 B 2

0x7 0
�

0xf 0 M 0x17 0 B 0x1f 0
�

1 1 M 1 B 1
2 2 F;; 2 B;; 2

Table 13: Itanium instruction templates

12.2 Instruction-Level Parallelism

Pipelining makes efficient use of the available hardware resources. This technique does not, however, reduce
the execution time of any single instruction. Instruction-level parallelism, in which the hardware executes
several instructions in parallel, can be used to reduce execution time and achieve greater throughput.

A processor supports superscalar execution when it has two or more instruction pipelines that can operate
on independent data items in parallel. A superscalar processor fetches, decodes, and (possibly) executes two
or more instructions at the same time. Of course, these processors are also susceptible to pipeline stalls, but
the additional instruction pipelines typically lead to a performance improvement over a processor with only
a single pipeline.

Note that the multiple pipelines in a superscalar processor need not be identical; in fact, multiple spe-
cialized pipelines, each handling some subset of an architecture’s instruction set, will generally lead to better
performance. For example, different integer and floating-point pipelines are common in many modern archi-
tectures.

12.3 Explicit Parallelism

Some architectures prescribe that the hardware will direct the execution of program instructions to maximize
the available execution resources. Instruction-level parallelism is thus transparent to the programmer. In
contrast, EPIC architectures rely on the programmer or compiler to schedule instructions in an intelligent and
productive way; this is the “explicitly parallel” part of EPIC designs.

12.3.1 Instruction Templates

In Section 2, we introduced the notion of an instruction bundle: three 41-bit Itanium instructions packaged
with a 5-bit instruction template. We noted that the templates provide extra information to the CPU regarding
how the instructions contained within the bundle should be executed.
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In particular, the template dictates which execution units are required by the instructions in the bundle.
The 5-bit field indicates that 32 instruction templates are possible; however, only 24 of these have been
defined. Table 13 (previous page) lists the available templates. In this table, “

�

” indicates that the template
code has been reserved for future extensions to the architecture.

Itanium assemblers recognize special directives for manually assigning templates to instruction bundles:

�
.mmi // use an MMI template for this bundle
Type M or Type A instruction
possible stop // if M;;MI or M;;MI;;
Type M or Type A instruction
Type I instruction
possible stop // if M;;MI;;�

Here, we have illustrated the .mmi directive; similar directives are available for the other instruction tem-
plates.

You will recall that Type A instructions, the most common type, can be executed by either I- or M-units;
this gives programmers and compilers a high degree of latitude when grouping program instructions into
bundles.

Typically, instruction templates are not assigned by hand; the compiler or assembler assumes this re-
sponsibility. However, for a more thorough discussion, including exercises comparing results from the most
popular Itanium compilers, we recommend Evans and Trimper, Section 10.3.1 (pages 302–307).

12.3.2 Data Dependencies and Speculation

Four general cases of data dependencies within an Itanium instruction bundle can be identified:

� Read-after-write (RAW) dependencies are not permitted for Itanium registers (there are a few excep-
tions) but are permitted for memory: A load from a location in memory to which data has recently been
written will retrieve the stored valued.

� Write-after-write (WAW) dependencies are also not generally permitted for registers, but several com-
pare instructions are permitted within the same instruction group. Besides these exceptions, Itanium
registers are permitted to occur as a destination operand only once per instruction bundle. Although
WAW dependencies are not explicitly forbidden by the architecture, these should be avoided as multiple
writes may cause resource conflicts.

� Write-after-read (WAR) dependencies are allowed for both registers and memory.

� Read-after-read (RAR) dependencies are allowed for both registers and memory.

Templates that include the explicit stop must be used for RAW and WAW dependencies involving data from
a source register.

The Itanium architecture includes support for data speculation. This technique requires special hardware
and attempts to minimize the risk or impact of data stalls. These stalls occur when the data needed by an
instruction is not yet available in a register because, as we know, a load from memory may take many, many
cycles. To mitigate the impact of data stalls, most compilers handle this situation by rearranging the code so
that it is logically equivalent to the programmer’s intent but with the load appearing earlier in the instruction
sequence.

Itanium load instructions that have been moved must fetch the data speculatively. Itanium processors
have a special internal structure called the advanced load address table (ALAT), which stores a register name
and associated memory address. Itanium store instructions query the ALAT, invalidating all entries whose
memory address overlaps with any portion of the data to be stored. Data speculations with an invalidated
ALAT entry will then fail. Recovery code must also be inserted to handle the situations when a speculative
load has failed.

52



A SURVEY OF THE ITANIUM ARCHITECTURE

FROM A PROGRAMMER’S PERSPECTIVE EXPLICIT PARALLELISM

Consider the following example:

No Data Speculation With Data Speculation

ld8.a r20=[r15];; // Advanced load
�
code block A � �

code block A �
st8 [r14]=r24 st8 [r14]=r24
ld8 r20=[r15];; ld8.c.clr r20=[r15];; // Check load
add r20=1,r20 add r20=1,r20

�
code block B � �

code block B �
st8 [r16]=r20 st8 [r16]=r20

If the compiler does not know whether registers r14 and r15 will point to overlapping regions of memory,
then moving the load instruction is a speculative decision and not guaranteed to produce the correct results.
This situation situation requires an advanced load (ld8.a) with a check load (ld8.c.clr) functioning as
the recovery routine.

As noted, the load type completer .a indicates an advanced load. This instruction inserts an entry for
the address contained in register r15 into the ALAT (possibly displacing some other entry). Later, the check
load completer .c.clr invokes an ALAT query, searching for register r20. If found, the ALAT is cleared
and the recovery load is not necessary. However, if the appropriate entry is not found, the load is executed and
the value in r20 is refreshed. The Itanium ISA also provides the .c.nc load type completer if the ALAT
entry should not be flushed after an ALAT hit.

If the ALAT still holds the necessary entry and no store conflicts have arisen, then the speculation suc-
ceeds, minimizing the load latency by executing � code block A � while the memory hierarchy satisfies
the requested load.

The effectiveness of this speculation depends in part upon the length of � code block A � . If the
instructions composing this block execute quickly, then a data stall might still occur. The compiler may thus
choose a more aggressive rearrangement of the code, as follows:

No Data Speculation With Aggressive Data Speculation

ld8.a r20=[r15];; // Advanced load
�
code block A � �

code block A �
add r20=1,r20

�
code block B �

st8 [r14]=r24 st8 [r14]=r24
ld8 r20=[r15];; chk.a.clr r20,recover // Check load
add r20=1,r20

�
code block B � back:

st8 [r16]=r20 st8 [r16]=r20
�
subsequent code � �

subsequent code �

recover: // Some other address
ld8 r20=[r15];; // Reload
add r20=1,r20

�
code block B �

br back

In this example, the recovery code (beginning at recover) must reload register r20 and execute the en-
tire instruction sequence (add and � code block B � ) again, if the speculation fails. Such aggressive
speculation will lead to large code segments, but can nevertheless prove effective in certain circumstances.

The Itanium ISA provides the chk.a instruction to query the ALAT and conditionally branch to the
recovery routine. Either .clr or .nc must be used to complete the instruction; these completers affect the
ALAT as described before. Note that while chk.a has the same branch range as other IP-relative branch
instructions, this instructions executes in an M- and not a B-unit.
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Finally, we note that the Itanium ISA provides several forms of an instruction to manually invalidate
entries in the ALAT:

invala // Invalidate all ALAT entries
invala.e r1 // Invalidate entry for general-purpose register r1
invala.e f1 // Invalidate entry for floating-point register f1

This instruction will do nothing if no matching entry is found when a register is specified.

12.3.3 Control Dependencies and Speculation

Control dependency describes situations in which speculative execution is contingent on the logical flow of
the program. In these cases, any exceptions that might occur (for example, a floating-point exception) should
not be raised if the speculatively executed instructions would not have otherwise been encountered. The
NaT bit (for general-purpose registers) and the special NaTVal (for floating-point registers) can suppress this
behavior.

In previous sections, we have noted that operations will propagate either the NaT bit or NaTVal if any of
its operands are so marked, to be dealt with when convenient. The Itanium ISA includes the tnat instruction
to test a register’s NaT bit:

tnat.trel.ctype pt,pf=r3

where the test relationship completer trel can be z (zero) or nz (non-zero) and ctype can be any of those
for the compare instructions.

A similar test can be performed for NaTVal in floating-point registers using the fclass instruction.
Consider the following example:

No Data Speculation With Control Speculation

ld8.s r20=[r15];; // Speculative load
�
code block A � �

code block A �
(px) br.cond notdo (px) br.cond notdo

ld8 r20=[r15];; chk.s r20,recover
back:

add r20=1,r20 add r20=1,r20
�
code block B � �

code block B �
notdo: notdo:

�
subsequent code � �

subsequent code �

recover: // Some other address
ld8 r20=[r15] // Reload
br back;;

Here, the load with a long latency depends upon falling through the predicated branch, and the compiler
generates a speculative code sequence to overlap execution of other useful work and the load instruction.

The Itanium ISA includes the chk.s assembler pseudo-op to branch conditionally if the NaT bit of a
register is set. It has the same branch range as other IP-relative branching instructions and can execute in
either an I- or M-unit.

It is also possible to combine advanced and speculative loading with the ld.sa instruction, causing the
ALAT to track success or failure of the load while deferring any exceptions.
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12.4 Program Optimizations

Software optimization is considered by many to be a “black art”. A good resource outlining general software
optimization guidelines is Richard Gerber’s book, The Software Optimization Cookbook. We also recommend
the Itanium 2 Processor Reference Manual for Software Development and Optimization, which is part of the
Itanium architecture documentation.

12.4.1 Performance Considerations

Several architectural factors may contribute to program’s performance. We outline many of these that are of
concern for the Itanium architecture. The lfetch instruction for software prefetching is also described.

Addressing modes. You will recall from our discussion in Section 2 that the Itanium architecture supports the
immediate, register direct, and register indirect addressing modes. For best performance, programs should
retain the most frequently used data in processor registers and minimize interaction with system memory.
While the cache structures help to alleviate the impact of time-consuming memory operations, it cannot be
totally eliminated, and performance degradation can result.

Code size. Code size is much less of a concern in modern architectures than those of even the not-so-distant
past. Loop unrolling, which is a common optimization technique employed by modern compilers, may
unnecessarily contribute to code bloat. Performance enhancements cannot be guaranteed by the technique
but it will always increase the total code size. Loop unrolling can be beneficial, however, due to the relatively
high cost of branch instructions.

A typical compiler for the Itanium architecture will offer unrolling as one of many possible methods for
loop optimization, but software pipelining using the architecture’s rotating register sets will often yield better
results. We discuss loop optimization more thoroughly at the end of this section.

Instruction reordering. We encountered instruction reordering previously, when we introduced the Itanium
advanced and speculative load instructions. Here, instructions were rearranged so that better performance
might result without impacting the logical intent of the program.

At a lower level, instructions within an instruction bundle are mutually independent and can be reordered
to enhance the efficiency with which the instructions are executed. This low-level reordering may result
in fewer no-op instructions or it may make better use of the available execution units. Typically, Itanium
compilers can perform these optimizations but Itanium assemblers cannot.

Inline functions and recursion. You saw in Section 11 that using procedure calls involves a significant
amount of overhead. Function inlining, where the body of a procedure or function is inserted directly into the
code of the calling routine, can eliminate these overheads at the expense of greater code size.

55



A SURVEY OF THE ITANIUM ARCHITECTURE

FROM A PROGRAMMER’S PERSPECTIVE PROGRAM OPTIMIZATIONS

Software prefetching. In addition to the advanced and speculative loads that we have already discussed, the
Itanium ISA includes instructions for prefetching lines into the cache structures:

lfetch.lftype.lfhint [r3] // mem[r3]
lfetch.lftype.lfhint [r3],r2 // mem[r3]

// r3 <- r3 + r2
lfetch.lftype.lfhint [r3],imm9 // mem[r3]

// r3 <- r3 + sext(imm9)

lfetch.lftype.excl.lfhint [r3] // mem[r3]
lfetch.lftype.excl.lfhint [r3],r2 // mem[r3]

// r3 <- r3 + r2
lfetch.lftype.excl.lfhint [r3],imm9 // mem[r3]

// r3 <- r3 + sext(imm9)

where the line containing the address in register r3 is brought into the cache, followed (optionally) by a
postincrement of that address, either by the value in register r2 or by the 9-bit sign-extended immediate
value imm9.

A line will be marked exclusive when the prefetch instruction includes the excl completer; this form is
useful when programs will quickly write to an address within the prefetched line.

There are two valid values for lftype, the line prefetch type completer: none and fault. None,
which corresponds to omitting this instruction completer, ignores all faults associated with an ordinary load
operation, while the fault completer will raise these faults as necessary.

There are four valid values for lfhint, the line prefetch hint completer: none, nt1, nt2, and nta.
None, which corresponds to omitting this instruction completer, indicates that the program associates tem-
poral locality in the L1 cache with the prefetched line. The remaining completers, nt1, nt2, and nta,
indicate that the program associates nontemporal locality in the L1, L2, or all levels of the hierarchy with the
prefetched line.

Other factors. Clearly the discussion of performance factors that we have provide here is not exhaustive.
Several other factors, including instruction size, instruction power, and function recursion, are considered
more fully by Evans and Trimper (Section 10.6, pages 325–334). We also recommend the sources mentioned
previously (Gerber’s book and the Itanium documentation) for a wealth of useful information.
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12.4.2 Low-level Optimization Hints

The following optimization hints have been adapted from the Intel Itanium 2 Processor Reference Manual
for Software Development and Optimization and so do not apply to the Itanium architecture in general. The
details of the Itanium 2 processor are discussed in Section 13.

Instruction scheduling. Intel offers a number of guidelines that can be used to minimize the chances of
implicit stops and other pipeline stalls. We summarize them here:

� Schedule the most restrictive instructions early in a bundle. Doing so will help minimize conflicts with
generic instruction subtypes that might otherwise consume the specific port required by a restricted
instruction.

� When placing Type A instructions in an instruction bundle’s I-slot, try to schedule actual Type I in-
structions first. Doing so will enable the Type A instructions, which do not require the I-units, to be
completed by an M-unit if necessary. Note that it is preferable to place Type A instructions in an M-slot
whenever possible.

� Control-speculation (advanced and check) and pair (ldfps) floating-point loads require the first two
M-units, while other floating-point loads can be performed by any of the Itanium 2 processor’s four
M-units. When mixing the restrictive and regular floating-point load instructions, schedule the regular
loads late in an instruction bundle to ensure that they do not unnecessarily consume the first two M-
units and delay the restricted load types.

� Avoidnop.f, the floating-point no-op, as unintended floating-point stalls may result from long-latency
floating-point instructions.

� Several more dual-issue templates have been added to the Itanium 2 processor. (We discuss this concept
in Section 13.) As a result, the .mfi instruction template should be avoided.

Branch prediction. We know that branch instructions incur a significant performance impact because they
interrupt the sequential flow of program execution. The Itanium architecture offers branch prediction as a
means to mitigate the negative impacts.

The branch whether instruction completers were discussed in Section 6. The performance impact of these
completers depends on other branch instructions contained within a two-bundle window, as well as other
branch information that the processor maintains.

Dynamic branch prediction (.dpxx) is the recommended default value. However, if the ctop or cloop
branch type completers are used, static branch prediction (.spxx) is recommended.

Static prediction is also recommended for very short (1 or 2 cycle) loops, because loops will not have to
wait for the processor to regenerate a new dynamic prediction. If dynamic prediction is used, the processor
may stall the loop while it updates the prediction.

Branch prediction hints are not recommended for .bbb instruction bundles, as unexpected behavior may
result. However, the .clr completer can be specified for the slot 0 branch when the use a .bbb bundle
cannot (or should not) be avoided.

Correctly predicted indirect branches always incur a two-cycle bubble, while the penalty associated with
an incorrect result is at least six cycles. To minimize the impact of mispredictions with indirect branch targets,
Intel recommends the following:

� Separate the branch register write and indirect branch by at least six access to the L1 instruction cache.

� Add an additional write to the branch register above the actual write as a hint to the target.

� Use different branch registers for each indirect branch instance to minimize conflicts with other indirect
branches.
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Instruction prefetching. Instruction prefetching, in which instruction cache lines are moved into the L1
instruction cache, is supported by the Itanium 2 processor and is available in two forms: streaming and hint.

Streaming prefetching corresponds to the use of the .many completer for branch instructions and causes
the prefetch engine to continuously issue prefetch requests at a rate of one request per cycle. The lines are
prefetched from 64 or 128 bytes (depending on the alignment of the branch target) beyond the target address.
Streaming prefetching terminates when one of the following conditions is met:

� A predicated-taken branch is encountered.

� A branch misprediction occurs.

� The brp instruction is encountered.

The brp instruction is used to inform the hardware of an upcoming branch instruction. When used without
the .imp completer, it is assumed that prefetch engine will have already prefetched beyond the upcoming
branch and further prefetches would be useless.

Hint prefetching begins with the brp and mov br instructions. Several completers for brp are available;
we recommend Section 8.2 of the Intel Itanium 2 Processor Reference Manual for Software Development and
Optimization (herein referred to as “the optimization manual”) and Section 3:28 of the Itanium Instruction
Set Reference for further details of hint prefetching.

We have omitted any discussions of prefetch flushing hints or the brl instruction; Section 8.2 of the
optimization manual covers the details of these topics.

These low-level hints are of more concern to assembly language programmers or compiler writers than
those using a high-level language. However, as we have maintained throughout this survey, understanding
the low-level mechanisms employed by an architecture will enable the high-level programmer to write better
code. For more details of the topics we have just considered, consult the optimization manual.

12.4.3 Performance Monitoring

The Itanium architecture provides a number of features for advanced performance monitoring, among them
the pmd registers that were introduced in Section 3. You will recall that the architecture requires that at least
eight pmd register be implemented. The Itanium 2 processor provides four 48-bit performance counters. In
addition, there are over 100 monitorable events and a rich set of advanced monitoring features.

We would certainly stray beyond the intended scope of this work if we were to described all of the
performance monitoring features and abilities of the Itanium 2 processor. Instead, we provide an extremely
concise overview and refer you to specific pages within Sections 10 and 11 of the the optimization manual
for more thorough discussions.

The Itanium 2 processor provides two programming models for performance monitoring: workload char-
acterization and profiling. Both of these models are discussed in Section 10.2 (pages 10-1 through 10-12) of
the optimization manual.

The Itanium 2 processor performance monitoring events are broken into several categories, including ba-
sic events (clock cycles, for example), branch events, and system events, among others. Using the associated
event counters, common performance metrics can be derived, giving the programmer insight into the behavior
of the application. These and related topics are taken up in Section 11 of the optimization manual.
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12.5 Loop Optimization as a Practical Example

Having at least introduced many of the factors contributing to program performance, we now turn to a prac-
tical example: loop optimization. Loops are a common structure provided by high-level languages, and they
make many repetitive tasks easy to accomplish with concise and readable code. Because of these features,
loop optimization is a important and useful topic to consider.

12.5.1 Loop Unrolling

We mentioned previously that loop unrolling was a optimization technique employed by many compilers.
While we noted that this technique may lead to unnecessary code bloat, there are also advantages that can
lead to better performance.

Consider an example where the number of registers required by the loop body is significantly less the
total number of available processor registers. In this instance, an optimizing compiler will “unroll” the loop;
that is, it will duplicate the instructions composing the loop’s body some number of times. How many times
depends upon a number of factors, including the number of free registers. By doing so, it can reduce the total
number of loop traversals and eliminate some amount of overhead. In addition, it may be able to rearrange
the instruction sequence more significantly and gain further speed-ups.

There are trade-offs besides code size that must be considered. For example, if the number of loop
traversals is not a convenient factor of the number of free processor registers, then special code to handle the
remaining traversals must be inserted. Likewise, if that number is determined dynamically and not known at
compile-time, then unrolling the loop is significantly more difficult, if not impossible. Finally, as the size of
the loop’s body increases, there is a greater likelihood that all of its instructions will not fit into the instruction
cache. This situation can lead to thrashing, which will negatively impact on the loop’s performance.

12.5.2 Software-Pipelined Loops

Often, a better way to handle loop optimization is with software pipelines. You will recall that many modern
processors support instruction pipelining at the hardware level. A similar principle can be implemented in
software, using the Itanium architecture’s support for qualifying predicates, special branch instructions, and
rotating register sets. We diverge for a moment to introduce the Itanium rotating registers.

Rotating registers. Floating-point registers Fr ��� –Fr � � � and predicate registers Pr � � –Pr ��� are designated
rotating register sets. General-purpose registers can also operate as rotating registers; they must be alloc’d
in groups of eight, beginning with Gr � � .

Each set of rotating registers will be renamed by incrementing the register number when a special branch
instruction is encountered. For example, Fr � � becomes Fr ��� , Fr � � becomes Fr ��� , and so on. Rotating registers
allow data contained in a register from a previous iteration to remain accessible in subsequent iterations, but
in a differently named register; each new iteration is given a new group of registers with which to operate.

Note that the hardware automatically handles rotation and renaming of all three rotating register sets.

Modulo-scheduling. Now, using a rotating register set, programmers are able to create a software pipeline
and modulo-schedule the instructions in a loop, enabling instructions from different iterations of the loop to
execute in parallel.

Modulo-scheduled loops typically consist of three phases: the prolog phase, the kernel phase, and the
epilog phase. During the prolog phase, the software pipeline fills. Some instructions of the loop will be
predicated false.

During the kernel phase, a new iteration of the loop will begin with each cycle, while some previous
iteration completes. Here, the software pipeline is full, and generally all of the instructions are predicated
true.

Finally, in the epilog phase, the software pipeline drains; no new iterations are started and the uncompleted
iterations are finished. With each cycle, one predicate register will be set to false.
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Branch instructions for software pipelining. The Itanium ISA provides special branch instructions for loop
control that are used with rotating registers:

br.ctop.bwh.ph.dh target // rotate and return to top
// exit when ar.lc = 0 and
// ar.ec = 1

br.cexit.bwh.ph.dh target // rotate and fall through
// exit when ar.lc = 0 and
// ar.ec = 1

(qp) br.wtop.bwh.ph.dh target // rotate and return to top
// exit when qp = 0 and
// ar.ec = 1

(qp) br.wexit.bwh.ph.dh target // rotate and fall through
// exit when qp = 0 and
// ar.ec = 1

where the valid values for bwh, ph, and dh are the same as those for the regular branch instructions.
The first two forms (br.ctop and br.cexit) are used for counted loops. We have already encountered

the Itanium loop count register ar.lc. The values in this register, and in ar.ec, the epilog count register,
are used to control register rotation and the program’s flow of execution.

During the prolog and kernel phases, the value of ar.lc will be greater than zero. In this case, the
br.ctop and br.cexit instructions will decrement ar.lc, set predicate register p63 to one, and rotate
all three register sets. So, for the next iteration, p16 will contain a one because p63 was rotated “into” p16.

Then, during the epilog phase, the value of ar.lc will be zero, and ar.ec will be greater than one.
Here, the br.ctop and br.cexit instructions will decrement ar.ec, set predicate register p63 to zero,
and rotate all three register sets. So, for the next iteration, p16 will contain a zero because p63 was rotated
“into” p16.

Finally, at the end of the epilog, br.ctop will fall through instead of branching and br.cexit will
branch to target rather than fall through.

The following schematic demonstrates register rotations for counted loops:

Pipeline Phase ar.lc ar.ec p63

Prolog decremented unchanged 1

Kernel decremented unchanged 1

Epilog 0 decremented 0

Upon exit, ar.lc, ar.ec, and p63 will typically be zero.
The last two forms (br.wtop and br.wexit) are used for while loops. These instructions operate

similarly to those for counted loops; however, the qualifying predicate register qp and the values in ar.ec
control register rotation and the program’s flow of execution.

During the prolog and kernel phases, the value of qp will be one. In this case, the br.wtop and
br.wexit instructions will set predicate register p63 to zero and rotate all three register sets. So, for
the next iteration, p16 will contain a zero because p63 was rotated “into” p16.

After the value of qp becomes zero, but while ar.ec is greater than one (the epilog phase), the br.wtop
and br.wexit instructions will decrement ar.ec, set predicate register p63 to zero, and rotate all three
register sets. So, for the next iteration, p16 will contain a zero because p63 was rotated “into” p16.

Finally, at the end of the epilog, br.ctop will fall through instead of branching and br.cexit will
branch to target rather than fall through.
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The following schematic demonstrates register rotations for counted loops:

Pipeline Phase qp ar.ec p63

Prolog 1 unchanged 0

Kernel 1 unchanged 0

Epilog 0 decremented 0

Upon exit, qp, ar.ec and p63 will typically be zero.

12.5.3 Writing a Software Pipelined Loop

To illustrate software pipelined loops, we again use (slightly modified) example code from Evans and Trimper.
Like the DOTCLOOP program in Section 10, the code in Figure 7 (page 64) computes the scalar product of
two vectors. However, unlike the previous version, this example uses the special branch instructions, rotating
register sets, and qualifying predicates to modulo-schedule the program’s main loop.

This code is written for the Itanium 2 processor. While it will run on any Itanium implementation, it
achieves optimal performance on this particular implementation because it accounts for instruction latencies
and other factors that are specific to the Itanium 2 processor.

Evans and Trimper also include an implementation-independent version of this program (DOTCTOP) in
Section 10.5.1 (pages 316–321); see their book for details.

Determining the rotating register sets. First, we begin by recognizing that an integer load (from the L1
cache) has a minimum latency of two cycles when the data are to be operated on by the pmpy2.r instruction,
which itself has a latency of 3 cycles. Now, we can outline the software pipeline for the program’s main loop,
using a three-element vector as an example, as follows:

Cycle Stage 0 Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6

0 ld2(1)
1 ld2(2)
2 ld2(3) pmpy(1)
3 pmpy(2)
4 pmpy(3)
5 sxt(1)
6 sxt(2) add(1)
7 sxt(3) add(2)
8 add(3)

where stage 1 is a no-op to account for the extra load latencies, and stages 3 and 4 are also no-ops, accounting
for the latency of the pmpy2.r instruction used in the program.

Using this pipeline, the elements of vector X are valid in stages 0–2; thus, three rotating registers are
required and we use r32, r33, and r34. The elements of vectors X and Y are valid in stages 2–5. By
reallocating r34 as the destination in stage 2, only three more rotating registers are required; we use r35,
r36, and r37. Results from the sign-extend instruction are valid in stages 5 and 6, but r37 can be reallocated
as the destination in stage 5, so only one new register is required (r38). Finally, the elements of vector Y will
occupy three additional registers; we use r39, r40, and r41. A total of ten rotating registers, r32–r41,
are required.

Now we consider the rotating predicate registers that will be used to control the flow of execution within
the software pipeline. Note that only two stages are “active” during any given execution cycle. Four predicate
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registers (p16, p18, p21, and p22) will be assigned to the operational pipeline stages, while p17, p19, and
p20 correspond to the no-op stages.

The loop count register (ar.lc) should be zero at the cycle after which p63 will become zero, making
p16 zero on the following cycle. This requirement typically implies that ar.lc should be set to one less than
the number of traversals required by the loop. The epilog counter (ar.ec) should be set to seven because
there are seven pipeline stages to be drained. The following schematic demonstrates this behavior:

Cycle ar.lc ar.ec p16 p17 p18 p19 p20 p21 p22

0 2 7 1 0 0 0 0 0 0
1 1 7 1 1 0 0 0 0 0
2 0 7 1 1 1 0 0 0 0
3 0 6 0 1 1 1 0 0 0
4 0 5 0 0 1 1 1 0 0
5 0 4 0 0 0 1 1 1 0
6 0 3 0 0 0 0 1 1 1
7 0 2 0 0 0 0 0 1 1
8 0 1 0 0 0 0 0 0 1

Note that the loop counter should stop on the value zero, while the epilog counter should stop on the value
one. In addition, the number of software pipeline cycles is ar.lc + ar.ec; here, 2 + 7 = 9.

Optimizing the instruction schedule. Next, consider the order of instructions that compose the main loop
in the original DOTCLOOP:

top:
ld2 r21=[r14],2
ld2 r22=[r15],2;;
pmpy2.r r21=r21,r22
sxt4 r21=r21;;
add r20=r20,r21
br.cloop.sptk.few top;;

Using this same order in the software pipelined version of the program, three instruction bundles are
necessary:

top:
(p16) ld2 r32=[r14],2 // M
(p16) ld2 r39=[r15],2 // M
(p17) pmpy2.r r34=r34,r41 // I

nop.m // M
(p18) sxt4 r37=r37 // I
(p19) add r20=r20,r38 // I

nop.m // M
nop.f // F
br.ctop.sptk.few top;; // B;;

You will note that some explicit stops have been eliminated, which is possible because the instructions in
the software pipelined loop are predicated. Nevertheless, even if we ignore the delays of loading data from
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memory and the actual latencies of instructions on a specific implementation, then this schedule requires at
least two cycles per iteration.

By taking advantage the characteristics of Type A instructions, we can switch the order of the sxt4 and
add instructions to condense the sequence into two instruction bundles:

top:
(p16) ld2 r32=[r14],2 // M
(p16) ld2 r39=[r15],2 // M
(p17) pmpy2.r r34=r34,r41 // I

(p19) add r20=r20,r38 // M

(p18) sxt4 r37=r37 // I
br.ctop.sptk.few top;; // B;;

resulting in a smaller code size and better instruction cache usage. In addition, execution time on an Itanium 2
processor will be reduced because it has four M-units. Note that the explicit stop after the br.ctop will
ensure the proper logical ordering from cycle to cycle.

An analysis of this optimized instruction schedule by Evans and Trimper shows that the minimum number
of cycles is 13, while the original version requires 21 cycles, indicating a significant savings for the optimized,
modulo-scheduled loop. (The details of this analysis can be found in Section 10.5.1, page 319 of Evans and
Trimper.)

Modulo-scheduling and software pipelining are powerful optimization techniques, but they can be con-
fusing. We recommend a careful review of these topics, particularly the DOTCTOP2 code in Figure 7.
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// DOTCTOP2: Compute the scalar product of two vectors

N = 3 // Declare a constant
.data // Declare data section
.align 8 // Specify desired alignment

P: .skip 8 // To store the product
X: data2 -1,+3,+5 // First vector of 16-bit values
Y: data2 -2,-4,+6 // Second vector of 16-bit values

.text // Declare code section

.align 32 // Specify desired alignment

.global main // Mark mandatory ’main’ program entry

.proc main
main:

.prologue // Begin prologue section

.save ar.lc,r9
mov r9=ar.lc;; // Save caller’s ar.lc
.body // Begin procedure ’main’

first: alloc r10=ar.pfs,0,16,0,16 // Allocate a new stack frame
movl r14=X // Gr14 = pointer to X
movl r15=Y // Gr15 = pointer to Y
movl r16=P // Gr16 = pointer to P
mov r20=0 // r20 = scalar product
mov ar.lc=N-1 // Initialize ar.lc
mov ar.ec=7 // Initialize ar.ec
mov pr.rot=0x10000;; // Initialize predicates

top:
(p16) ld2 r32=[r14],2 // Load element, increment pointer
(p17) ld2 r39=[r15],2 // Load element, increment pointer
(p18) pmpy2.r r34=r34,r41 // Multiply elements
(p22) add r20=r21,r38 // Update scalar product
(p21) sxt4 r37=r37 // Sign-extend result to 64 bits

br.cloop.sptk.few top // More elements to process?
st8 [r16]=r20 // No, store the scalar product

done: mov ret0=0 // Signal completion
mov ar.lc=r9 // Restore caller’s ar.lc
mov ar.pfs=r10 // Restore caller’s ar.pfs
br.ret.sptk.many b0;; // Return to command line
.endp main // End procedure ‘main‘

Figure 7: A slightly modified version of the DOTCTOP2 program from Evans and Trimper

64



A SURVEY OF THE ITANIUM ARCHITECTURE

FROM A PROGRAMMER’S PERSPECTIVE ITANIUM IMPLEMENTATIONS

13 Itanium Implementations

As of this writing, Intel has marketed two processor implementations of the Itanium architecture: the (orig-
inal) Itanium processor and the Itanium 2 processor. In addition, the Hewlett-Packard Company (HP) has
developed a software-based Itanium ISA simulator, called Ski. In the final section of this survey, we discuss
the more relevant details of each implementation.

13.1 The Itanium-Family Processors

The first “market-ready” implementation of the Itanium architecture was, not surprisingly, Intel’s Itanium
processor. The life-cycle of the original Itanium processor was relatively short, for a number of reasons that
we do not discuss. Only one year later, Intel released the Itanium 2 processor, which includes a number of
enhancements over the original implementation.

Table 14 (next page) compares many characteristics of the two Itanium processors. We elucidate only the
important details, largely for comparative purposes.

13.1.1 Cache Hierarchy

The Itanium processors include three distinct levels in the cache hierarchy, differing in terms of size, speed,
and physical location. The cache structure “closest” to the processor is the level 1 (L1) cache. The Itanium
processors divides this cache into two regions, one for instructions (L1-I) and one for data (L1-D), following
the Harvard memory architecture. The L1-I cache is read-only, while the L1-D cache is read-write. Each
cache structure has a separate connection to the CPU.

In contrast, the level 2 (L2) and level 3 (L3) cache structures use a von Neumann memory architecture,
where no distinction is made between instructions and data. The L3 cache, which is not a common feature of
most contemporary architectures, functions as a backside cache, because it connects to the processor using a
separate bus. The L3 cache monitors L2 activity and mimics the data access patterns while retaining a longer
history of that activity due to its larger size.

Figure 8 shows the structure of the cache hierarchy for the Itanium processors.
In general, the cache structures of the Itanium processor are smaller and slower than those of the later

Itanium 2 processor. Although the L3 cache of an Itanium processor can be larger than that of an Itanium 2,
access times are slower because the cache is merely in-package, rather than on-chip as it is in the Itanium 2
processor. The original Itanium processor exhibits fixed load latencies (ranging from 2–24 cycles, depending
on the cache level and data type), whereas this quantity varies from 1–18 cycles in the Itanium 2 because of
possible access conflicts.

Itanium Itanium 2

Figure 8: Structure of the cache hierarchy for the Itanium processors
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Characteristic Itanium Itanium 2

Development code name Merced McKinley

Year of market release 2001 2002

Chip technology
CPU speeds 733 MHz, 800 MHz 900 MHz, 1.0 GHz, 1.3 GHz, 1.4 GHz, 1.5 GHz
Process feature size 180 nm 180 nm
Number of transistors

���
�
��� � �����	�
��� �
Number of layers 6 6
Operating voltage 1.5 V 1.5 V
Power consumption 116–130 W 130 W

Processor features
Physical stacked registers 96 96
RSE modes Enforced lazy Enforced lazy
Integer units 2 M-units, 2 I-units 4 M-units, 2 I-units
Memory units 2 load, 2 store 2 load, 2 store
Parallel floating-point units 2 1
Issue ports 9 11

Pipeline depth
Integer 10 8
Floating-point 12 10

Memory support
Physical address bits 44 50
Virtual address bits 54 64
Data bus width 64 bits 128 bits
Maximum page size 256 MB 4 GB

System bus
Speed 266 MHz 400 MHz
Width 64 bits 128 bits
Bandwidth 2.1 GB/s 6.4 GB/s

L3 Cache
Size 2 MB, 4 MB 3 MB, 4 MB, 6 MB
Location off-chip, in-package on-chip

Table 14: Characteristics of the current Itanium processors

Benchmarks have shown that the Itanium 2, which exhibits several optimizations including those in the
cache hierarchy, achieves approximately twice the instruction throughput of the original Itanium processor,
even when running with clock speeds that are less than a factor of two faster.

Table 15 (next page) summarizes the relevant differences of the Itanium and Itanium 2 cache structures.

13.1.2 Execution Units and Issue Ports

Table 14 shows that the processors also differ in the number and kinds of execution units. The Itanium 2 adds
two more M-units and two additional instruction issue ports.

You will recall that Type A instructions can execute in either M- or I-units; the additional M-units raise
the superscalar degree for these instructions to six. Furthermore, many more pairings of instruction bundle
templates can be issued in a given clock cycle. Table 16, in which the row represents the first bundle of the
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Processor Cache Level Total Size Line Size Load Latency

Itanium
L1-I 16 KB 32 B 2 cycles
L1-D 16 KB 32 B 2 cycles

L2 96 KB 64 B 6 cycles (integer)
9 cycles (floating-point)

L3 2 MB, 4 MB 64 B 21 cycles (integer)
24 cycles (floating-point)

Physical memory � 16 TB � 100 cycles

Itanium 2
L1-I 16 KB 64 B 1 cycle (instruction)
L1-D 16 KB 64 B 1 cycle (integer)

L2 256 KB 128 B 5–9 cycles (integer)
6–10 cycles (floating-point)

7–11 cycles (instruction)

L3 3 MB, 4 MB, 6 MB 128 B 12–16 cycles (integer)
13–17 cycles (floating-point)

14–18 cycles (instruction)

Physical memory � 1 PB � 100 cycles

Table 15: Characteristics of the Itanium and Itanium 2 cache structures

pair and the column, the second, captures the possible dual-issue pairs for each processor.

MII MLX MMI MFI MMF MIB MBB BBB MMB MFB
MII I2 none I2 I2 I2 I2 both both I2 both
MLX I2 I2 I2 both I2 both I2 both I2 both
MMI I2 I2 I2 I2 I2 I2 I2 both I2 I2
MFI I2 both I2 both I2 both both both I2 both
MMF I2 I2 I2 I2 I2 I2 I2 both I2 I2
MIB I2 both I2 both I2 both both none I2 both
MBB none none none none none none none none none none
BBB none none none none none none none none none none
MMB I2 I2 I2 I2 I2 I2 I2 I2 none I2
MFB both both I2 both I2 both both none I2 both

Table 16: Possible dual-issue instruction bundles for the Itanium and Itanium 2 processors

Note the significantly higher number of cells labeled “I2”, indicating those pairings that only the Itanium 2
processor supports. The additional M-units and issue ports significantly impact the degree of possible paral-
lelism in the Itanium 2 processor.
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13.1.3 Pipelines

Table 14 also shows that the implementations differ in the length of their execution pipelines. The pipeline
stages of each processor are described in Table 17.

Processor Stage Mnemonic Description

Itanium
1 IPG Generate instruction pointer
2 FET Prefetch up to 6 instructions per cycle; predict branch direction
3 ROT Rotate instructions of current group into position; calculate branch address
4 EXP Issue up to 6 instructions through 9 ports
5 REN Rename registers
6 WLD Deliver data loaded from memory, requires latency of at least one cycle
7 REG Deliver data from the Gr, Fr, and Pr registers
8 EXE Execute operations
9 DET Detect exceptions; abandon results if predicate register was false

10 WRB Store results in Gr, Fr, and Pr registers, as necessary

Itanium 2
1 IPG Generate instruction pointer
2 ROT Rotate instructions of current group into position
3 EXP Issue up to 6 instructions through 11 ports
4 REN Rename registers; decode instructions
5 REG Deliver data from the Gr, Fr, and Pr registers
6 EXE Execute operations
7 DET Detect exceptions; abandon results if predicate register was false;

correct mispredicted branches
8 WRB Store results in Gr, Fr, and Pr registers, as necessary

Table 17: The Itanium and Itanium 2 pipelines

In the original Itanium processor, each stage belongs to one of four larger phases: the front-end (IPG,
FET, ROT); instruction delivery (EXP, REN); operand delivery (WLD, REG); and execution, with a change
of machine state (EXE, DET, WRB).

However, in the Itanium 2 processor, there are only two larger phases: the front-end (IPG, ROT) and the
back-end (EXP, REN, REG, EXE, DET, WRB).

It should be obvious that we have not attempted an exhaustive comparison of the two Itanium family pro-
cessors. Several more details of these processor are available from the Intel web site (http://www.intel.com/).

13.2 The Ski Simulator

HP maintains a freely available software-based Itanium ISA simulator, called Ski. The simulation environ-
ment executes on IA-32 architectures running the Linux operating system. Ski functionally simulates the
Itanium instruction set architecture, not a specific processor implementation. As a result, it is extremely fast.
However, the Ski simulator cannot be used to measure the actual performance of a simulated program because
it does not simulate the micro-architectural characteristics of an Itanium implementation.

The HP Ski web site states that the simulator is well-suited for:
� Itanium application development on non-native hardware,

� Itanium compiler tuning,
� operating system and firmware development for Itanium architectures, and

� functional instruction verification of Itanium processor implementations.
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The simulator provides two execution modes: system-mode, in which both the system-level and the application-
level instructions are simulated, and user-mode, in which only the application level instructions are simulated.
While user-mode simulation is faster, it does not support many useful or necessary features, multi-threading
being a prime example. All system calls are intercepted and translated into calls for the host machine’s op-
erating system. In system-mode, applications execute along with an actual Itanium Linux kernel. For better
simulation accuracy, system-mode execution is required.

HP also provides the Native User Environment (NUE), which emulates the IA-64 Linux environment
and is intended for use with the Ski simulator. NUE provides the compiler, linker, assembler, libraries, and
execution environment necessary to develop IA-64 Linux applications. We note that the compiler included
with NUE is not an optimizing compiler, but such a compiler is available from SGI, Inc. See SGI’s web site
(http://oss.sgi.com/projects/Pro64/) for more information.

We have found the Ski simulator and NUE to be extremely useful for porting existing applications to the
Itanium architecture. Information about obtaining and installing the Ski and NUE software can be found at
HP’s IA-64 Linux Developer Tools web site (http://www.software.hp.com/products/LIA64/).
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