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Abstract:

Effective visualization of vector fields often rely on the size and density of the underlying mapping
used to represent the field. In this paper, we introduce the use of a reaction-diffusion model to
control the size, density, and placement of the vector field representation. The reaction-diffusion
model is well known for its ability to form irregular spatiotemporal patterns, most notably spot
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size, and density to create an effective visualization. In addition, we show that it is possible to use
the reaction-diffusion model to effectively visualize the uncertainty in the orientation of the vector
field.
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Abstract

Effective visualization of vector fields often rely on the size and
density of the underlying mapping used to represent the field. In
this paper, we introduce the use of a reaction-diffusion model to
control the size, density, and placement of the vector field represen-
tation. The reaction-diffusion model is well known for its ability to
form irregular spatiotemporal patterns, most notably spot patterns.
We show that it is possible to create a mapping between the vector
field and the parameters governing two different reaction-diffusion
models to form a pattern at the correct orientation, size, and density
to create an effective visualization. In addition, we show that it is
possible to use the reaction-diffusion model to effectively visualize
the uncertainty in the orientation of the vector field.

1 Introduction

Visualizing vector field data is challenging because existing natu-
ral representations can not effectively visually convey significant
amounts of information. Visualizing complex vector fields is im-
portant for many computational field applications, including air
flow, fluid dynamics, wind and water currents in climate model-
ing, bioelectric fields in neuroscience, and magnetic fields in nu-
clear fusion. With such a diverse set of applications, many dif-
ferent techniques for visualizing vector fields have been devel-
oped [1, 3, 8, 9, 19, 21, 28, 30]. Each technique has their rela-
tive strengths and weaknesses in their ability to represent the vector
magnitude, direction, orientation, uncertainty and critical points of
the associated field.

For instance, the simplest method for displaying a vector field
is to place glyphs representing the vector direction and magnitude
at regular intervals. However, because of the scaling differences,
overlap between the glyphs can occur. This produces visual clutter
and occlusion often hiding areas of interest [23]. The problem is
compounded when displaying data in three dimensions. Displaying
normalized vector values can reduce the clutter but at a loss of infor-
mation. Even when the visual clutter can be overcome, displaying
vector fields using regular intervals may not be appropriate. This is
because the grid spacing and orientation may not match the vector
field.

More complicated techniques such as streamlines can provide
powerful visual cues [10]. However, enough streamlines must be
placed in the field to provide the cues without causing visual clutter.
Streamlines can be selectively placed to reduce the clutter but at the
cost of perhaps missing a critical area of interest [26].

With the exception of a glyph based method, no other technique
is singularly able to visualize uncertainty in vectors fields. They
must be combined with another technique such as color mapping
or with another glyph to represent the uncertainty, In [16] Pang
demonstrates several different glyphs for vector uncertainty. How-
ever, as a glyph based method it also succumbs to clutter and occlu-
sion.

Given the shortcomings in many of the current flow visualization
techniques, the main goal of this work was to develop an automated
method that uses the vector magnitude, orientation and uncertainty
to control the shape, size, orientation and density of the objects used

to represent the vector field. At the same time, we wanted a method
that would be mesh independent and produce a visualization that
would be natural and pleasing to the eye. To achieve these goals,
we have explored the use of a reaction-diffusion model for flow
visualization.

2 Background and Previous Work

Visualizing vector fields has been a very active area of research for
over a dozen years. During this time many different techniques
have been developed. As such, it is not practical to review each
technique. However, a very complete review can be found in [18].
Instead, we focus on three related areas for visualizing vector fields:
the use of random patterns, selective placement, and reaction diffu-
sion.

The use of random patterns for visualizing a vector field has been
explored by van Wijk [27], Cabral [3], Shen [22], and others us-
ing either spot or white noise to form a dense representation of the
vector field. By dense, we mean that there is value for each grid
location. The resulting image has a natural brush stroke appear-
ance. While this type of image is useful for showing flow orienta-
tion, it lacks information about the velocity magnitude and direc-
tion. These short comings have been addressed in various forms by
adding directional cues, [22], velocity magnitude, [5, 13].

More recent work has focused on creating images that are less
dense but still contain enough useful information about the flow.
In [26] Turk proposes a method to bundle similar streamlines until
an energy function is minimized. Once the function is minimized
the streamlines can be replaced with variable sized curved arrows
to show direction and magnitude. In [12] Kirby is able to achieve
similar results using a random placement of variable sized arrows.
Once an arrow is placed a Poisson distribution disk based on the
vector magnitude is used to prevent other arrows from being placed
near it. However, because the arrow represents just the value at a
single location rather than a local region it is possible to miss critical
points or have vector values occlude each other.

In computer graphics applications the use of a reaction-diffusion
model has been used to generate texture maps [25, 29]. These types
of textures are useful for forming patterns that are natural looking
and are typically used on organic models such as animals. Turk ex-
plored the use of different reaction models to produce a variety of
patterns [25]. At the same time, Witkin [29] used anisotropic dif-
fusion to form different patterns. These patterns could be classified
as either spot or stripe patterns.

Rather than forming the texture and then applying it to a model
using a traditional texture mapping, Turk exploits the fact that a
reaction-diffusion model can be used on an irregular grid. This al-
lows textures to be created directly on the surface, avoiding any
warping between model space and parameter space. It is possi-
ble to make use of this same property to texture isosurfaces, which
are a very common visualization tool. In a similar vein, Cham-
bers [4] used a reaction-diffusion model to generate a solid texture.
This texture is then used on a surface or as a volume. Like Witkin,
Chambers also use an anisotropic diffusion technique to form stripe
patterns.

Although mentioned by Cabral [3] as a possibility, the first use of



a reaction-diffusion model for visualizing data was done by Kindl-
mann [11]. Like Chambers [4], Kindlmann created a solid tex-
ture using a reaction-diffusion model with anisotropic diffusion.
Rather than randomly setting the diffusion values, Kindlmann used
values from diffusion-weighted magnetic resonance images. This
anisotropy formed elliptical “blobs,” which were then volume ren-
dered.

3 Reaction Diffusion

In 1952 Turing [24] proposed a reaction-diffusion model for de-
scribing the chemical process between two morphogens within a
series of cells. Due to instabilities in the system, the morphogens
both react and diffuse which changes their concentration within
each cell. With time, the morphogens can form a stable pattern.
The pattern formation is independent of the initial state of cells,
they can be either homogeneous or random.

Turing described the reaction-diffusion of a two morphogen
model as a set of nonlinear partial differential equations:
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where � and � are the morphogens concentration; � and � are the
functions controlling the production rate of � and �; �� and �� are
the diffusion rates, and ��� and ��� are the Laplacians of � and �.
Turing further defines � and � as:
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where � and � again are the morphogen concentration, 	 is the
degrading rate of �, and � is the reaction rate, which Turing derives
to be 1/16.

Previously we noted that the pattern formation was independent
of the morphogen concentrations. This is not strictly true. For the
state to change there must be some initial perturbation in the sys-
tem. This perturbation can be from a non-uniformity in either the
initial concentrations or the degrading rate, 	. Current implemen-
tations, (e.g. Turk and Chambers), use a nonuniform degrading
rate, whereas Turing perturbed the initial concentrations. A nonuni-
form degrading rate can be interpreted as being the natural variation
within each cell.

After the system is put into motion, the morphogen concentra-
tions will change until a dynamic equilibrium is reached and a sta-
ble pattern is formed. Although the pattern is stable, the morphogen
concentration in each cell will continue to change. However, the
change is statistically very small.

Turing’s reaction equation is just one specific implementation of
reaction-diffusion phenomena, there are others variants that give
similar results. For example, Pearson [17] describes a reaction
model due to Gray and Scott [6, 7] that has the form:
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where F is the feed rate and k is the degrading rate. There are other
similar variations that can be found in the literature such as those in
[15] and in Chamber’s cellular automata [4].

3.1 Mapping the Reaction-Diffusion Kinetics

In order to use a reaction-diffusion model for visualization, a map-
ping must be established between the vector field and the reaction-
diffusion model. There are three possibilities, a mapping between
the field and the reaction kinetics, a mapping between the field and
the diffusion kinetics, or a combination of both. It has been well
documented that reaction-diffusion models are highly numerically
unstable if not properly “tuned.” As such, we have currently fo-
cused on finding a mapping for either reaction or diffusion kinetics
but not both.

3.2 Reaction Kinetics

Pearson [17] maps the patterns formed using a Gray-Scott reaction-
diffusion model as a function of the two rates, � and 
, in the reac-
tion kinetics. These patterns range from finger prints to spots, with
a large variety in between. We found similar results with Turing’s
reaction kinetics, ranging from smears to spots and lines. However,
both were very sensitive to their initial conditions as it was very
easy to produce an unstable system. The variety in patterns and in-
stability is due to the nonlinearity of the reaction kinetics. Because
of this, we chose not to pursue a mapping between the vector field
and the reaction kinetics. However, when acceptable values for the
rates are used, the reaction kinetics for both models form a stable
pattern.

3.3 Diffusion Kinetics

The diffusion kinetics as written in Equation (1) has just one free
parameter, the diffusion rate. Changing the diffusion rate changes
the size of the pattern formed. Others have noted similar results
but as a function of the reaction rate. Strictly speaking, it is not the
reaction or the diffusion rate that changes the size, but rather their
relative difference. For simplicity and clarity, we keep the reaction
kinetics just a function of the cell concentration varying only the
reaction-diffusion kinetics.

Since the diffusion rate can be used to control the size of the
pattern this provide an ideal mapping to a scalar value, such as the
vector magnitude. The other mapping we wish to establish is one
for orientation. Previously, we stated that there was only one free
parameter in the diffusion equation. This is the case for isotropic
diffusion. If we relax this condition and use anisotropic diffusion,
we are able to create a broader range of patterns. The diffusion
equation becomes:
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where �� is a diffusion tensor matrix and has the form:
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Combining the diffusion matrix with a discrete finite difference ap-
proximation of the generalized Laplacian convolution mask yields:
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where we have set ��� � ��� and  is a space constant. For
complete details of the derivation of Equation (9) see [11] and [29].

By manipulating the diffusion matrix coefficients it is possible to
create an oriented pattern. Witkin [29] takes this approach for creat-
ing 2D texture patterns. In our case, we are interested in using pat-
terns that match the vector field orientation. This is accomplished



by applying a two dimensional rotation matrix to an anisotropic dif-
fusion matrix that produces an oriented pattern. The rotation matrix
provides the mapping needed for the vector orientation. In addition
to the rotation matrix, we apply a scaling matrix which provides
the pattern size change. With this control, we now have our desired
mapping between the vector field and the reaction-diffusion model.

3.4 Image Formation

Creating a reaction-diffusion image is done using a forward Euler
integration on the discrete versions of Equations (1) and (2) until a
dynamic equilibrium state is reached at which time a stable pattern
will have formed. We have found that using a time step of 0.5
provided a balance between numerical stability and accuracy and
the pattern formation.

Up to this point we have described the use of a reaction-diffusion
model for generating non-specific patterns. We now limit ourselves
to generating patterns that can be used for visualizing flow. The
most common pattern formed using a reaction-diffusion model is
a spot pattern. Figure (1) shows two similar spot patterns created
with the Turing and Gray-Scott models, respectively. See Appendix
1 for the parameters used to form the patterns.

A comparison of these two figures shows that the spot placement
is balanced. That is, there is a uniform density of spots with equal
spacing around them. This balancing process can be observed dur-
ing the integration process when a spot begins to form in an area of
lower concentration. Other near-by spots adjust themselves so they
are not too close to the newly formed spot. Sometimes this adjust-
ment may be in the form of a change in the position of the spots or
by one or more of the spots disappearing with its concentration be-
ing absorbed by remaining spots. This natural organization is one
of the properties of reaction-diffusion equations that makes them
very useful for visualization purposes.

A further comparison shows that although the spot sizes are ap-
proximately the same in both images, the Gray-Scott pattern has
a denser packing than the Turing pattern. The other item of inter-
est is that even though the diffusion is isotropic, the spots in the
Turing model are not as symmetric as those in Gray-Scott model.
This non-uniformity is proportional to the variance of the degrada-
tion factor, 	. The greater the variance, the greater the chance for
this asymmetry to appear in the spots which may cause undesirable
effects.

Figure 1: Turing model visualization of random spots and Gray-
Scott model visualization of random spots.

Circular spots alone do not show orientation or magnitude. As
discussed previously, to give an orientation we apply an anisotropic
diffusion matrix. This compresses the spots so they have an ellipti-
cal shape. Next, we rotate the diffusion matrix so that the ellipse’s
major axis is aligned with the vector field. Finally, we apply a dif-
fusion scalar, � to reflect the magnitude of the vector. This matrix

is formed for each vector in the flow field. Figures (2) and (3) show
the anisotropic diffusion applied to the Turing and Gray-Scott mod-
els for a vector field at 45 degrees with a random variation in the
magnitude.

Figure 2: Turing model visualization of a vector field with a) ran-
dom magnitude b) constant orientation c) magnitude and orienta-
tion.

Figure 3: Gray-Scott model visualization of a vector field with a)
random magnitude b) constant orientation c) magnitude and orien-
tation.

3.5 Uncertainty Measurements

In the previous examples, we have fixed the amount anisotropy in
the diffusion matrix. However, this need not be the case. By allow-
ing the amount of anisotropy to vary, we have another variable that
can be mapped. We define the amount of anisotropy to be the ratio
of the diffusion matrix eigenvalues.

When the amount of anisotropy is small, the spot formed is cylin-
drical. Whereas when the anisotropy is high, the spot formed is el-
liptical and at times, almost to the point of being a thick line. This
difference is very well suited to mapping an orientation uncertainty.
When the orientation uncertainty is very small the spot is very ellip-
tical, reflecting a precise orientation. When the uncertainty is very
high, the spot is more cylindrical, reflecting the uncertainty in the
orientation. This is demonstrated in Figure (4).

4 Results and Discussion

The first application of our reaction-diffusion models was to visual-
ize vector flow data with a set of idealized flow fields. Our goal was
to see if it was possible to capture the nature of different types of
vector fields commonly visualized. These fields included circular
flow, Figure (5); flow at a saddle and sink; Figure (6), flow around a
cylinder, and the flow field from an electrostatic charge field, Figure
(7). The flow for each field changed smoothly over both the orien-
tation and magnitude. In each case the flow can easily be discerned
as the ellipsoidal spots are properly oriented within the field. In the
case of the circular, saddle, and source fields, a change in the vec-
tor magnitude occurs as the field moves away from the center and is
shown by a corresponding change in the spot size. However, in Fig-
ure (6), the Turing images have several spots that did not form very



Figure 4: Turing model visualization of orientation uncertainty and
Gray-Scott model visualization of orientation uncertainty. The ori-
entation uncertainty increases from left to right across the image.

well, appearing to be smeared together. This is due to the variance
of the degradation factor, 	.

Figure 5: (a) Turing model visualization of a circular vector field
and (b) Gray-Scott model visualization of a circular vector field.

Figures (8) and (9) show the Turing and Gray-Scott reaction-
diffusion models for visualizing an idealized flow that contains
three saddles and two vortices. In an informal observer study we
found that it was easier for observers to follow the flow in the Tur-
ing model visualization, yet easier to pick out critical points in the
Gray-Scott model visualization. This observation is probably due
to the density of the spots. Denser arrays of spots make it easier
to view critical points, but in this case also tended to make it more
difficult to discern the overall flow pattern. Whereas the opposite
was true when the spot density was reduced.

One of the unique features of using a reaction-diffusion model is
that the pattern formation, although random, naturally aligns itself
along the flow, forming a rough streamline. Further, when the flow
is curved the spots are not perfectly elliptical, they are more of a
bean shape. This is due to the oriented anisotropy for each vector
influencing the overall spot shape. The ansiotropy has another ben-
efit, in that as the pattern develops faint streaks emanate from the
ends of the spots. These streaks act to connect the spots into rough
streamlines, further aiding in visualizing the flow.

This aligning, bending, and streaking all give the observer cues
as to where laminar flow occurs. But locations of turbulence and
critics points may also be of interest. This is another area where the
reaction-diffusion model is able to give a visual cue. For instance,
at locations where the flow is diverging, the spots are no longer el-
liptical but assume an odd shape. If the flow is diverging equally
in all directions the spots would be circular. As such, oddly shaped
or circular spots could indicate either turbulence, a critical point, or
where the uncertainty of the orientation is large. These are loca-

gFigure 6: Turing model visualization of a saddle vector field and a
sink vector field.

Figure 7: Gray-Scott model visualization of the flow around a cylin-
der and a visualization of an electrostatic charge field.

tions that the observer may want to further inspect. For instance, in
Figures (8) and (9) the spots are elliptical in shape and are aligned
with the flow throughout the image except at the saddle points.

We have shown that it is possible to view different types of flow
using a reaction-diffusion model, one question that arises is: what is
the minimum resolution required for individual features to be seen?
By its nature, the process of diffusion acts to smooth, lowering high
concentrations and raising low concentrations. As such, it is pos-
sible to lose individual features that are significantly different than
their neighbors.

To determine the minimum resolution at which features can be
seen, we oversampled a vector field until it was possible to see the
impact of a single vector that was significantly different in both
magnitude and orientation than its surrounding, otherwise constant
neighbors. This is demonstrated in Figures (10) and (11) for both
magnitude and orientation separately. It is not until there is an over
sampling of four times the original that the magnitude will signif-
icantly impact its neighbors to be visually of notice. Similarly, it
takes an over sampling of eight times for the angle to impact its
neighbors. Unfortunately, for large vector fields, over sampling is
not always practical since it may require significantly more com-
putational resources than available. As such, when visualizing a
vector field without oversampling features less than four to eight
nodes in size may be smoothed out.

We now apply the Gray-Scott reaction-diffusion model to a
numerical simulation of the nonlinear magneto-hydrodynamics
(MHD) that occur in the DIII-D tokamak nuclear fusion reactor.
The vector field shown in Figures (12-14) is a two dimensional slice
of the magnetic field in the Tokamak reactor. In Figure (12), just
the magnitude of the vector field is visualized with no orientation
information. This gives a good example of how this technique can



Figure 8: Turing model visualization of multiple flow types.

be use for visualizing scalar data. Figure (13) is the same vector
field except normalized. Finally, in Figure (14), the vector field is
shown with both magnitude and orientation.

Figures (15) and (16) show visualizations of the plasma velocity
for the same simulation set using the Turing and the Gray-Scott
models, respectively. In these cases, the flow is much more erratic,
though it is still can be discerned. Comparing these two images
demonstrates the effectiveness of producing a pattern at the proper
density. It is much easier to follow the flow in the Gray-Scott model
which has a denser pattern than the Turing model. However, this is
not always the case, as was demonstrated in Figures (8) and (9).

4.1 Comparison with Other Flow Visualization
Techniques

The reaction diffusion images provide a very good vector visualiza-
tion technique. But is it better than some of the current techniques?
For instance, this technique alone does not show the flow direction.
This is often a very import cue in analyzing vector data. We have
addressed this issue by overlaying a small arrow on top of each
spot to show the flow direction, as shown in Figure (17). The arrow
direction is determined using the average value of the vectors sur-
rounding the centroid of the spot. The centroid is determined using
standard image processing techniques of thresholding and thinning
[20].

We now compare the reaction-diffusion images with three dif-
ferent common visualization techniques. Figure (18) shows vector
glyphs at regular intervals [23], Figure (19) shows a line integral
convolution [3], and Figure (20) shows optimized streamlines [26].

Placing glyphs at regular intervals is much simpler and quicker
than using a reaction-diffusion model, but as previously discussed
occlusion is a problem, as such, the vectors are normalized. Using
a reaction-diffusion model overcomes the occlusion problem since
the spots have a packing that is based upon the vector magnitude.
Another problem with regular intervals is that they may mislead the
eye due to the formation of a pattern that may not be part of actual
vector flow. Conversely, the reaction-diffusion model form spots in

Figure 9: Gray-Scott model visualization of multiple flow types.

Figure 10: Effect of a single value on the spot size with an oversam-
pling of 0, 1, 2, 4, 8, 16, 32, and 64 times. The image is 128x128.

a pattern that follows the natural structure of the flow.
When compared to LIC, both techniques visualize the flow in a

manner that is natural and easy to observe by producing a dense
image representation of the flow field. With reaction-diffusion im-
ages, different models will produce spots at different densities. The
less dense the spots, the greater the chance that areas of interest
may be missed. However, images with a high density of spots may
be difficult to view because of the Moray patterns that can form. As
such, the density of the spots is a critical component for an effec-
tive reaction-diffusion flow visualization. Currently, the only way
to control the density is by using different reaction-diffusion mod-
els.

Unlike LIC images, which do not contain magnitude informa-
tion, the reaction-diffusion model is able to naturally incorporate
magnitude information into the visualization. Including the mag-
nitude greatly enhances the visualization. LIC images, and other
noise based techniques, can be extended to show the magnitude but
these techniques do so at a loss in flow detail because of blurring
used to emphasize the magnitude [5, 14].

Next, we compare the reaction-diffusion image to a visualiza-
tion using the image guided streamline technique developed by



Figure 11: Effect of a single value on the spot orientation with an
oversampling of 0, 1, 2, 4, 8, 16, 32, and 64 times. The image is
128x128.

Figure 12: Gray-Scott reaction-diffusion visualization of a MHD
Magnetic vector field. Magnitude only.

Turk [26]. Both techniques are similar in that they both are able to
show direction, magnitude, and orientation. However, the reaction-
diffusion technique is better able to represent the magnitude than
the image guided technique. That is, the image guided technique
suffers from the same occlusion problem as the vector glyphs. Al-
though Turk allows the arrows to be scaled, the dynamic range is
compressed so much that it is difficult to see any difference in mag-
nitudes.

One of the drawbacks to using a reaction-diffusion model com-
pared to the other techniques is the computational expense. The
patterns take many iterations to form and become stable, whereas
it is possible to produce LIC images at interactive rates [2]. Some
of this expense can be reduced since the computation can be paral-
lelized and other, faster integration methods can be employed.

One of the greatest benefits to using a reaction-diffusion model
is the ability to seamlessly integrate the uncertainty measurements
in with the model. None of the other techniques, with the exception
of vector glyphs, are able to show uncertainty as part of their repre-
sentation [16]. Although vector glyphs can show uncertainty, they
still have difficulties with occlusion.

One problem that can occur during pattern formation is that spots
can form and fail to separate, as shown in Figure (13). Where this
happens is random and appears to be dependent on the initial con-
ditions. We have observed that it tends to happen more frequently
with smaller spots, especially those which are either horizontally or
vertically oriented and when mapping just a single component.

Figure 13: Gray-Scott reaction-diffusion visualization of a MHD
Magnetic vector field. Orientation only.

Figure 14: Gray-Scott reaction-diffusion visualization of a MHD
Magnetic vector field. Magnitude and orientation.

5 Conclusions and Future Work

We have introduced the use of a reaction-diffusion model that can
produce patterns with different shapes, sizes, and orientations for
visualizing vector fields. We are able to control the pattern forma-
tion by mapping two of the vector field components, orientation
and magnitude, to the diffusion kinetics. In addition, we also can
map an orientation uncertainty to the diffusion kinetics. This map-
ping produces a spot pattern that is highly representative of the vec-
tor field. Further we are able to control the density of the pattern
through the use of two different models. While we are not able to
directly map the direction of the field, we can augment the reaction-
diffusion visualization with directional information.

The principle advantage of the reaction-diffusion model over ex-
isting flow field visualization techniques is that the pattern size and
density that naturally arises from the reaction-diffusion model ac-
curately represents the underlying vector field. Further, the shape of
the pattern (e.g. the spots) contains not only orientation and magni-
tude information but also can contain uncertainty information.

Future work includes extension of the reaction-diffusion algo-
rithm to three dimensions. The reaction kinetics remain the same
only the diffusion kinetics must be extended. The output is a three
dimensional texture that can be volume rendered using various tech-
niques or applied to two dimensional surfaces. The image generated
would have similar characteristics to those generated by Kindlmann
[11] and Chambers [4] and unfortunately suffer from the same vi-
sualization problems.

The post image formation addition of the direction vector is re-
ally a combination of two independent techniques, patterns and
glyphs. It may be possible to combine our reaction-diffusion model
with other techniques to achieve a better visualization. For instance,
Shen’s dye advection would be suited for interactively showing the



Figure 15: Turing reaction-diffusion visualization of a MHD
plasma velocity vector field.

Figure 16: Gray-Scott reaction-diffusion visualization of a MHD
plasma velocity vector field.

flow direction over the spots [22]. Rather than have the dye move
through the whole image only spots would change their color. Com-
binations of other techniques are certainly feasible. However, it
may be possible to use of other reaction-diffusion patterns that have
both orientation and direction. This would eliminate the need for
combining it with another technique.

Finally, there are a number of perceptual issues that require fur-
ther investigation, including a formal user study to determine the
effectiveness of the reaction-diffusion visualization technique in
comparison to other flow field visualization techniques. One area
of particular interest is quantifying the effectiveness of the natural
patterns that form from using a reaction-diffusion model.
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7 Appendix

One of the difficulties in using a reaction-diffusion model is the
inherent instability of the system. Below are the parameters used to
obtain stable patterns in the Turing and Gray-Scott models shown
in Figure (1).

Figure 17: . Overlayed direction arrows on Figure (13).

Figure 18: Uniform sampled vector glyph image of the same vector
field used in Figure (14).

7.1 Turing Model Parameters:

� = 4.0
� = 4.0
�� = 1.0 / 4.0
�� = 1.0 / 16.0
	 = 16.0 ���
� = 1.0 / 64.0

7.2 Gray-Scott Model Parameters:

� = 0.50 ��� for the central ��� �� area, 1.0 else where.
� = 0.25 ��� for the central ��� �� area, 0.0 else where.
�� = 2.0e-5
�� = 1.0e-5
� = 0.0300

 = 0.0625
For the Gray-Scott model it is necessary to normalize the diffusion
values. For this we assume a cell area of 0.001.
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