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multigrid. The complexity of accurately modeling the body also adds to this level of difficulty. How-
ever, with proper implementation, multigrid’s fast convergence improves the efficiency of solving
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The research in this thesis examines the accuracy of several methods for determining the transfer
operator that drives the multigrid coarse grid correction. Also included is a proposal for a semi-
coarsening strategy, called multistep, that facilitates accurate coarse grid correction, necessary for
multigrid application to the inverse bioelectric problem. This thesis also contains tests of these
methods on several datasets and a comparison and review of these test results, showing how mul-
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methods for future inverse bioelectric multigrid implementations.

THEU

UNIVERSITY
OFUTAH



THE TRANSFER OPERATOR FOR MULTIGRID ON
INVERSE BIOELECTRIC FIELD PROBLEMS

Kris Zyp

A thesis submitted to the faculty of
The University of Utah
in partial fulfillment of the requirements for the degree of

Master of Science
n

Computer Science

School of Computing
The University of Utah

May 2003



Copyright (©) Kris Zyp 2003

All Rights Reserved



THE UNIVERSITY OF UTAH GRADUATE SCHOOL

SUPERVISORY COMMITTEE APPROVAL

of a thesis submitted by

Kris Zyp

This thesis has been read by each member of the following supervisory committee and
by majority vote has been found to be satisfactory.

Chair:  Christopher R. Johnson

Ross T. Whitaker

Robert S. MacLeod



THE UNIVERSITY OF UTAH GRADUATE SCHOOL

FINAL READING APPROVAL

To the Graduate Council of the University of Utah:

I have read the thesis of Kris Zyp in its final form and have
found that (1) its format, citations, and bibliographic style are consistent and acceptable;
(2) its illustrative materials including figures, tables, and charts are in place; and (3) the
final manuscript is satisfactory to the Supervisory Committee and is ready for submission
to The Graduate School.

Date Christopher R. Johnson
Chair, Supervisory Committee

Approved for the Major Department

Thomas C. Henderson
Chair /Dean

Approved for the Graduate Council

David S. Chapman
Dean of The Graduate School



ABSTRACT

This thesis describes an accurate transfer operator for the implementation of
multigrid on the inverse bioelectric field problem. The traditional computational
methods that apply to bioleletric field problems often lead to inaccurate and inef-
ficient solutions due to the ill-posed nature of the inverse problem.

Multigrid is a computational technique that researchers have effectively applied
to a large number of computational simulations. It has an inherent regularization
property and can achieve linear or near-linear convergence. When applied to the
inverse bioelectric field problem, multigrid rapidly calculates internal bioelectric
fields. The ill-posed nature of the inverse problem causes inaccuracies to infiltrate
the multigrid coarse grid correction scheme, significantly challenging this appli-
cation of multigrid. The complexity of accurately modeling the body also adds
to this level of difficulty. However, with proper implementation, multigrid’s fast
convergence improves the efficiency of solving this problem.

The research in this thesis examines the accuracy of several methods for de-
termining the transfer operator that drives the multigrid coarse grid correction.
Also included is a proposal for a semicoarsening strategy, called multistep, that
facilitates accurate coarse grid correction, necessary for multigrid application to
the inverse bioelectric problem. This thesis also contains tests of these methods on
several datasets and a comparison and review of these test results, showing how
multistep yields the greatest accuracy. The final section includes suggestions for
an appropriate set of methods for future inverse bioelectric multigrid implementa-

tions.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

The inverse bioelectric field problem determines the electrical activity within
the body based upon measurements on the surface and is an important prob-
lem for electrocardiography (ECG) and electroencephalography (EEG). Accurate
EEG analysis could be used to locate current sources that trigger seizures in focal
epilepsy patients. It could also reveal topographic asymmetries in the auditory
P300 response as a result of left posterior superior temporal gyrus volume reduction
in the brains of schizophrenics [49,78,93,94,114]. Such analysis could also guide
functional magnetic resonance imaging (fMRI) acquisition for further investigations.
Accurate solutions to the inverse ECG problem could assist in the determination
of patterns of excitation [24], recovery of excitability, evaluation of myocardial
ischemia [72,73,75], the localization of ventricular arrhythmias and the site of
accessory pathways in Wolff-Parkinson-White (WPW) syndrome [36, 90, 106]. The
technology to perform body surface potential mapping is reliable and is relatively
inexpensive. Harnessing this technology to accurately determine the electrical
activity within the body is a much more difficult problem. Computational methods
for this problem yield slow convergence and are inaccurate.

The technique of multigrid is an iterative method for solving linear partial
differential equations (PDE). Multigrid contributes to solving a number of physi-
cal simulation problems with improved computational efficiency by systematically
removing the different frequency bands of noise. Applying multigrid to the inverse
bioelectric field problem could benefit inverse problem solving by providing near
linear time convergence and improvements to the solution accuracy. Linear time

convergence occurs when the time required for convergence is proportional to n, the



size of problem, rather than n?, which is generally necessary with other iterative

methods.

1.2 Thesis Statement

By using more accurate transfer operators, we can use multigrid to efficiently
and accurately solve the inverse bioelectric field problems. Typically, multigrid
has been applied to well-posed problems and the transfer operators are sufficiently
accurate for the interpolation and restriction steps. However, the inverse bioelectric
field problem is ill-posed and the multigrid algorithm will not function correctly
if applied in the standard manner. Until now, no one has developed a transfer
operator to handle the difficulties of this problem. In this thesis, a more accurate
transfer operator is introduced and applied in order to assist in the difficulty of

applying multigrid to an ill-posed problem with a high level of sensitivity to errors.

1.3 Validation

This research will examine several different algorithms, including a new multi-
step approach, and test them on multiple bioelectric problems to determine their
proficiency and accuracy. The inverse problem presents unique difficulties with
maintaining accuracy. In this thesis, we will choose from these algorithms by com-
paring their precision in each of the steps in the multigrid process of computation
and evaluating how each algorithm handles the high error sensitivity, and affects
the overall accuracy of the system. This comparison will give future researchers
an analysis of which transfer operator implementation is necessary for successful

multigrid implementation in the inverse bioelectric field problem.

1.4 Overview of the Thesis
This thesis begins with a brief review of the inverse problem in electrocardio-
graphy and outlines the significant techniques we have used to solve the problem.
The next section provides an overview of the multigrid method, the concept behind
it, and how it is implemented. After the multigrid principles are established, the

thesis demonstrates how to apply multigrid to the inverse bioelectric problem and



the methods used to overcome the inherent challenges of this ill-posed problem.
The methods section also describes a new multistep semicoarsening approach that
increases the accuracy of the multigrid algorithm for ill-conditioned problems. The
next section is an explanation of the test procedure and the research test results.
Finally, the thesis ends with a summary of the results and their interpretations.
The test results demonstrate that multigrid has the capability to perform coarse
grid approximations of the inverse problem with an appropriate transfer operator.
Though different transfer operator algorithms prove better adapted to different
situations, the linear convergence of multigrid shows great scalability and the
multistep coarsening algorithm is the only transfer operator with sufficient accuracy
to perform the solves. While the multigrid algorithm that I implemented did
not have ability to reliably perform accurate large-scale full inverse solves due to
ineffective relaxation methods, the data from the intermediate steps revealed con-
clusive information. The test results showed that a multistep coarsening approach is
necessary to provide the coarse grid correction accuracy necessary to make multigrid

efficiently solve the inverse bioelectric field problem.



CHAPTER 2
BACKGROUND

2.1 Bioelectric Fields

Within the body, the majority of bioelectric fields originate from two different
sources: the heart and the brain. The ECG inverse problem and the EEG inverse
problem of calculating the internal electrical potentials share many techniques, but
this research will focus on the ECG problem.

The determination of internal electric potentials relies on computationally sim-
ulating these electric activities. Such computational simulations of bioelectric fields
are based upon the biophysics of excitable membranes [92]. These membranes pro-
vide the elemental ionic current for all bioelectric phenomena. Electrical potentials
arise within the conductive volume surrounding the excited membranes due to the
integrated interactions of these currents. These potentials can be measured in va-
riety of ways including cortical surface, heart surface, scalp, torso, and intravenous
measurements. A high resolution technique for measuring potentials, mapping, uses
a greater number of measurement sites (32-128 for the scalp or 32-200 for the torso)
than typically used (3-16) for clinical applications. Mapping allows a more accurate

analysis of the spatial distribution of electrical activity within the body|[40, 81].

2.2 ECG/EEG Inverse Problems

The process of determining these bioelectric fields based upon surface measure-
ments is an inverse problem. There has been a substantial amount of work on the
use of computer simulation to solve this problem [1,5,6,29, 31, 32,42-44, 52,53, 58,
61-63, 66, 75,79,86-88,99,100,102,106,113,119,121,124]. Applied to the brain,
the goal of the inverse problem is to locate the point sources within the brain that

deliver electric current by using EEG data. For the heart, the problem is similar,



trying to determine the tissue where electrical currents originate based on ECG
data. A number of ways to determine these internal electrical sources are more
invasive, but inverse analysis seeks to avoid these intrusions. These approaches are
very important for verification of the noninvasive methods. Currently, the clinical
use of ECG is based more on empirical pattern recognition than on biophysical
modeling. The goal of inverse ECG problem solving is to improve the accuracy
of biophysical modeling for clinical usage. Research has demonstrated that elec-
trocardiography can help characterize and detect myocardial infarction [21,22] and
myocardial repolarization abnormalities [20].

Use of the inverse ECG problem has not yet achieved the adequate level of
spatial resolution for widespread clinical use. Resolution in the range of 5-10 mm
with less then 10% error is required to be useful for applications such as describing
reentrant tachycardias, evaluating myocardial ischemia, or localizing ventricular
arrythmias [72,75]. Such spatial resolution is difficult to achieve because a unique
solution for current sources, based upon surface measurements, does not exist. This
has led to a number of different approaches for modeling the electrical sources [44].

The root reason for the lack of adequate spatial resolution is the dissipation of
the electrical signal as it moves through the body, which leads to attenuation and
spatial smoothing. Both of these must be reversed to recover the internal signals.
This reversal process makes the solution very sensitive to noise, computational

precision loss, and model inaccuracies.

2.2.1 Ill-Posedness
A well-posed problem, as defined by Hadamard [48], is one in which all the

following criteria are met:
1. For each set of data, there exists a solution.
2. The solution is unique.

3. The solution depends continuously on the data.



As mentioned earlier, the inverse bioelectric field problem does not have a unique
solution. In other words, different combinations of internal current sources can lead
to the same observed external potentials. This means that the problem is ill-posed.
Also, large changes in the internal sources can lead to only extremely small changes
in the external potentials so the solution does not depend continuously on the
data. This high sensitivity means the discrete from of the problem is ill-conditioned.
Therefore, it is necessary to constrain the problem, and the solution must be limited
to a subspace. We can limit the subspace in such a way that there is only one
solution within that space. We can simplify the model we use to describe the
current sources within the body to achieve this limited subspace [41]. Also, we
must constrain the domain so that the solution will depend continuously on the

data. That is, the solution must be regularized.

2.2.2 Models

One approach for the modeling of electrical sources is to localize the source
dipoles. A simple analysis of the standard electrocardiogram is based on a simple
current dipole vector model of the heart’s electrical activity. Dipole modeling can
be performed with this simple single dipole approach or using multiple dipoles.
However, without constraints only a few dipoles can be reliably estimated. Alter-
natively, a more realistic, but computationally difficult approach involves modeling
the heart as a surface of dipoles [23,52, 53], where the boundary between excited
and resting cells represents the surface.

This research will focus on another approach that attempts to create a map of
the potentials on the epicardium based upon surface values [98,124]. This approach
does not attempt to determine the locality of the sources within the heart, but only

determines the surface potentials of the heart.

2.2.3 Bioelectric Source Formulation
The bioelectric field problem must be mathematically formulated before it can
be solved. To begin, we assume a quasistatic condition, that is, even though the

potentials and currents are changing with time, we assume at every instance of



time that electrical activity is constant and we can apply direct current analysis.
The electrical activity can be described mathematically with a generalized Poisson’s

equation to solve in terms of the primary current sources:
V-oV®=-], (2.1)
using the boundary conditions:
oV® -n=0onTIy, (2.2)

where ® are the electrostatic potentials, I, are the cardiac current sources, o is the
conductivity tensor, and I'r represents the surface of the torso. We assume current
sources exist only on the surface of the heart so Poisson’s equation can be reduced
to Laplace’s equation:

V.oV® =0, (2.3)

with the Cauchy boundary conditions:

® =3 on% C Iy (2.4)
oV® -n=0onTr. (2.5)

This formulation represents the surface-to-surface inverse bioelectric field problem
as represented in Figure 2.1.
While we now have a unique solution, the problem is still highly sensitive to

initial conditions, and thus the problem is still ill-conditioned.

2.2.4 Model Construction

In order to solve for the epicardial potentials, we must construct a model by
measuring and discretizing the anatomy. A noninvasive method of measurement for
living beings is generally preferable. Most models are based on magnetic resonance
imaging (MRI) or computed tomography (CT) images [112].

Next, the scanned images must be segmented. Unfortunately, fully automated
segmentation does not always produce acceptable results, so the segmentation

process often requires user guidance. Generally, users must choose control points
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Figure 2.1. Diagram of the torso for source formulation.

outlining the individual objects of interest within the body. There are a number
of techniques for attempting to automatically segment the images, and assist in
manual segmentation [59]. These include edge detection [111], threshold [108],
edge-based segmentation [71], and region growing [125].

From these segmentations, we must create surface boundaries. A triangulated
surface is usually preferable for describing the irregular surfaces of the body. Al-
though it is difficult to create surfaces from an irregular set of points, most scanning
techniques yield points that are constrained to planes, and we can use a relatively

simple lacing technique to create boundary surfaces [76].

2.2.5 Mesh Generation

Once a surface is created, we must generate a mesh for the volume. In order
to solve for the epicardial potentials, the partial differential equations (PDE) must
be approximated numerically on a grid. First, we must choose the discretization of
the geometry from scanned images. We create a mesh of nodes that are connected
to each other to form the connections and elements as displayed in Figure 2.2.
Mesh generation is a large field in itself, but there are a few predominant strategies

for the generation of nodes and elements. Structured partitioning is the simplest



Figure 2.2. Visualization of the interior mesh for the test set 2 problem (Utah
torso) [74].

method of generation [35,70]. This strategy begins with a given boundary and
recursively divides it. The divisions are then subdivided repeatedly in a divide and
conquer manner until we achieve an appropriate level of divisions. Straightforward
programming is the advantage of this technique.

Delaunay triangulation is a more finely controlled method for the bioelectric
field problem [35,116]. This method begins with a given set of points that define
the nodes. The nodes are then connected to form an optimal mesh of tetrahedra.
This method allows the mesh to be generated to conform to the given regions and
boundaries with the model and provide improved spacing. The disadvantage of this
method is that it is more difficult to program. Other mesh generation techniques
include mapping methods, octree methods [109, 110], and paving (advancing front
methods) [35, 37].

Element spacing is another important decision in mesh generation. Although
the simplest approach is to use an approximately constant distance between nodes
in the mesh generation, the mesh can later be improved by adaptively refining
the mesh based on a solution estimate [62,103]. An algorithm called h-adaptation

further refines the mesh, that is, creates more nodes in areas of greater potential
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gradients. Alternatively, p-adaptation substitutes higher order elements in higher
gradient areas. Hp-adaptation combines these techniques for improved adaptation
(25, 85,95].

Next, we must describe the physics of the problem in a numerical discretization.
Methods for this discretization include the finite difference method (FDM), finite
element method (FEM), or boundary element method (BEM). The finite difference
method is based upon approximating derivatives on a uniformly spaced grid. The
meshes generated for the bioelectric field problem can be unstructured (and they
are in our case) and such meshes can not easily be used with the finite difference
method. The boundary element method relies on mathematically computing the
relationship between the nodes on the exterior of a volume. This method can
provide a significant improvement in calculation time, as we do not have to compute
interior nodes. Unfortunately, the mathematics to determine the boundary element
equations are usually limited to isotropic volumes. The torso and brain have many
anisotropic features. If we wish to accurately handle these features we must look
to another method.

In comparison, the finite element method uses interpolation functions substi-
tuted into an equivalent integral equation for the problem [57]. This allows for
the flexibility to formulate the equations from unstructured grids and handling
of anisotropies. Therefore, we choose this method to discretize the continuous
bioelectric field problem. We start with the equations from above, and use arbitrary

test function ®, to define boundary conditions:
/QJVQ-VE-dQ:—/Iv-E-dQ, (2.6)
where () represents the solution domain that must be discretized:
Q= ij Q. (2.7)
A discrete subspace must also be deﬁne(;:: 1
Vi CV =9. (2.8)

The parameters of the function ® € Vj, are defined at node points, a;¥(z;),

1 = 1,2,...,N and the basis function is defined as a linear piecewise continuous
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function ¥; € V}, with a value of 1 at nodes and 0 elsewhere. This leads to the
formulation for ® € Vj,:

where a linear combination of ¥; € V}, can be found to describe ® € V}, . We want
to find ¥, € V, to satisfy equation 2.9 and since ¥; can be a linear combination,

we write:

Uy =35, 0:%(x) ¢ = Bn(w). (2.10)

Equation 2.6 can be rewritten:
Ef\ilgbi/ﬂaijV\I/i-V‘Ifj-dQ: —/QL,-\I!]- dQ j=1,..,N. (2.11)

We now have the equation in the form necessary for linear system solve. That
is, the finite element approximation has a set of N equations with N unknowns
corresponding to the ¢ vector. The equation can be put in matrix form A¢ = b
where A is the stiffness matrix with elements a;; = [ 0;;V¥; - V¥;d€) and b is the
source contributions with elements b; = — [, I,, - ¥; - d€). Now the forward problem
can be expressed in the form A-¢ = b. The inverse bioelectric field problem requires

further modification for multigrid application, to be discussed later.

2.2.6 Regularization

Next, the equations must be constrained with regularization. With discrete
ill-posed problems, small changes in the input can cause unbounded changes in the
output so the solutions often lack stability. Errors in measurements and calculations
can lead to large errors in the solution. With regularization, we seek to make
the solution continuously dependent on the input. It is therefore necessary to
apply constraints in order to achieve a realistic solution. This can be as simple as
minimizing the two-norm solution during the solve, but various other constraints
can be applied as well, such as giving a priori estimate for the data, and using more
sophisticated minimizations [39,77,117,118].

The Tikhonov method is one of the most frequently used methods of regular-

ization [117]. With this method, one attempts to minimize the residual Az — b and
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a measurable constraint at the same time. An example of a constraint would be

the root mean square of x. This leads to the following formulation:
(KT -K+a-I)-z=KT-y. (2.12)

We could also use a higher order constraint term that uses the gradient or the
laplacian of . Also multiple constraints can be combined into the constraint term,
allowing greater flexibility in how we constrain the problem [15, 16]. Either way, we
are no longer minimizing only a residual, but also the residual and the constraint
term.

Another method for regularization is singular value decomposition [39]. The A

matrix can be broken up:

A=U-S-VT, (2.13)

where U and V are orthogonal matrices and S is a diagonal matrix with the singular
values as the diagonal entries. If the smaller entries in S are eliminated then we
can create an A matrix that is better conditioned. Once factorization is complete,

the system can then be solved:

A-x=b (2.14)
U-S-VT.z=b (2.15)
r={U-S-VT)1.p (2.16)
r=VH1.-5.U*b (2.17)
z=V-St-U"-b. (2.18)

Limited iteration conjugate gradient is a similar method that eliminates smaller
eigenvalues and their corresponding eigenvectors from the solution. When applying
a conjugate gradient solver, we can stop before performing the full n iterations in
order to keep only the major eigenvectors and obtain a smoother result [39, 118|.

These methods require at least one parameter o to choose how much regu-
larization to apply (for example, the magnitude of the measured constraint with

Tikhonov or the minimum allowed singular value with SVD). This choice is very
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important and can be a difficult decision to make. The L-curve method is one
method to determine a reasonable a priori value of « [51]. An L-curve graphs the
constraint term versus the residual (the residual and the constraint change with the
regularization parameter) with a log-log scale. The corner of the L-curve, that is,
where the curve begins to rise sharply, is used to choose the parameter, by choosing
the point of maximum curvature.

The discrepancy principle is another method for choosing a. With this method,
we choose a reasonable level for |A -z — b|y and call this §. We then minimize z
while maintaining |A -z — bl < §. A possible choice § is the median of the x?
distribution.

We can also use generalized cross validation to determine « [38,77]. For a given
o, we first apply Tikhonov regularization to A’ - x = b’ which is A - © = b without
the ith equation. The resulting approximation is denoted z,;. Then, we use z,;
to estimate b; = (A - z4,);. We seek to find an o that minimizes the error of the
above estimation.

Another, more recently developed method selects the corner based on a mini-
mum distance function, that is, finding the point that is closest to the origin [7].
Huiskamp wrote a paper on choosing more physiologically based constraints rather
then simple magnitude RMS or gradient based measurements [54].

Application of differing parameterized regularization to each submatrices is a
recent approach for regularization [63,64]. The submatrices that are used are
discussed in the methods section of this paper. Each of these submatrices has
widely different condition numbers. Therefore, it is logical to apply a different
amount of regularization to each.

Rather than using the Tikhonov equation to minimize a cost function constrain-
ing solution, the admissible solution approach uses an optimization algorithm to
find an solution that satisfies a set of user defined criteria. This approach allows
greater flexibility, as multiple constraints can be employed and these constraints do
not have to follow the Tikhonov formulation. Constraints can be defined on more

physiologically meaningful measures [2].
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Another method, borrowed from geophysics, for regularizing the solution is
focusing inversion [84]. This method uses more advanced constraints that encourage
localization of the sources.

Further, when multiple measurements are made at different times, we can apply
a time dependent method. A time dependent method utilizes the data from different
time steps to do more accurate analysis. Multiple signal classification (MUSIC) has
borrowed from signal processing techniques to distinguish between multiple sources
[104,105]. An advanced form of MUSIC, called recursively applied and projected
(RAP) MUSIC [82], iteratively improves on the source classification.

2.2.7 Dipole Model

When using a dipole model to estimate the sources, the typical approach is to
guess the dipoles’ locations and then perform a forward computation of the torso
surface potentials for the given locations [34]. The error in the solution can be
calculated and the dipoles can then be moved around to optimize the solution.

Creating a lead field can speed the process of calculating the surface potentials
from the dipole location. A lead field is a transfer matrix that maps sources to
their resultant surface potentials [17-19]. This lead field can be created by doing a
forward solve of a dipole from each to be included in the lead field matrix. This can
be limited to the epicardium nodes which is useful for epicardium potential to torso
surface potential mapping, or can include surface potentials for every node within
the heart. The latter is a desirable lead matrix for guessing at dipole locations.
However, performing forward solves from every node within the heart is excessively
time consuming. Fortunately, using reciprocity theory [27,91] it is possible to only
perform forward solves from each of the surface points of measurement and record
the results for each of interior heart nodes to create the lead matrix [122]. Since
the forward solve is being compared only to actual points of measurements, there

are relatively few solves necessary.



15

2.2.8 Current Challenges

Regardless of which of these methods one chooses, there remains the challenge
of solving a large-scale linear problem that involves an ill-conditioned matrix. The
main difficulties with solving such problems are maintaining accuracy and solving
quickly. Typically, one uses Krylov subspace methods, such as conjugate gradient,
to solve these systems because of their rapid convergence and stability. However,
the conjugate gradient method still requires O(n?) time for convergence (with
preconditioning this can be lowered, although ill-conditioned problems can still
force O(n?) time). As we pursue greater accuracy, it is necessary to work with
larger numbers of nodes. These larger-scale problems become prohibitively slow
with such an algorithm. As the need for spatial accuracy necessitates more nodes,
the need for lower order solving that can still handle highly ill-conditioned systems

becomes greater.

2.3 Multigrid

Multigrid is a method for solving linear systems. Multigrid creates lower reso-
lution grids and estimates solutions on these grids as an approximation to higher
resolution grids. This approach allows for a systematic removal of different frequen-
cies of errors. For elliptic problems, multigrid can find a solution in linear time,
and is easily parallelized [9, 14, 123].

In 1961, Fedorenko first introduced the concept of multigrid [28]. It was not
until 1973, that Brandt realized its efficiency [9]. In 1976, Hackbusch independently
developed the multigrid method as well [47]. Since then, multigrid has been applied
to a vast array of applications, with just a few recent papers cited here, for example:
Navier-Stokes [55], radiation-transport, diffusion [4], wave propagation, and image
segmentation [107]. Unfortunately, multigrid can be a difficult to implement and,
for certain problems, requires customization. Because of the ill-posed nature of
the inverse bioelectric field problem, this problem requires customization of the
algorithm.

The basic methodology of multigrid is as follows:
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1. Relax Apup = fr on the fine grid to obtain uy,

2. Compute residual r, = Apup — f

3. Transfer (restrict) residual to coarse grid r, — rg

4. Relax on residual equation Ageyg = rgon coarse grid

5. Transfer (interpolate) approximation of error on coarse grid ey — e, to fine

grid and correct solution: u, = up + ep

where h denotes the fine grid and H denotes the coarse grid. Relaxation, restriction,
and interpolation are the important procedures involved in the multigrid process.

The relaxation (also known as smoothing) step reduces the high frequency com-
ponent of the error. This is normally performed with a few iterations of an iterative
solver. Jacobi and Gauss-Seidel are examples of solvers that work by first reducing
the high frequency error and therefore they make effective smoothers. The most
frequently used smoothers for multigrid are variations on the Gauss-Seidel method,
such as successive over-relaxation, and different coloring schemes. An approximate
inverse smoother has also shown promising results [120]. However, Krylov subspace
methods like conjugate gradient are not typically useful as smoothers as they do
not focus on the high frequency component. Note, this is different from regular-
ization, in that regularization usually reduces the high frequency component of the
computed solution while relaxation reduces the high frequency component of the
error (the difference between the computed and true solution).

After relaxation, the restriction step attempts to make an accurate approxima-
tion of the fine grid residual on the coarse grid. The residual from the fine grid
must be solved on the coarse grid in order to make a coarse grid approximation.
There a residual vector corresponding to the coarse grid points must be generated
from the fine grid residual. This is performed by taking a weighting average of the
values of the fine grid points that are connected to a given coarse grid point.

Next, a solve or approximation is performed on the coarse grid level to create the

coarse grid approximation for correction. After this, the coarse grid approximation
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is interpolated (or prolonged) onto the fine grid to provide the error correction. The
interpolation step reverses the restriction step to transform the coarse grid error
correction onto the fine grid. The interpolation algorithm also utilizes a weighted
average. The algorithm determines each value in the error correction vector at the
fine grid by taking a weighted average of the coarse grid points that are connected
to the given fine grid point. Generally, the restriction and prolongation operators

are transposes of each other. The restriction R and interpolation I operators work

as follows:
by =R-b, (2.19)
by=1-by. (2.20)
(2.21)

The restriction operator must be applied twice for the coarsening of the matrix:
Ay =R-A,-R". (2.22)
We want our weighting to be consistent with interpolation and restriction so:
R=1". (2.23)
In addition, this is the restriction operator of the residual:
rg = R-rp. (2.24)
And this is the interpolation operator of the error correction:
en=1"eg. (2.25)

Multigrid can then further be used in a nested approach, where the multigrid
process does not only create one coarse grid, but creates successively coarser grids
recursively to form a V-cycle. At the coarsest level, a direct solve is usually
performed on the system. This cycle is repeated to iterate towards the solution.
Multigrid cycles can also take the form of W-cycle, or with full multigrid, the

V-cycle starts at the coarsest grid and grows in size until reaches the finest grid as
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finest level

level 4

level 3

level 2

coarsest level

Figure 2.3. The progression of full multigrid through the coarse grid levels.

shown in Figure 2.3. Theoretically, full multigrid is necessary to achieve true linear
convergence, otherwise convergence time is O(log(log(n))-n) because of the growth
of the depth of the cycles.

Before the multigrid cycle can begin, the coarse grid points must be chosen.
Typically, the nodes chosen for the coarse grids are based upon the underlying
geometry. Coarse grid points are preferably evenly spaced and chosen so as not to
remove any fine grid points that are not connected to at least two coarse grid points.
The goal is that the coarse grid should accurately reflect the original geometry.
Figure 2.4 demonstrates a uniform two-dimensional grid with a nine-point stencil.

To demonstrate the multigrid process, we look at a simple elliptic problem with

a point source and Newmann boundary condition. We have Laplace’s equation:
V2% =0, (2.26)
and boundary conditions:
V®(z,y) -n=4d(z,y) — 0.25. (2.27)

This problem uses a nine-point stencil with bilinear interpolation. For simplicity,
this problem starts at the coarsest grid and ascends through the levels as shown in

Figures 2.5 - 2.13. At each level, we apply two iterations of Jacobi refinement.
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Figure 2.4. Example of coarse grid selection. The large points are the coarse grid
points and the smaller points are the fine grid points.
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Figure 2.5. A sample problem at level 1 (coarsest level) uses a 3x3 grid and is
solved directly.
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Figure 2.6. A sample problem at level 2 uses a 5x5 grid. The graph shows values
before smoothing.

Figure 2.7. A sample problem at level 2 uses a 5x5 grid. The graph after
smoothing.
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Figure 2.8. A sample problem at level 3 uses a 9x9 grid. The graph shows values
before smoothing.

Figure 2.9. A sample problem at level 3 uses a 9x9 grid. The graph shows values
after smoothing.
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Figure 2.10. A sample problem at level 4 uses a 17x17 grid. The graph shows

values before smoothing.

Figure 2.11. A sample problem at level 4 uses a 17x17 grid. The graph shows

values after smoothing.
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Figure 2.12. A sample problem at level 5 uses a 33x33 grid. The graph shows
values after smoothing.
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Figure 2.13. A sample problem at level 5 uses a 33x33 grid. The graph is the
directly solved solution.
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Rather than being used alone, multigrid is also often used as a preconditioner.
This can take advantage of Krylov subspace convergence methods like precon-
ditioned conjugate gradient, along with the power of multigrid in the form of
preconditioner. With preconditioning, an approximate matrix inversion is applied
to the residual at each iteration to improve the conditioning of the system. We
can use multigrid to generate a coarse grid correction from the residual as a form
of preconditioning to improve the conditioning of the problem, as well. Eigenvalue
analysis shows multigrid preconditioning yields eigenvalues mostly clustered around
one, and consequently, lowers the condition number. Although multigrid also tends
to produce a few eigenvalues near zero, the conjugate gradient eliminates these
quickly [115]. Thus, by improving the condition number of the system, multigrid
can accelerate the conjugate gradient process. Also, since iterative methods like
conjugate gradient automatically scale each vector correction, this allows for auto-
matic scaling of the coarse grid correction, which can sometimes be too large or too

small.

2.3.1 Algebraic Multigrid

Algebraic Multigrid (AMG) refers to using multigrid on matrices where the
underlying geometry is not given [10,12,13]. The coarse nodes are then chosen
purely on the given discretization matrix. This method can actually be much
simpler in the case of unstructured meshes. Unstructured meshes can be difficult
to work with when trying to choose a set of coarse grids based upon geometry,
but the algorithms for AMG are often more robust in handling the irregularities
of such meshes. It is difficult to perform mesh generation on complex geometries
at different resolutions and ensure that each mesh is a properly registered subset
of the finer meshes. The coarse grid creation is handled by AMG without the
difficulty of reducing unstructured grids. One disadvantage of AMG is that it often
requires more setup time when the geometry information could otherwise lead to a
quick determination of appropriate coarse nodes. The choice of coarse grid points

is still very important with AMG, especially in more difficult problems such as
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unstructured meshes and anisotropic problems [8]. Coarse grid selection can be
based purely on the graph of the matrix. However, higher quality coarse grids
can be generated by using the connection strengths as well as the graph of the
matrix, although incorporating connection strengths can be slower. Generally,
it is advantageous to choose coarse grid points that will coarsen across strong
connections, avoiding coarsening across interfaces [11, 68].

AMG also uses the matrix to produce the transfer operators. The transfer
operators are the restriction and interpolation (also referred to as the prolongation)
operators that are used to restrict and interpolate the matrix as well as the vectors.
Using the matrix to create these operators can be simpler and more accurate than

attempting to create them from geometries with complex unstructured problems.

2.3.2 Other Inverse Multigrid Work

There has been work on applying multigrid to other difficult and ill-posed prob-
lems. One example is the application of multigrid to highly anisotropic problems
[56,69,101]. This is not an ill-posed problem, but anisotropies create problems for
multigrid, a geometrically based algorithm, and anisotropies distort the effective
geometry. The anisotropies tend to create ill-conditioned systems. These problems
are tackled using line relaxation (using differing degrees of smoothing in each direc-
tion) and an approach that involves coarsening in the same direction as anisotropies.
This coarsening strategy referred to as semicoarsening is similar to the approach
that I will describe later, though it does segment the steps up in the same manner
that I do. A paper by Akcelik and Ghattas discusses applying multigrid to an
inverse problem [3]. However, their work is with inverse wave propagation, and this
is a much different problem than the problem we are solving. There is also research
at Weizmann Institute of Science in Israel by Achi Brandt on applying multigrid to
solving the inverse problem of electrical impedance tomography (EIT), although,
once again, the EIT problem is quite different from the inverse bioelectric field
problem because the EIT problem solves for the conductivities instead of solving
for the potentials.

Ongoing research projects that apply multigrid to the inverse bioelectric field
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problem use dipole localization. One approach uses lower resolution grids to esti-
mate source locality limits [33]. These limits are then used as constraints on source
localization at a higher resolution to locate the dipoles quicker and more accurately.
Also, at the University of Erlangen, Mohr and Riide are implementing multigrid
to perform the forward solves for lead field construction [65,80]. An advantage
of using multigrid for this application is that while the forward problem must be
solved many times, the multigrid setup needs only be performed once to handle all

the solves.



CHAPTER 3

METHODS

3.1 Applying Algebraic Multigrid to the
Inverse ECG Problem

To formulate the inverse ECG surface-to-surface problem for algebraic multigrid
(AMG) we need the problem in the form of Az = b (A is defined in Equation 3.6
and is distinguished from the stiffness matrix A) in order to carry out the multigrid
procedures [12]. There are different ways to arrange the problem into a linear
matrix solve. With AMG, it is important that this equation meet certain criteria.
First, AMG is reliant upon iterative smoothers in order to function properly. This
smoother can be an iterative method like Jacobi, Gauss-Seidel (in our case), or
one of the many other methods, but the smoother must exhibit some convergence
on Az = b. Specifically, the iterative method must be able to diminish the
high-frequency error in a given guess. It is not always necessary for the iterative
method to reduce low-frequency error since the coarse level part of AMG excels at
this. Another important requirement of the Az = b setup, is that A must have a
geometric interpretation so that the algorithm can accurately perform coarsening.
This issue requires an alteration in the implementation that will be discussed later.

As mentioned earlier, the physics of the bioelectric field problem are described
with a discretization that relates the current sources to the potentials throughout

the body. The equation that describes this relation can be written in the form:
Ap =b, (3.1)

where ¢ is the potentials and b is a vector of the current sources. We can then
break the matrix and vectors up into the following regions: torso (t) nodes, volume

(v) nodes, and epicardial (e) nodes. This leads to:
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bt
o= | b (3.2)
P |
by |
b=| b, (3.3)
be |
Att Atv Ate
A= | Ay Aw Aw |. (3.4)
Aet Aev Aee

Traditionally, we compute the lead field matrix that directly relates the epicar-
dial potentials to the surface potentials while ignoring the rest of the potentials
(nodes between the heart and surface) [17-19]. However, by discarding the values
we lose the geometric descriptiveness of the full solution. Retaining the estimates
of these potentials from coarse grid corrections is critical to performing the geo-
metrically complete corrections. Multigrid’s spectral mechanism relies on the local
relations of a geometrically based system. Therefore, my approach leads to the
formulation below. In addition, this method inherently solves for all the potentials
between the torso and epicardium. These additional potentials give us insight into
the bigger picture of the interior electric activity.

From this logic, we create a formulation. Electrocardiograms provide measured
torso surface potentials ¢,, (the measured nodes can be a subset of the ¢; nodes,
but the entire surface can be estimated through interpolation, or the non-measured
torso nodes can be treated as volume nodes) and we seek to determine epicardial
potentials ¢.. In this research, the entire surface is treated as known torso nodes.
We assume no current sources outside of the heart, so the boundary conditions tell
us that b; and b,,, which represent torso and volume current sources, should be equal
to zero. Also, ¢; should equal the measured surface potentials ¢,,. b, represents the
current influx across the epicardium, and since this is unknown and unnecessary
we can discard this part of the problem, leaving zero for the right hand side. Since
we are solving for ¢, but ¢; is already known, we can subtract ¢; from the problem

and eliminate these nodes from the problem as well. We now have:

G = [ o ] (3.5)
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Agp = (3.7)
And we subtract A - ¢
Ap—A-p=A4-(9— ), (3.8)
which we write as:
Ag =", (3.9)
where
5= [ e ] | (3.10)
Regularization will also be necessary. We use the Tikhonov equation:
(KT -K+a-I)-2=K" -y, (3.11)
and we substitute the matrix and vector above:
A" A+a-I)-¢g=A4A" -, (3.12)
and solve:
¢=(AT-A+a-I) - A" b (3.13)

Here shown with expanded matrix and vectors:
T T

¢’U — ( Atv Ate . Atv Ate +a- I o0 )—1_ At'u Ate . _Att ) ¢t
¢e Avv Ave Avv Ave 0 I Avv Ave _Avt ) ¢t
(3.14)
This equation is now in the preferred Az = b form, and we can apply an iterative
solver. Also, as mentioned before, A must exhibit a geometric interpretation. This
is necessary for the coarsening algorithm of AMG. A has an increased number of en-
tries due to the above equations and no longer has a direct geometric interpretation
to the nodes and their connections. Therefore, with this approach, the original A
is used to create the coarsening graph. This is a deviation from normal AMG since
we are solving with a different matrix (A) than the matrix (A) used for coarsening

construction.
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3.1.1 The Inverse Effect

To illustrate the challenge of applying multigrid to the inverse problem, we will
examine a 2D problem with 541 nodes (shown in Figure 3.1). Of these, there are
60 epicardial nodes, 376 volume nodes, and 105 torso nodes. The potentials on the
heart are a subset of real measured values taken from a three-dimensional model
[74]. The torso values are calculated from the forward problem and have noise added
to them in order to simulate torso measured values. These simulated torso measured
values ¢,, are the input and the algorithm attempts to determine heart potentials
¢e- We can compare the calculated heart potentials with the real measured values.
During this test, the coarsening is one level deep to simply illustrate the effect of an
ill-conditioned matrix. The interpolation and restriction steps use simple bilinear
approximation. Both the forward problem and the inverse problem are solved on
this test.

From this test, we can see that accuracy is difficult to maintain with the inverse
problem. The main reason for this inaccuracy is because the inverse problem is quite
ill-conditioned and does not continuously depend on the data. Small changes in the
torso surface potential measurements and also small changes in the conductivity
model cause large errors in the calculated epicardial potentials. Unfortunately,
the coarsening of matrix A does indeed cause small distortions in the conductivity
model. This means that the solution to the coarsened level equations is not a
precise match to the solution on the fine level. An accurate coarse matrix should
exactly compute a restricted solution vector from the restricted initial conditions
vector. The problem of coarse matrix inaccuracy does not manifest itself in more
well-conditioned problems [23, 97].

Consider these graphs with the true solution and the coarse grid computed
solution. Figure 3.2 shows the well-posed forward ECG test problem, whereas
Figure 3.3 shows the ill-posed inverse ECG test problem.

Quantitatively speaking, the inverse problem can be expressed as more difficult
because the condition number for the matrix to solve is much higher than for the

forward problem. For instance, with Test Set 2 and 7 (Section 5.1) the forward
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Figure 3.1. Mesh of the 541 node sample problem.

problem has a condition number of approximately 1x10% and the inverse problem
has a condition number of approximately 1x10'®. The graphs above were taken
from Test Set 1. For this dataset, the forward problem has a condition number of
approximately 1x10% and the inverse problem has a condition number of approxi-
mately 1x10'7.

The ill-posedness of the inverse problem also makes the smoothing process of
multigrid much less effective. Iterative solvers generally converge much slower with
ill-posed problems, and the desired convergence in the high frequency range suffers
as well. There are a number of smoothers that improve upon the basic Jacobi
or Gauss-Seidel algorithm [45,46,67]. A more recent approach, which uses an
approximate inverse smoother, has performed very well on ill-conditioned problems
[120]. However, I will not be doing a comparison of the iterative solvers effectiveness

with different smoothing processes.
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Figure 3.2. The result of a coarse grid solve on the forward test problem. The
x-axis is position on the heart, y-axis is potential.

3.2 Improved Coarsening

The problem of inaccurate coarse grid correction introduced by ill-conditioned
problems must be addressed by use of more accurate coarsening schemes than
those traditionally used for well-conditioned multigrid problems. Another problem
with deeper nesting of coarse grids is that, with a small dataset, the torso nodes
are only three to six layers of nodes away from the epicardial nodes, in places.
Attempting a second level of coarsening obviously creates some abnormal geometries
with the torso nodes either touching, or only having only one layer of nodes,
between epicardial and torso nodes. This, coupled with the coarsening effect of an
ill-conditioned matrix, creates problems with maintaining an accurate geometry.
One approach to alleviate this problem is to coarsen only along layers (reduce the

nodes in each layer, but not to reduce the number of layers) in the certain levels
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Figure 3.3. The result of a coarse grid solve on the inverse test problem. The
x-axis is position on the heart, y-axis is potential.

of coarsening. This problem should not be manifested in early stages of nesting
in larger datasets. In datasets where there are 20 or more layers between torso
and epicardial nodes, the nested coarsening should progress much longer without
problems.

This research has mostly focused on creating more accurate schemes for the
interpolation and restriction of coarsened grids for use in solving inverse bioelectric
field problems. There has been a large focus on the choice of the coarse grid points
in multigrid applications, but even after the choice has been made there is still the
question of exactly how to incorporate the information about the fine grid points.
We can discard the values for the fine grid points and keep only the coarse grid
information. Alternatively, an arithmetic approach can be used to combine the

coarse and fine grid point values. We must then decide how to weight the coarse
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and fine points. The first simple weighting approach to calculating a new coarse
grid point is bilinear approximation. With this method, we give the old coarse grid
point a unit weight and each of the connected fine grid points an equal weight that
sums to the unit weight.

The second weighting approach, connection based weighting (CBW), makes
each of the weights proportional to the value of the connection [14]. This should
improve the ability to maintain the operation of the A matrix. However, the A
matrix is not the only set of information that must be accurately estimated in the
coarse grid. The b vector (the residual in coarser grids) must also be accurately
coarsened. In addition, it is useful to have some type of mechanism that will allow
weak connections to be dropped, otherwise the coarsening produces overly dense
matrices.

The third approach, which is the standard method used with AMG, uses a
tolerance level for the connections. If the strength of the connection is below a
tolerance level, the connection is not fully computed in the weighting calculations.
A lower tolerance level means greater accuracy, but denser matrices. The equation

for determining weights begins with the smooth-error approximate relation:
Qi * € R —Ejecia,-j * €5 — Zjepfa,-j c€; — Ejepzuaij * €4, (315)

where C' are the coarse grid points, D* are the strongly connected fine grid points,
and D" are the weakly connected find grid points. For D" we approximate e; ~ e;.

For D?® we e; by a weighted average of e; in the coarse interpolatory set C; N C;:

. LkeCiGjk - €k

jN

3.16
Ykec; Ak (316)

Finally, we approximate and substitute to get the standard equation used in AMG

for determining weighting:

ik Ak
a;j +
ij + 2ZkeD: S e, o

Qi + Xnepp Qin

: (3.17)

’LU,']':—

where w are the weights. This will be referred to as the standard method. This

equation will breakdown to the simple weighted connection method when the
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tolerance level is set at zero and every connection is considered a strong connection
[14].

The fourth approach is multistep, which T have developed to specifically deal
with the inaccuracy of coarse grid correction with the inverse bioelectric field
problem. This method establishes several intermediate semicoarsened grids between
the fine grid and coarse grid. The interpolation operator is then built by successively
moving between these intermediate grids. The next section (Multistep Approach,
3.3) will discuss this in detail.

The fifth approach is to use an approximate inverse. This can refer to any
method that uses any approximation of the A matrix inverse to interpolate the
vectors. The particular approach I have implemented, solves for the block of nodes
surrounding each coarse grid node. The values from this block inversion yield values
or potentials to be expected with a unit point potential at the coarse grid. These
simulated fine grid potentials make a logical weight for the interpolation of the fine
grids. The cumulative block inversions represent the approximation of the inverted
A matrix that is used as the transfer operator [83, 96].

In addition, I tested two hybrid approaches. These approaches included using
the CBW and bilinear approach for each of the levels of the multistep approach
(the standard approach is the default).

All of the operators are normalized in the sense that each of the weightings that
contribute to the interpolation of a fine grid point must sum to one. If this rule
does not hold then a grid of uniform nonzero values that could be interpolated to

a fine grid of nonuniform values.

3.3 Multistep Approach
The multistep approach is based on the idea that by removing fewer nodes at
once we can generate a more accurate transfer operator. With the removal of fewer
nodes also comes the need to combine several coarsening steps into one, in order to
maintain speed while moving through the coarse grids of multigrid cycle.
We first create a goal coarse grid by using a standard coarse grid selection. We

then create intermediate coarse grids which are supersets of the goal coarse grid.
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That is, the fine grid points from the goal coarse grid selection will always be fine
grid points with all of the intermediate coarse grids. In order to limit node removal
at any intermediate step, we create a rule that for the creation of the intermediate
grids, each time a coarser grid is generated, adjacent (connected) nodes must not
be eliminated. In other words, the grids must not have any noncoarse grid points
that are connected (points that are eliminated in the next coarse grid selection).
Figures 3.4 - 3.7 demonstrate the process on the model in Figure 3.1.

Next, we create a interpolation operator for each of these progressively coarser
intermediate grids using ones of the methods mentioned above (CBW was used
in the demonstration, but the tests use the standard AMG weighting scheme to
prevent excessively dense matrices from forming). The interpolation operator for
the actual multigrid step, I, is the product of the interpolation operator for each of
the intermediate semicoarsening steps. The restriction operator is still the transpose

of the interpolation operator.

When we remove nodes with the multistep approach we are performing a trans-
form basically analogous to solving for equivalent resistance in circuit analysis.
When we look at the bioelectric field problem as solving for a large circuit, each
node is connected to the surrounded nodes with resistors. Therefore, we can imagine
removing nodes from the “circuit” and then altering the resistors in the surrounding
nodes to create an “equivalent circuit.” Consider the four nodes in Figure 3.8 as
a subcircuit within a grid of electrically connected nodes that represents the mesh
of the bioelectric field problem from the finite element discretization. With the
multistep approach, the inner node can be removed with assurance that none of
the surrounding nodes will be removed to permit a transform similar to equivalent
circuit analysis this yields the circuit shown in Figure 3.9

If we remove the middle node, we will have the subcircuit in Figure 3.9 where
Ri5, Rs3, and R3; must be computed to form a circuit equivalent to the four node

circuit.
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Figure 3.4. Nodes are reduced over several steps with semicoarsening from 541

nodes to 399 nodes to 328 nodes to 283 nodes. This is the initial grid.

150 -

100 -

50

—-100

-150

-200

-150

-100

100

150

200

Figure 3.5. Semicoarsening reduction after one step.
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To other nodesin grid

R12

To other nodesin grid

Figure 3.8. Example 4 node “subcircuit” within a mesh.

To other nodesin grid

R 12

To other nodesin grid

Figure 3.9. Example 3 node “subcircuit” within a mesh. The inner node (node
0) has been removed, and equivalent resistance for the remaining resistors can be
computed.



The equations for the currents in the original circuit:
Vo=-Vs VW—=Vo Vo—-V,
_ o= Vs VoV Voo W
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And for the currents in the equivalent circuit:
V-V Vi-Vh

L / /
13 12
Vo=V Vo135
I = / /
12 23
RV Vil
23 13

Solving for the resistance in the equivalent circuit would be:

N 1
I12 R12 R01 —+ R02 + 71{0&;)1:02
N 1
53 oz Roa+ Ros + 71201%;)11203
N 1
Ry R3si  Ro3+ Rop + Ro}sz-oljm .
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(3.19)
(3.20)
(3.21)

(3.22)

(3.23)
(3.24)

(3.25)

(3.26)
(3.27)

(3.28)

If we apply the restriction operator constructed with the multistep algorithm to the

same problem, we would construct an A matrix using a system of equations (note

we use conductivity values instead of resistances to create the stiffness matrix):

0="Vp-(Co1 + Co2+ Co3) = V1 - Co1 — Va - Cog — V3 - Co3
L ==Vy-Couu+Vi-(Cop+Cra+Ci3) = Vo - Cra = V3 - C3
Iy=—Vy-Coa = Vi-Cra+ Vo (Coz + Cra + Caz) — V3 - Cos
Iy ==V Co3 = Vi - Ci3 — Vo Coz + Vs - (Coz + Ci3 + Ca3),

and convert into a matrix:

SO _001 _002 _003
- C\’01 Sl - C\’12 _013
- C\’02 _012 S2 _023
- C\’03 _013 - C\’23 53

A=

(3.33)
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0
b=| |, (3.34)

(]

3
where C represents the conductivity, and S is the sum of conductivities for each
node. The multistep algorithm stipulates that we can remove nodes so long as the
removed node is not connected to another node to be concurrently removed. For
this demonstration, we will just remove the middle node (node 0). If we use the
CBW method to produce the restriction operator, we get the following operator:

Co1  Co2 Cos

S50 S0 So
1 0 0

I= ) .
0 1 0 (3.35)
0 0 1
To restrict A we apply the operator:
A=I" AT (3.36)
V=1I"-b (3.37)
Co1-Cos Co1-C
, S{C C —Cip — Col1+0C’02?|-C’03 _013 o C’mé;ocf) Efc'os
S T S O mittes | (339
. . !
—Ci3 — 0014—0&’023?003 —Ca3 — C'01+0é'02?|?003 _53
i1
bV=b= |14 |. (3.39)
i3

So, our conductivity values for our new matrix are:

! C’01 : CO2
=C 3.40
2 2 Co1 + Co2 + Cp3 ( )

y Co1 - Co3
C..=C 3.41
1 18 Co1 + Co2 + Cp3 ( )

Cos - C,

Chs = Chs + ¢ 0 (3.42)

Co1 + Coz + Cos’
and this turns out to be mathematically equivalent to the equivalent circuit resis-
tances we calculated above.

Co1 - Co2 1 1

=+
Co1 +Co2+Cos Ria Rpi+ Rz + %ﬁ%(gm

Cia +

(3.43)
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1
Cla= o (3.44)
12
Co2 - Co3 1 1
Caa + =5+ 3.45
23 Cos + Coz + Co1 Rs3  Roa + Ros + Rolzz;fos ( )
1
Cys = o~ (3.46)
23
Cos - Con 1 1
Cia + === 3.47
13 Cos+Co1 +Co2 Ris Ro3+ Ry + 0;%01501 ( )
1
13 = 2 (3.48)

13
This equivalency works by mathematically grafting two connections of a removed
node into one connection. We eliminate the connections from the removed node and
reconnect the surrounding nodes to each other. We create new connections that are
equivalent to the connections that were eliminated. However, if we were to remove
two nodes that were connected to each other at the same time, this equivalency
will no longer hold. Indeed, the standard coarsening procedure removes multiple
nodes that are connected to each other and therefore the CBW algorithm does not
usually produce coarsened matrices that accurately reflect the original matrix.
When we do enforce the rule of not removing connected nodes in this semicoars-
ening approach prescribed by the multistep method, we see a great improvement
in accuracy. Since this does not remove very many nodes at once, in order to
create coarsened grids that are adequately spaced, we must combine several of

these semicoarsening operators into one operator as described previously.



CHAPTER 4

SIMULATIONS

In the investigation, I evaluated several different weighting schemes for interpo-
lation and restriction of coarsened grids. The transfer operator weighting schemes
I tested included bilinear, connection based weighting (CBW), connection based
weighting with tolerance level (standard), multistep, approximate inverse, and a
hybrid.

This investigation will not evaluate other aspects of multigrid, such as coarse
grid selection, relaxation methods, and stopping criteria. This research is focused on
which transfer operators are most efficient in this particular application multigrid.
This is not an attempt to fully implement the multigrid algorithm for real world
large scale problem sets in a clinically usable application. Although several of the
data sets are from real patients, the importance of this research is the evaluation
of different algorithms for determining the transfer operator for AMG coarsening.
This will potentially allow future researchers to implement the multigrid on the
inverse bioelectric field (and other) problem and easily select a proper coarsening
algorithm for their application.

The two main metrics that we consider are accuracy and speed. Accuracy is
measured as the root mean square (RMS) error between the multigrid solution and
true solution. I also measured the speed of the process, reported by the length of
time each step takes.

There are also different aspects of the multigrid process that can be individually
measured. To test the integrity of the discretization matrix at a coarsened level,
we coarsen to fewer nodes (using one of the given methods weighting schemes),
and then solve on the coarse grid. The solution matrix is also restricted using

the same weighting scheme. Then, we compare the coarsened solution and the



44

solution from the coarse problem for accuracy. This test eliminates inaccuracies
due to interpolation and the accuracy of the restriction operator is measured. This
is a useful metric for comparing the accuracy of a given coarsening scheme on the
matrix versus the vector. This test is referred to as the matriz test.

To test the accuracy of a coarsening scheme on the vector alone, we restrict the
solution vector and then interpolate back to its original size. Then, the interpolated
version is compared to the original for accuracy. This metric reveals restriction and
interpolation accuracy on the vector. This test is referred to as the wvector test.

However, correctly performing multigrid involves more than just solving a coars-
ened version of the original problem, but rather solving for the residual from the
fine grid (Az — b). When the residual is coarsened, the accuracy of coarsening
both the vector and matrix contribute to the overall accuracy. I measured both the
accuracy and the speed of these methods on one multigrid cycle. For true multigrid
evaluation, this test was performed on several cycles, as well.

I also measured multistep multigrid against the solution from an exact inverse
solve using conjugate gradient (with 3n iterations, where n is the number of nodes).
This test demonstrates the rate at which the multigrid algorithm converges to the
most precise solution available from inverse solving. This test was performed only
on test set 1.

This investigation also compares the effect of varying levels of input noise added
to the surface measurement input conditions. I measured the solution error for
conjugate gradient and multistep multigrid algorithms with input noise ranging
from 0% to 20% RMS of surface levels. Multigrid performed five cycles with one
level of coarsening for this test. This was only performed on test set 2.

The choice of the weak connection tolerance (WCT) level, (the relative connec-
tion strength threshold for strong versus weak connections in the standard AMG
algorithm) also affects the system performance. Selecting the tolerance level is a
compromise between accuracy and the space/time constraints. A lower tolerance
level produces a greater number of nonzero entries (see Figure 4.1). This, in turn,

causes slower performance (see Figure 4.2). However, accuracy degrades with a
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Figure 4.1. The number of nonzeros (y-axis) at the coarsest level versus weak
connection tolerance level (x-axis) for test set 2.

higher tolerance level as seen in Figure 4.3. For the majority of the problems the
tolerance level was set to 0.02, but as mentioned above, a greater tolerance level
was used for the largest data set.

Another method supplements the standard method of limiting weak connections
to reduce unnecessary matrix entries. After each restriction, we drop any connection
in the matrix that does not meet a global tolerance level. This is different than
the standard WCT tolerance, as the standard method only drops entries from the
transfer operator matrix, whereas this operation is applied directly to the stiffness
matrix and does not affect the vectors. This method was used for the tests on test
set 8 and the test on test set 2 referred to as the stiffness matrix entry tolerance
(SMET) test. For test set 8, SMET of 321077 was used as the matrix entries are
much smaller. Proportionally, this was approximately the same as the 0.01 SMET

value used on test set 2 (about 1/5000 of the average matrix entry). These tests also
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Figure 4.2. The weak connection tolerance level’s effect on performance. The
setup time and the solve time (y-axis) plotted versus the weak connection tolerance
level on the x-axis for test set 2.

compared traditional solvers. I ran the tests solving with conjugate gradient using
a Tikhonov regularization (with an alpha of 0.02). I also solved using conjugate
gradient on the normal equations with limited iterations for regularization (two
fifths of the eigenvectors were eliminated in lieu of using Tikhonov regularization).
It should be noted that the methods were carried out on the system described in the
methods section, allowing a consistent comparison with the multigrid algorithms.
To view an analysis of how common solvers work on traditional formulations, please
refer to papers, [6,30, 60, 106].

I also measured the scalability of each algorithm. The accuracy and speed was
measured on a range of problems from 300 nodes to 156,728 nodes. These results
are crucial in determining which coarsening schemes are most appropriate, and

whether a mix of schemes is superior for the inverse bioelectric field problem.
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Figure 4.3. The weak connection tolerance level’s effect on accuracy. The error
in the solution (y-axis) plotted versus the weak connection tolerance level on the
x-axis for test set 2.

4.1 Test Procedure

For the test procedure, the algorithms were written in C+-+ and ran on a dual
processor (although, I did not use parallelization) 250Mhz UltraSparc with 768MB
of memory. Some of the tests were performed on other machines, but the results
were scaled to the performance of the UltraSparc. The matrices were stored in
a sparse matrix format. An array corresponding to rows in the matrix held the
matrix data. Each element contained a list of values and column position for each
of the nonzeros within that row. Most of the algorithms were first written and
tested in Matlab before being implemented in C+4. Matlab was used extensively
throughout the tests for vector manipulation and visualization.

I created three test vectors for each test. Test vector creation begins by gener-
ating pseudo heart current sources. For the two-dimensional problems, a vector of

random values was generated (uniform density random variable). Next, the vector
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was smoothed, by averaging each epicardial node with its neighbors, using this
mean as the new value. This cycle was executed twice (an example vector is shown
in Figure 4.4).

For the three-dimensional problems, the first test vector was a linear gradient in
the x direction, the second vector was a linear gradient in the y direction, and the
third vector was a parabolic gradient in z direction, combined with a linear gradient
in the z direction. This is easier to solve than the randomized vectors described for
the two-dimensional problems because of fewer peaks and areas of high gradient,
although the three-dimensional problem is inherently much more difficult to solve.
Next, each of the vectors are normalized to have a sum of zero (subtracting the
mean from each of the values). From the current source values, the voltages are
solved for the entire problem using the conjugate gradient method. This can be
computed without too much difficulty since this is a well-posed forward problem.
The resulting torso values are used as the measurement values for the multigrid
problem and the epicardial voltages are used as the correct solution with which to
measure the error values.

Each test program begins by either reading in the appropriate test matrix from
a file or generating the matrix. Then it reads in the appropriate test vector. In
the next step, the program generates the transfer operators using the selected
coarsening algorithm (bilinear, weighted, etc.). Finally, the chosen multigrid (ma-
trix, vector, one cycle, or multicycle) steps are applied to attempt to solve the
inverse problem. At the coarsest level the linear system is always solved with the
conjugate gradient method. However, with the largest three-dimensional problem
the Tikhonov setup is not used and instead the conjugate gradient for normal
equations with limited iterations for regularization [50, 89| is used instead, in order
to run the tests within a reasonable amount of time. This method was also used
on the smaller three-dimensional problem (test set 2) for the sake of comparison
between the large and small three-dimensional problem to test scalability. This is
not intended to be a comparison of regularization methods.

The final solution is then measured against the epicardial heart voltage values
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Figure 4.4. One of the random vectors used as the for epicardial potentials for
test set 4. The remaining computed potentials are then based upon this test vector.
The x-axis represents position on the heart, y-axis represents potentials.

from the initial solve to determine the accuracy (measured with RMS error). The
last two steps, the multigrid setup and the multigrid solve, are also each timed.
The restriction and interpolation time is also measured for some problems and is
part of the solve time and is calculated by subtracting the coarse grid solve time.

I also recorded how many levels of coarsening were used in the cycle. The
deeper the cycle went, the more difficult to maintain accuracy, as the coarser grids
will introduce more inaccuracies than the fine grids.

I carried out all the tests three times and all the results (errors and times) are
averaged. Not every possible combination of tests, test sets, and measurements
are performed for the sake of brevity. The larger problem test sets have a more

abbreviated set of experiments, due to their much greater run time. Many of
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the tests do not have the multigrid time measurement because it was insignificant
for a problem of that size. Also, the vector and matrix tests do not have time
measurements because these are just subsets of the cycle which is already broken
down into different time measurements. Likewise, tests that include smoothing

operation do not differ in their setup process, so measurements are not retimed.



CHAPTER 5

RESULTS AND DISCUSSION

5.1 Test Sets and Data

This section includes the data results from all the simulations. There were eight
test sets. Each of these test sets represents a different model of the body, varying in
geometry and size. Each test set result includes a description of the test set model
and a table of the results from the simulations. Speed is measured in seconds and
error is percent RMS from the correct value.

The following tables show the test results. The first column in each of the
tables tells whether a vector test, matrix test, or cycle test was executed in the
procedure. If the procedure was a multicycle test, this column tells how many
cycles were performed to achieve the given results. This column also identifies the
tests performed on Krylov subspace iterative solvers. The second column describes
which transfer operator the test utilized for coarsening. Further right, the error
column lists error values from the solution estimate of each test. The fourth column
gives the elapsed time for the setup of the transfer operators and coarsened matrices
and vectors. The fifth column shows the solve time for conjugate gradient on the
coarsest level, and the sixth column gives the processing time for applying the
transfer operator to the vectors. Each section includes a header briefly describing
the preceding tests, and tells how many levels of coarsening the procedure applied
to the problem set.

Test sets for these simulations include:

Test set 1 A two-dimensional torso model with 541 nodes. Of these, there were
60 epicardial nodes, 376 volume nodes, and 105 torso nodes as shown in

Figure 5.1. The potentials on the heart were real measured values. The torso
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Figure 5.1. Mesh used for test set 1.

values were calculated from the forward problem. The inverse problem had an

approximate condition number of 9x10*¢. Tables 5.1 - 5.2 show the simulation

results.

Test set 2 A three-dimensional torso model that was discretized from magnetic

resonance data [74]. It had 7186 nodes and of these, there were 296 epicardial

nodes, 6188 volume nodes, and 702 torso nodes. The stiffness matrix had

95,189 nonzeros. The condition number for the inverse problem was incalcu-

lable for Matlab. Tables 5.3 - 5.4 show the simulation results. Figures 2.2

and 5.2 show the mesh.



Table 5.1. Test set 1 - 541 Nodes

Test ‘ Coarsening method ‘ Error ‘ Setup time ‘ CG time ‘ MG time
1 Level deep tests
1 Cycle | Bilinear 65% | 0.27s 0.55s Insig-
Standard AMG 74% | 0.34s 0.62s nificant
Weighted 63% 0.26s 0.56s
S. AMG w/3 smooths | 52% | 0.26s 0.56s
Multistep 16% | 0.79s 2.18s
Vector | Bilinear 18%
CBW 37%
Standard AMG 33%
Multistep 24%
Matrix | Bilinear 67%
CBW 95%
Standard AMG 98%
Multistep 25%
2 Level deep tests
1 Cycle | Standard AMG 81% | 0.49s 0.62s Insig-
1 Cycle | Multistep 19% | 1.73s 1.59s nificant
2 Cycles | Multistep 11% 3.23s
3 Cycles | Multistep 15% 4.96s
4 Cycles | Multistep 17% 6.60s
5 Cycles | Multistep 17% 8.22
Conjugate gradient with 5.9% 7.87s
Tikhonov regularization
Conjugate gradient with 39% 2.19s
limited iterations
Test of correct convergence: 1 level deep multigrid measured against correct
inverse solve (3n iterations of conjugate gradient)
1 Cycle | Multistep 10.9%
2 Cycles | Multistep 2.37%
3 Cycles | Multistep 1.97%
4 Cycles | Multistep 1.92%
5 Cycles | Multistep 1.91%
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Table 5.2. Test Set 1 - 541 Nodes - Test of error robustness with varying input

noise addition.

Input noise addition ‘ Coarsening method ‘ Error

1 Level Deep - 5 Cycle Tests

0% Multistep 4.8%
5% Multistep 7.9%
10% Multistep 14%
15% Multistep 20%
20% Multistep 26%
Conjugate gradient with Tikhonov regularization
0% Conjugate gradient | 4.3%
5% Conjugate gradient | 9.7%
10% Conjugate gradient | 17%
15% Conjugate gradient | 25%
20% Conjugate gradient | 33%

Table 5.3. Test set 2 - 7186 Nodes - Standard tests

Test ‘ Coarsening method ‘ Error ‘ Setup time ‘ CG time ‘ MG time

1 Level deep tests

1 Cycle | Standard 99.9% | 33.4s 195.1s 0.31s
Bilinear 1100% | 29.95s 198.8s 0.31s
Approximate inverse | 661% | 38.39s 196.9s 0.32s
CBW 109% | 29.37s 195.9s 0.29s
Multistep 54% 1518s 11632s | 0.58s

2 Levels Deep Tests

1 Cycle | Multistep 56% 19653s 24120s 4.82s

Vector | Standard 37%
Multistep 23%

Matrix | Standard 37%
Multistep 56%

Conjugate gradient with 53% 6071s

Tikhonov regularization

Conjugate gradient with 80% 2740s

limited iterations
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Table 5.4. Test Set 2 - 7186 Nodes - Auxillary tests using CGNE for the final

solve.

Test Coarsening | Error | Setup time | CG time | MG time
method

Multigrid 1 Cycle
1 Level deep Multistep | 72% 195.2s 5561s 11.85s
2 Levels deep Multistep | 656% 2734s 72958 18.72s
3 Levels deep Multistep | 80% 11835s 5114s 54.94s
Multigrid cycling test (2 levels deep)
2 Cycles Multistep | 59% 2734s 13079s
3 Cycles Multistep | 66% 19682s
4 Cycles Multistep | 925% 26253s
Smoothing tests (2 Deep)
1 Level deep Multistep | 75% 281.3s 7101s
Postsmoothing 70%
2 Levels deep Multistep | 72% 11112s 23449s
Postsmoothing 70%
2 Levels deep Multistep

Tests measuring varying tolerance levels all performed on 1 cycle with
1 level deep with multistep

Weak connection tolerance (WCT) test

WCT = 0.02 2% 11112s 23449s
WCT = 0.05 75% 9427s 12342s
WCT = 0.1 61% 2648s 6032s
WCT = 0.15 80% 1431s 3323s
WCT = 0.2 281% 872.5s 1888s
WCT = 0.3 275% 404s 819.2s
Varying stiffness matrix entry tolerance (SMET) test with (WCT = 0.1))
SMET = 0.001 68% 281.6s 743.5s
SMET = 0.01 68% 136.5s 450.3s
SMET = 0.05 69% 70.13s 281.0s
SMET = 0.1 100.2% | 50.53s 219.1s




Figure 5.2. Interior view of the model for test set 2.
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Test set 3 The forward bioelectric field problem computed on the same model

used in test set 2. These tests were based on a given vector of epicardial
potentials and measured the iterative solvers estimate of the solution on the

torso against a direct forward solve. Table 5.5 shows the simulation results.

Test set 4 A two-dimensional model with 300 nodes. Of these, there were 40

epicardial nodes, 200 volume nodes, and 60 torso nodes as shown in Figure
5.3. This problem was created by generating nodes in concentric circles. Each
node had a random value included in its cartesian coordinates and its position
determined connected nodes. Nodes that were within a defined distance,
and which would not cause connection overlap were connected, maintaining
a proper triangular discretization. The stiffness matrix had 1400 nonzero
entries and the inverse solve had an approximate condition number of 1x10°.

Table 5.6 shows the simulation results.

Test set 5 Thesame model as test set 4, except it was composed of 1195 nodes, of

which there were 120 epicardial nodes, 995 volume nodes, and 80 torso nodes.
The stiffness matrix had 6966 nonzero entries and the inverse solve had an
approximate condition number of 3x10!3. Table 5.7 shows the simulation

results.

Table 5.5. Test set 3 forward problem - 7186 Nodes

Test

‘ Coarsening method ‘ Error ‘ Setup time ‘ CG time ‘ MG time

1 Level deep tests

1 Cycle | Bilinear 11% | 3.51s 26.62s 0.29s
Standard 21% | 7.99s 25.58s 0.27s
Approximate inverse | 10% | 13.05s 26.72s 0.27s
CBW 31% | 13.05s 26.72s 0.27s
Multistep 3.1% | 27.85s 960.1s 0.34s




Figure 5.3. Mesh constructed for test set 4.

Table 5.6. Test set 4 - 300 Nodes

Test ‘ Coarsening method ‘ Error ‘ Setup time ‘ CG time ‘ MG time

1 Level deep tests

1 Cycle | Multistep 9.2% | 0.35s 0.56s Insig-
Multistep w/ 3 smooths | 9.3% 0.58s nificant
CBW 29% | 0.10s 0.10s
Bilinear 21% | 0.10s 0.9s
Standard 24% | 0.15s 0.11s
Standard w/ 3 smooths | 22% 0.11s
Approximation 20% | 0.20s 0.11s

Conjugate gradient with 16% 2.35s

Tikhonov regularization

Conjugate gradient with 34% 0.73s

limited iterations




Table 5.7. Test set 5 - 1195 Nodes

Test ‘ Coarsening method ‘ Error ‘ Setup time ‘ CG time ‘ MG time
1 Level deep tests
1 Cycle | Multistep 10% | 3.19s 19.73s
Multistep w/ 3 smooths | 10% 20.18
CBW 23% | 0.43s 2.03s
Bilinear 20% | 0.45s 2.06s
Standard 18% | 0.68s 2.08s
Standard w/ 3 smooths | 17% 2.11s
Approximation 19% | 0.85s 2.32s 0.04s
Vector | Multistep 17%
CBW 17%
Bilinear 16%
Standard 19%
Approximation 17%
Matrix | Multistep 19%
CBW 28%
Bilinear 20%
Standard 23%
Approximation 29%
Conjugate gradient with 12% 49.72s
Tikhonov regularization
Conjugate gradient with 32% 14.51s
limited iterations
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Test set 6 The same model as test set 4, except it was composed of 2692 nodes,
of which there were 180 epicardial nodes, 2392 volume nodes, and 120 torso
nodes as shown in Figure 5.4. The stiffness matrix had 16,745 nonzero entries
and the inverse solve had an approximate condition number of 5x10'°. Table

5.8 shows the simulation results.

Test set 7 The same model as test set 4, except it was composed of 4789 nodes,
of which there were 240 epicardial nodes, 4389 volume nodes, and 160 torso
nodes. The stiffness matrix had 30,724 nonzero entries. The inverse problem
had an approximate condition number of 5x10'® and the forward problem had
an approximate condition number of 1x103. Table 5.9 shows the simulation

results.

Test set 8 The same torso model as test set 2, except it was a higher resolu-
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Figure 5.4. Mesh constructed for test set 6 problem.



61

Table 5.8. Test set 6 - 2692 Nodes

Test | Coarsening method | Error | Setup time | CG time | MG time
1 Level deep tests
1 Cycle | Multistep 18% | 8.70s 113.20s
Multistep w/ 3 smooths | 15% 129.95s
CBW 30% | 1.12s 11.84s
Bilinear 25% | 1.09s 11.91s
Standard 25% | 1.45s 11.45s
Approximate inverse 22% | 2.03s 13.00s 0.10s
Standard w/ 3 smooths | 25% 11.59s
Conjugate gradient with 15% 275.85s
Tikhonov regularization
Conjugate gradient with 30% 79.74s
limited iterations

tion model and composed of 156,728 nodes, 4735 of which were epicardial
nodes, 146,937 volumes nodes, and 3056 torso nodes. The stiffness matrix
had 2,463,486 nonzero entries. The inverse problem’s condition number was
incalculable by Matlab. The full set of tests were not run on this test set.
To test scalability, I ran only a multistep and bilinear test. In addition, the
test was broken into each level to see the speed and accuracy at every depth.
The main test was a seven level deep test, with each of the deeper levels
tested for one depth of coarse grid correction. The lower depths could not be
tested as they would take too long. One test was performed with a complete
one multigrid cycle with three levels of coarsening. Table 5.10 shows the

simulation results.

5.2 Discussion
The data from this research show that different algorithms perform better in
different situations. No one method proves itself to be better than the others all the
time. The multigrid algorithms with a single v-cycle performed very competitively
with the conjugate gradient methods in accuracy, and show potential for good

scalability as seen in Figure 5.5.



Table 5.9. Test set 7 - 4789 Nodes

Test | Coarsening method | Error | Setup time | CG time | MG time
1 Level deep tests
1 Cycle | Multistep 15% | 18.29s 471.42s
Multistep w/ 3 smooths | 13% 451.04s
Multistep bilinear 34% | 24.45s 539s 0.23s
Multistep CBW 12% | 24.03s 543s 0.31s
CBW 24% | 2.06s 41.79s
Bilinear 23% | 2.00s 41.52s
Standard 22% | 2.91s 40.79s
Approximate inverse 22% | 3.84s 44.23s 0.14s
Standard w/ 3 smooths | 22% 41.14s
Vector | Multistep 16%
Multistep bilinear 12%
CBW 17%
Bilinear 16%
Standard 19%
Approximate inverse 15%
Matrix | Multistep 21%
CBW 29%
Bilinear 31%
Standard 31%
Approximate inverse 35%
2 Levels deep tests
1 Cycle | Multistep 14% | 24.03s 556s 0.31s
2 Cycles | Multistep 10% 1090s
3 Cycles | Multistep 9.1% 1642s
4 Cycles | Multistep 8.4% 2197s
5 Cycles | Multistep 8.0% 2750s
Conjugate gradient with 13% 906.32s
Tikhonov regularization
Conjugate gradient with 29% 262.69s
limited iterations




Table 5.10. Test set 8 - 156,728 Nodes

Test Coarsening | Error | Setup time | CG time | MG time
method

1 Cycle Multistep 19,2525

7 Deep

The test is broken down into each step

Depth 1 4750s

Depth 2 11,908s

Depth 3 23,4125

One deep coarse grid correction with given coarse grid solve depth

Depth 4 106% | 14,337s 144,671s | 27.68

Depth 5 87% | 24,586s 74,869s | 19.14s

Depth 6 85% | 8458s 41,340s | 14.08s

This a full depth test

3 Deep - 1 Cycle 88% 327,161s | 153.7s

1 Cycle Bilinear

1 Deep 908% | 139.1s 35,573s | 7.90s

2 Deep 166% | 426.9s 1276s 22s

3 Deep 97% | 672.8s 12.13s 28.6s

63
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Figure 5.5. Performance scalability for multistep multigrid. Multigrid setup time
(y-axis) in seconds is plotted versus the number of nodes on the x-axis for problems
solved using the multistep algorithm on test sets 4-7.

Figures 5.6 - 5.12 depict the potentials through the torso of the two-dimensional
slice in test set 1 as multigrid executed each cycle and converged closer to the
correct solution. This example used a random vector for epicardial potentials and
a forward solution determined the simulated measured torso potentials input. This
test utilized the multistep transfer operator. The error decreased significantly with
each cycle in these figures, and a careful inspection also reveals smoother estimates
and errors after each smoothing step. This example also illustrates the spatial
smoothing and attenuation of potentials that occurs within the body.

Among the multigrid coarsening methods, the multistep method was most
accurate, while the bilinear method was fastest. For example, on test set 2,
multistep multigrid was the only multigrid algorithm sufficiently accurate to achieve
convergence. However, for the same test set, bilinear finished approximately 28

times faster. Generally, the bilinear method performed well, especially on the vector
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Figure 5.6. Test set 1 after one cycle (no smoothing). The colors represent
potentials throughout the torso.

manipulation. The hybrid methods of combining different weighting schemes with
the multistep method did not perform as well as the default choice of standard AMG
weighted multistep. The conjugate gradient method was robust and predictable,
albeit with a performance penalty when used with larger problems.

Multigrid methods show positive results, especially with single cycle tests, but
unfortunately, the multigrid algorithms did not always continue to converge quickly
and for the larger, more difficult problems, multigrid algorithms began to diverge
after a few v-cycles, while the conjugate gradient continued to converge and remain
stable. Although, with the large three-dimensional problems, all the algorithms
performed poorly, most likely due in part to extreme ill-conditioning of the matrix

without finely tuned regularization.
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Figure 5.7. Test set 1 after one cycle (no smoothing). The colors represent the
error in the computation (15% RMS error).
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Figure 5.8. Test set 1 after one cycle and postsmoothing (with three smooths).
The colors represent potentials throughout the torso.
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Figure 5.9. Test set 1 after one cycle and postsmoothing (with three smooths).
The colors represent the error in the computation (13% RMS error).
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Figure 5.10. Test set 1 after three cycles (three smooths per cycle). The colors
represent potentials throughout the torso.
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Figure 5.11. Test set 1 after three cycles (three smooths per cycle). The colors
represent represent the error in the computation (5.6% RMS error).
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Figure 5.12. Test set 1 correct solution. The colors represent potentials through-
out the torso.
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With the smaller test set 1, after three cycles we had a close approximation to
the solution, but with the larger test set 2, after three cycles, significant divergence
occurred. This is because of the inability of the smoother to assist in convergence.
The smoother must be able to reduce high-frequency error, but the Gauss-Seidel al-
gorithm that I used was ineffective on the very ill-conditioned problems. The results
show that the error measurements for postsmoothing do not exhibit substantially
less error than the presmoothing error. The importance of an effective smoother
becomes greater with deeper coarsening. Solution approximation relies mostly on
the coarse grid solve with solves that do not use many coarse grid layers, but as
the coarse grids go deeper the solution becomes more dependent on the smoothers
ability to converge towards a solution. This is one of test set 8's major hindrances
toward achieving high accuracy results. Deep coarse grids are a necessity with such
large test sets and therefore it is unavoidable to incur an accuracy penalty without
effective smoothing. An effective smoother must be able to quickly iterate towards
an accurate estimate of the relative values of neighboring nodes. That is, the
smoother must rapidly eliminate high frequency error in the estimate. Gauss-Seidel
did not do this adequately with the inverse bioelectric field problem.

We can see a clear tradeoff between accuracy and computational efficiency with
the multistep algorithm compared with the other weighted algorithms (Figure 5.13).
The multistep is definitely more accurate. In general, the multistep algorithm
roughly halved the error in the coarse grid correction. However, this advantage
came with substantial slowing. The setup process involves a greater number of steps
to perform the interpolation operator which caused this step to take approximately
eight times as long to complete. The multistep approach also causes a drastic
increase in the number of nonzeros in the coarsened matrices. The increased number
of nonzeros raised the solve time by a factor of approximately 10.

When performing calculations on the simpler, well-conditioned two-dimensional
problems (and forward problems as they are much more well-conditioned) the
superior speed of the single step approaches are certainly more desirable. The

approximate inverse and bilinear approach were the most accurate methods on
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Figure 5.13. The tradeoff between accuracy and performance of the different
algorithms. Setup time and solve time in seconds (y-axis) are plotted versus the
percentage error in the solve on the x-axis for the different algorithms applied to
test set 7.

the well-conditioned problems, although the bilinear method would probably be
preferable because of its speed. Part of the bilinear effectiveness was due to its
accuracy with the vector interpolation. As the problems grew in difficulty the
standard approach become very competitive, but bilinear still proved to be a winner
for the easier problems. However, with the more difficult ill-conditioned problems,
the improved accuracy of multistep approach is the only viable method for multigrid
to converge. The slower performance of multistep must be tolerated. While slower
performance is one obstacle we are trying to overcome with this algorithm, once
again, note that if linear O(n) convergence can be maintained, then even this
decreased performance will be faster than other non-multilevel algorithms on large

datasets.
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5.3 Scalability

The scalability of a near O(n) algorithm is a significant reason for using multi-
grid. So the question arises, does multigrid continue to scale linearly with the
inverse problem? If we look at the generated problems we get a sampling of sizes
over about a factor of 23. Figures 5.14 and 5.5 show the setup time as the number
of nodes increase. Figure 5.14 is with the standard AMG algorithm and Figure 5.5
is with the multistep algorithm. Both of the plots only slightly deviated from a
straight line through the origin.

From these plots, we can see that the setup time and the multigrid process-
ing time (apart from the conjugate gradient final solve) were proportional to the
number of nodes. For example, with simple bilinear weighting the setup processed
approximately 250 nodes per second and the multigrid steps went through about

30,000 nodes per second per cycle. On the other hand, the conjugate gradient
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Figure 5.14. Performance scalability for standard multigrid. Multigrid setup
time in seconds (y-axis) is plotted versus the number of nodes (x-axis) for problems
solved using the multigrid standard algorithm on test sets 4-7.
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method followed the expected O(n?) time for convergence (see Figure 5.15). For
this reason, I did not run conjugate gradient on the largest test set, as it would
take approximately 3.4 million seconds, or 40 days to finish with the computer I
was using.

One drawback to the multistep algorithm is that a large number of nonzeros are
retained or accumulated in the coarsened matrix as the coarsening deepens. This
means the final solve and smoothing steps are slower. However, each step in an
iterative solver is proportional to the nonzeros in the A matrix. The number of
nonzeros is linearly proportional to the size of the A matrix as we scale up, so the
relaxation steps still retain O(n) speed. Generally, the final solve is performed at
the coarsest level and the multigrid coarsens until a certain size limit is achieved.
Therefore, the final solve is usually solvable in constant time. If an iterative solver
is used for the final solve, with most of the nonzeros being retained as the algorithm

coarsens, the final solve becomes slower as the problem scales larger. For conjugate
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Figure 5.15. The solve time (y-axis) versus the number of nodes (x-axis) in the
problem using the conjugate gradient algorithm for test sets 4-7.
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gradient the time is proportional to the number of nonzeros (plus m, but the
contributions of nonzeros form the dominant term) multiplied by n (the size of
the matrix). But, we see that with n assumed constant (n being the size of the
final coarsened matrix, is approximately constant as long as the final solve coarsens
to within a given maximum size), and the nonzeros will be proportional to the
initial problem size, because the number of connections for each node does not
change with the problem size. Therefore, the solve time will remain linear, and we
continue to avoid any step that would prevent O(n) convergence.

With the large scale dataset (test set 8), we begin to see that the time is not the
only cost with the nonzero accumulation, but that memory space becomes an issue.
In Figure 5.16, we can see growth of the nonzeros even though the nodes reduce.
The graph is based on a tolerance level of 0.3 for the standard AMG algorithm used

with the multistep approach. This tolerance level was necessary to stay within the

16

\ —— x50 nonzeros
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Figure 5.16. The number of nodes and the number of nonzeros (y-axis) versus
the depth (x-axis) during the coarsening steps for test set 8.
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memory limits (2 Gigabytes).

The multiplication of AT with A before adding the Tikhonov regularization
(from equation 3.12) is another time-consuming step with my implementation
that must be performed at the coarsest level before the conjugate gradient solve.
This step involves a matrix-matrix multiplication. The time required for such a
multiplication is proportional to the number of nonzeros squared divided by n (the
size of the matrix). With a sparse diagonal only matrix this would breakdown
to O(n), and with a fully dense matrix this becomes O(n®) because the nonzeros
equals n2. Since the number of nonzeros cannot be greater than the square of the

size matrix (nz is the number of nonzeros and n is the size of the matrix):

nz> <n (5.1)
So we can write:
2
ne <nz-m (5.2)
n

Therefore, in theory, the matrix-matrix multiply will always be faster than the
conjugate gradient process, so the O(n) term remains dominant. However, due
to inefficiencies in my implementation, I did not perform this step with larger
matrices, and instead used the faster and more efficiently implemented conjugate
gradient normal equation solving algorithm.

The comparison test between multigrid and conjugate gradient solutions on
test set 1 depicted how closely multigrid converged to the exact conjugate gradient
Tikhonov solution. With one deep coarsening, multigrid converged to solution 2%
different than the conjugate gradient solution. However, using multigrid with two
deep coarsening showed convergence to a solution approximately 15% different from
the exact Tikhonov solution.

The error in the problems rose slightly with the increase in number of nodes
(see Figure 5.17). However, this small aberration is most likely related to the
greater ill-conditioning associated with the larger problems and does not appear
to indicate a convergence rate that is node size dependent, or at least not to the

degree to diverge significantly from O(n) convergence.
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Figure 5.17. The effect of problem size on accuracy. The error in the solution
(y-axis) is plotted versus the number of nodes (x-axis) for test sets 4-7

Also, the test of varied measurement noise showed the solution error of multigrid
increased linearly in relation to the addition of noise to the surface initial conditions.
In addition, multigrid demonstrated a greater accuracy than conjugate gradient
when the additive noise levels were increased. With 20% RMS error added to
the torso initial conditions, multigrid converged to 26% error after five cycles and

conjugate gradient converged to 33% error.

5.4 Future Work
Fully implementing multigrid to effectively solve the inverse bioelectric field
problem is a large and involved project that will most likely require the most ad-
vanced multigrid techniques, parallelized implementation, and advanced hardware.
This research is the first step to achieving this goal.
For convergence, it is necessary to implement a robust, accurate smoother

that can reduce high-frequency error on an ill-conditioned problem. The lack of
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such a smoother in this study, resulted in the multigrid diverging after several
iterations for the larger test sets (2 and 8). While the multigrid successfully reduced
low-frequency error in the beginning cycles, with very little high-frequency error
reduction, stability was difficult to sustain. Smaller test sets had reasonable success
with the Gauss-Seidel smoothing (see Figures 5.6 - 5.12 for a full sequence of the
potential values in test set 1 progressing through a multigrid cycle), but for larger,
more ill-conditioned problems, improved smoothers are necessary.

In order to achieve true scalability, an improved method of dropping connections
during grid coarsening must be applied. With the matrix density becoming an
important issue with larger datasets, it would be beneficial to be able to intelli-
gently eliminate smaller, fewer important entries and adjust the remaining entries
to maintain accuracy. As mentioned earlier, with the standard algorithm, the
higher tolerance levels for categorizing connections into weak connections causes
the accuracy of transfer operator to suffer greatly. To apply this approach with
large datasets, with reasonable memory constraints, further research is needed for
a method of deciding which connections will have the least effect on the system
when dropped, and how adjacent connections can be altered to compensate for the
dropped connections.

Multigrid’s main advantage is its scalability and, therefore, is most needed in
problems with a large number of nodes. In order for multigrid to truly be a high
performance algorithm, it must be programmed to run on multiple processors. For-
tunately, all aspects of multigrid work in a local manner and therefore it inherently
works efficiently in a parallel structure. The grid can be broken up into blocks
for every step of multigrid, including coarsening, interpolation, restriction, and
smoothing. The one exception is the coarsest level solve. This depends on what
method one uses to perform this solve. If you use a serial solver, with a parallelized
implementation, using many levels of coarsening to achieve a very coarse deep level
would lead to a quicker coarse level solve. Of course, programming a complex
algorithm in parallel is more difficult and dealing with boundaries between blocks

adds to the programming difficulty.
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There are a number of optimizations that can be utilized to enhance perfor-
mance. Research should be performed on optimizing the parameters for multigrid.
There are different tolerance levels (strong versus weak connections, and stiffness
matrix entry) that can be adjusted; the regularization parameters can also be
adjusted. Also, different numbers of semicoarsened sublevels for each multistep
level could be tested. In addition, there are different coarse grid selections schemes
that could be researched (for the creation of the coarse grid goal for the multistep
approach). Another important contribution would be to determine an appropriate

stopping criteria for the multigrid cycles.

5.5 Conclusion

My research introduces an approach to implementing algebraic multigrid for the
inverse bioelectric field problem. This involves a specific formulation of the surface
to surface equation with regularization and a corresponding algebraic multigrid
implementation designed to work with this problem, using separate stiffness and
geometry matrices. This work shows how this approach can be applied to smaller
problems and achieve promising results. My initial work on this implementation has
been published in a joint work with Chris Johnson, Marcus Mohr, Ulrich Riide, and
Alexey Samsonov for the Yosemite Workshop on Multilevel Methods in 2001[65].

In addition to detailing an algebraic multigrid implementation, a multistep
approach has also been described to handle the coarse grid correction inaccuracies
introduction with the ill-conditioned matrices. While the choice of a transfer
operator is a tradeoff between accuracy and computational efficiency, the multistep
approach I have described shows a significant improvement in accuracy, but at a
large performance cost. With sensitive ill-conditioned problems like the inverse
bioelectric field problem, this tradeoff needs to stress accuracy more than in typical
applications of multigrid. Most applications of multigrid do not require this level
of accuracy and the multistep algorithm will only slow the process down, but this
algorithm effectively deals with the sensitivity of the inverse bioelectric problem

and makes it possible to solve using multigrid.
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Multigrid proves useful in a large number of scientific computing arenas such
thermodynamics, fluid dynamics, and radiation simulation. In the bioengineering
arena, the treatment of a number of major medical issues would benefit greatly from
informative diagnosis assistance from accurate internal data through non-invasive
electrocardiography and electroencephalography tests. With multigrid successfully
applied in this field, the increase in speed and accuracy could be a significant
contribution to the treatment of a number of medical problems. Hopefully, these
findings will allow researchers to wisely choose transfer operators so that multigrid

may be used to efficiently solve the inverse bioelectric field problem.
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