
1

Large Scale Biomedical Modeling and Simulation From

Concept to Results

C.S. Henriquez, C.R. Johnson, K.A. Henneberg, L.J. Leon, and A.E. Pollard

UUSCI-1995-001

Scientific Computing and Imaging Institute
University of Utah

Salt Lake City, UT 84112 USA

1995

Abstract:

The complexity of biomedical modeling problems advances concurrently with the state of the art in
high performance computing. Many problems of interest are moving beyond the capability of the
single workstation environment and investigators are finding the need to use supercomputers with
more memory and greater performance to run their simulations. The tasks of large and small scale
modeling are generally the same. First, the appropriate numerical method for the given problem
must be determined. This choice involves a number of factors including which computing environ-
ment will be used. Once a method has been chosen and the solution domain has been discretized,
the method must be designed, coded and optimized to fully utilize the power of vector and/or
parallel processing. The algorithm must include features to manage large amounts of numerical
output and extract one, two, and three-dimensional variables for postprocessing and meaningful
visualization. This chapter examines large scale biomedical computing in a supercomputer envi-
ronment. The main focus is on problems in the areas of model development, implementation and
optimization, data management and visualization that are likely to differ from those encountered
in a single-processor workstation environment.

Large Scale Biomedical Modeling and Simulation�
From Concept to Results

by

C�S� Henriquez�� C�R� Johnson�� K�A� Henneberg�� L�J� Leon��

and A�E� Pollard�

� Department of Biomedical Engineering� Duke University� Durham� N�C� ������ � Departments

of Computer Science� Bioengineering� and Mathematics� University of Utah� Salt Lake City� UT

��		�� � Institute of Biomedical Engineering� University of Montreal and Ecole Polytechnique�

Montreal� Quebec� Canada� H
C
J�� � Department of Biomedical Engineering� Tulane University�

New Orleans� LA� and The Cardiovascular Research and Training Institute� University of Utah�

Salt Lake City� UT ��		��

Abstract

The complexity of biomedical modeling problems advances concurrently with the state of the art in

high performance computing� Many problems of interest are moving beyond the capability of the sin�

gle workstation environment and investigators are �nding the need to use supercomputers with more

memory and greater performance to run their simulations� The tasks of large and small scale mod�

eling are generally the same� First� the appropriate numerical method for the given problem must be

determined� This choice involves a number of factors including which computing environment will

be used� Once a method has been chosen and the solution domain has been discretized� the method

must be designed� coded and optimized to fully utilize the power of vector and�or parallel processing�

The algorithm must include features to manage large amounts of numerical output and extract one�

two� and three�dimensional variables for postprocessing and meaningful visualization� This chapter

examines large scale biomedical computing in a supercomputer environment� The main focus is on

problems in the areas of model development� implementation and optimization� data management

and visualization that are likely to di�er from those encountered in a single�processor workstation

environment�

� Introduction

Academic scienti�c computing has changed dramatically over the past decade� In the early eighties�

most computing was performed on large centralized mainframes� maintained by the university or

a group of universities� These systems were plagued with awkward operating systems� poor or

absent facilities for displaying data and restricted remote access� As personal computers became

more popular� there was a drive to provide a desktop environment for scienti�c computing� The

user bene�ted from the reduction of job turn around time and an increased ability to visualize

and manipulate data� By the late eighties� workstations were on the market with computing

power greater than the typical mainframe used at the beginning of the decade� However� the

decentralization of computing resources put a greater burden on the users to manage and maintain

the hardware and software� Without University cost�sharing� individual labs found it di�cult to

improve their resources to meet their rapidly changing needs�

Over the last few years� there has been a signi�cant attempt to standardize operating systems�

improving the portability of algorithms and tools from machine to machine� and to provide a fast

communication network to connect the user to machines and other users across the globe� These

two factors have lured many users back to a modernized mainframe environment comprised of

supercomputers with large memories and special architectures to excel in �oating point operations�

With improved networking� the workstation can serve as both a local computing resource for

algorithm development and as a terminal for accessing remote supercomputers running memory

and operation intensive simulations� While the mainframe has enjoyed a comeback of sorts� some

believe it is short lived� These supercomputers are expensive to purchase and operate and thus

general access is limited� The supercomputer environment of the future for academic research is

expected to exploit the growing numbers of faster and relatively inexpensive workstations within

the university� Software tools like Linda and PVM are being developed that permit networked

workstations to operate as an e�ective parallel computer� Although the communication between

processors is slower than on dedicated parallel machines� the performance of a modest number of

workstations is expected to approach that of the largest mainframe supercomputer�

In a recent review article� Board �	
 notes that as a group� biomedical researchers have been

slower to take advantage of supercomputers than scientists in other scienti�c and engineering dis�

ciplines� However� it has been increasingly evident that the size and scope of biomedical models

are moving beyond the capabilities of current single workstation technologies and will demand that

biomedical modelers take greater advantage of vector or parallel processing to reduce the compu�

tation time of their simulations� Unfortunately� even with greater standardization� the transition

from a workstation to a supercomputer environment is not always easy or straightforward� Su�

percomputers� from the expensive mainframe to the cluster of networked workstations� have not

only expanded what we can model but also changed how we must model� Some of the increased

performance of these machines is obtained by using hardware like vector processors that prefer cer�

tain program constructions� Hence� existing algorithms usually must be rewritten or restructured

to take maximal advantage of the special architecture� In a parallel or distributed environment�

algorithms must be constructed to distribute the load and minimize wait times between individual

processor computations� Large scale applications usually involve a vast amount of data transfer

and manipulation� Researchers often �nd their local resources are inadequate to store or visualize

the large data sets generated by large scale simulations and must seek alternatives� The goal of this

chapter is to aid the transition from the single workstation to a supercomputer environment for

large scale simulation and modeling� We will discuss some of the expected problems and provide

some possible solutions in the areas of model development� implementation and optimization� data

management and visualization�

� Approximation Methods

With the increasing availability of high performance computers� it is possible to more accurately

represent anatomical structures in physiological models� Figure � illustrates a model for the com�

putation of electrocardiographic potentials on the body surface �the forward problem� and on the

epicardium �the inverse problem�� Although this particular model was designed for solving bioelec�

tric �eld problems� it is apparent that models of similar complexity are often required in problems

arising in for example biomechanics �	
� ��
� ���
� ��	
� �	

� ���
� ���
� ���
� ���
� ���
�

Due to the complexity of the geometry and the numerous inhomogeneities� this type of model

is only tractable if numerical approximation methods such as the Finite Di�erence �FDM�� the

Finite Element �FEM�� and the Boundary Element �BEM� methods are used� Consequently� we

have chosen to limit our discussion in this chapter to the large scale implementation of these

approximation schemes�

σF

σM

σB
σH

σLσL

Figure �� Cross section of human torso with heart� lungs� skeletal muscle and fat outlined� Each

material has unique electrical conduction properties�

For the purpose of identifying modeling issues common to many simulation studies in biomedical

engineering� we consider a bioelectric boundary value problem easily associated with the torso model

illustrated in Figure �� Assuming a model for the bioelectric sources in the heart is known� we will

consider the problem of evaluating the potential distribution in the torso and on the body surface�

Regions in the thorax containing active sources are governed by Poisson�s equation�

r � ��r�� � �Iv in �H ���

where � denotes the potential distribution and Iv denotes the volume source within the heart� �

is the conductivity tensor and �H represents the domain of the heart� In regions with no sources

�e�g� lungs� skeletal muscle and fat� Poisson�s equation simpli�es to Laplace�s equation�

r � ��r�� 	
 in �i ���

where �i denotes the source free regions� The distinction between regions with and without sources

is natural when a solution approach based on integral equations �e�g� the boundary element method�

is chosen because Green�s second identity can be applied to each homogeneous region� The solutions

in the subregions are constrained by the conditions of continuity in potential and current at the

interfaces between inhomogeneities� If a volume discretization method such as the �nite element

method is used� the subdivision into homogeneous subdomains is not required because the �nite

element method can handle inhomogeneous material poperties very elegantly� In the latter approach

it is therefore more tractable to model the entire thorax as a single domain governed by Poisson�s

equation and include the inhomogeneities in the conductivity tensor�

The boundary value problem above only serves to illustrate that the numerical method chosen

for the problem must be able to deal with complex shapes� anisotropic material properties� domain

decomposition� and varying degrees of inhomogeneity �i�e� large homogeneous regions bounded

by strongly heterogeneous regions with continuously changing anisotropic conductivity tensors��

These requirements stem from the complexity of the body and are typical in electrical as well as

other types of biomedical problems� Many researchers have found that commercial FE and BE

packages are inadequate for solving biomedical problems and are often forced to write their own

algorithms� These algorithms usually take many months to write and debug and are often platform

speci�c� Although each of the numerical methods has its own advantages and disadvantages for a

particular problem� user experience and the availability of existing algorithms may greatly in
uence

the choice of a particular method� In this section we discuss each of these methods and examine

those features within each method that will likely require special attention when implemented on

a supercomputer� Ultimately� the method �or methods� chosen must be able to solve a set of

partial di�erential equations in a heterogeneous domain� however� in the interest of keeping this

chapter reasonably short and general� we will only consider Poisson�s equation ��� in the subsequent

discussion of numerical methods�

��� The Galerkin Method

The sample problem in ��� can be solved using any of these approximation schemes� All three

techniques �FEM� FDM� and BEM� can be derived by the Galerkin method for the discretization

of the spatial portion of the time�dependent parabolic problem� To express our problem in a

Galerkin form� we begin by rewriting ���� as�

A� 	 �Iv ���

where A is the di�erential operator� A 	 r � ��r�� An equivalent statement of ��� is� �nd � such

that �A��Iv��� 	
� Here� � is an arbitrary test function� which can be thought of physically as a

virtual potential �eld� and the notation� ���� ��� �
R
�
���� d�� denotes the inner product in L�����

i�e� the space of square integrable functions� Applying Green�s theorem� we can equivalently write�

��r��r��� h
��

�n
��i 	 ��Iv��� �
�

where the notation h��� ��i �
R
S ���� dS� denotes the inner product on the boundary S� When the

Dirichlet� � 	 �� and Neumann� �r� � n 	 � boundary conditions are speci�ed on S� we obtain

the weak form of ���

��r��r�� 	 ��Iv��� ���

It is understood that this equation must hold for all test functions� �� which must vanish at the

boundaries where � 	 ��� The Galerkin approximation � to the weak form solution � in ��� can

be expressed as

��x� 	
NX
i��

�i�i�x� ���

The trial functions �i� i 	 �� �� � � � � N form a basis for an N�� dimensional space S� We de�ne the

Galerkin approximation to be that element � � S which satis�es

��r��r�j� 	 ��Iv� �j� ���j � S� ���

Since our di�erential operator A is positive de�nite and self adjoint �i�e�� �A���� � ������ � �

for some non�zero positive constant � and �A���� 	 ��� A��� respectively�� then we can de�ne a

space E with an inner product de�ned as �����E 	 �A���� � a����� and norm �the so�called

energy norm� equal to

k�kE 	 f

Z
�

�r���d�g
�

� 	 �����
�

�

E ���

The solution � of ��� satis�es

�A�� �i� 	 ��Iv� �i� ���i � S� ���

and the approximate Galerkin solution obtained by solving ��� satis�es

�A���i� 	 ��Iv� �i� ���i � S� ����

Subtracting ��� from ���� yields

�A��� ��� �i� 	 ��� �� �i�E 	 � ���i � S� ����

The di�erence � � � denotes the error between the solution in the in�nite dimensional space V

and the N � � dimensional space S� Equation ���� states that the error is orthogonal to all basis

functions spanning the space of possible Galerkin solutions� Consequently� the error is orthogonal

to all elements in S and must therefore be the minimum error� Thus the Galerkin approximation is

an orthogonal projection of the true solution � onto the given �nite dimensional space of possible

approximate solutions� This leads to the statement that the Galerkin approximation is the best

approximation in the energy space E� Since the operator is positive de�nite the approximate

solution is unique� Assume for a moment there are two solutions� �� and ��� satisfying�

�A��� �i� � ��Iv� �i� � �A��� �i� � ��Iv� �i� ���i � S� �	
�

respectively� then the di�erence yields�

�A��� � ���� �i� � �A��� �i� �
 ���i � S� �	��

The function �� � �� � �� arising from subtracting one member from another member in S also

belongs in S� hence �� can be expressed by the set of A orthogonal basis functions spanning S�

�� �
NX

j��

��j�j �	��

Thus� inserting �	�� in �	�� yields�

NX

j��

��j�A�j � �i� �
 ���i � S� �	��

When i �� j� the terms vanish due to the basis functions being orthogonal with respect to A� Since

A is positive de�nite�

�A�i� �i� �
 i �
� � � � � N �	��

Thus� ��i �
� i �
� � � � � N � and by virtue of �	�� �� �
� such that �� � ��� The identity

contradicts the assumption of two distinct Galerkin solutions� thus the proof of uniqueness is

complete�

��� The Finite Di�erence Method

Perhaps the most traditional way of solving �	� using the �nite di�erence approach is to discretize

the solution domain � using a grid of quadrilaterals �for
D� or cubes �for �D�� The coordinates of

a typical grid point are x � lh� y � mh� z � nh �l�m� n � integers�� and the value of ��x� y� z� at a

grid point is denoted by �l�m�n� Taylor�s theorem is then used to provide the di�erence equations�

For example�

�l���m�n � ��� h
��

�x
�

	

h�

���

�x�
�

	

�
h�

���

�x�
� � � ��l�m�n �	��

with a similar equations for �l���m�n��l�m���n��l�m���n����� The �nite di�erence representation of

�	� is�

�l���m�n�
�l�m�n ��l���m�n

h�
�

�l�m���n�
�l�m�n � �l�m���n

h�
�

�l�m�n���
�l�m�n � �l�m�n��

h�
� �Il�m�n�v� �	��

or equivalently�

�l���m�n� �l���m�n� �l�m���n��l�m���n� �l�m�n����l�m�n��� ��l�m�n � �h�Il�m�n�v� �	��

If we de�ne the vector � to be ������� � � � �����N��� � � � ���N���� � � � �N���N���N���
T to designate the

�N��	� unknown grid values
 and pull out all the known information from ���	
 we can reformulate

��	 by its �nite di�erence approximation in the form of the matrix equation
 A�
 b
 where b is

a vector which contains the sources and modi�cations due to the Dirichlet boundary condition�

Unlike the traditional Taylor�s series expansion method
 the Galerkin approach uses basis func�

tions
 such as linear piecewise polynomials
 to approximate the true solution� For example
 the

Galerkin approximation to the sample problem
 ��	
 would require evaluating ��	 for the speci�c

grid formation and speci�c choice of basis function�

Z
�

��x
��

�x

��i

�x
� �y

��

�y

��i

�y
� �z

��

�z

��i

�z
	d�
 �

Z
�

Iv�id� ���	

Di�erence quotients are then used to approximate the derivatives in ���	� We note that if linear

basis functions are used in ���	
 one obtains a formulation which corresponds exactly with the

standard �nite di�erence operator� Regardless of the di�erence scheme or order of basis function

the approximation results in a system of linear equations of the form
 A�
 b
 subject to the

appropriate boundary conditions�

��� The Finite Element Method

As we have seen above
 the classical numerical treatment of partial di�erential equations is the

�nite di�erence method
 where the solution domain is approximated by a grid of uniformly spaced

nodes� At each node
 the governing di�erential equation is approximated by an algebraic expression

which references adjacent grid points� A system of equations is obtained by evaluating the previous

algebraic approximations for each node in the domain� Finally
 the system is solved for each value

of the dependent variable at each node� In the �nite element method
 the solution domain is

discretized into a number of non�uniform �nite elements that are connected via nodes� The change

of the dependent variable with regard to location is approximated within each element by an

interpolation function� The interpolation function is de�ned relative to the values of the variable at

the nodes associated with each element� The original boundary value problem is then replaced with

an equivalent integral formulation �such as ��		� The interpolation functions are then substituted

into the integral equation
 integrated and combined with the results from all other elements in the

solution domain� The results of this procedure can be reformulated into a matrix equation of the

form
 A�
 b
 which is subsequently solved for the unknown variable ���
 �����

The formulation of the �nite element approximation starts with the Galerkin approximation

��r��r�	
 ��Iv��	
 where � is our test function� We now use the �nite element method to

turn the continuous problems into a discrete formulation� First we discretize the solution domain

�
 �Ee���e and de�ne a �nite dimensional subspace
 Vh � V
 f� � � is continuous on �

�r� is piecewise continuous on �g� One usually de�nes parameters of the function � � Vh at

node points
 �i
 ��xi	
 i
 �� �� � � � � N � We now de�ne the basis functions
 �i � Vh as linear

continuous functions
 where each basis functionis zero everywhere except on its element of support�

In the supporting element the basis function takes the value � at one node points and the value �

at all other node points� We can then represent the function � � Vh as�

��x� �
NX

i��

�i�i�x� �	��

such that each � � Vh can be written in a unique way as a linear combination of the basis functions

�i � Vh� Now the
nite element approximation of the original boundary value problem can be

stated as�

Find �h � Vh such that ��r�h�r�� � ��Iv��� �		�

Furthermore� if �h � Vh satis
es �		�� then we have ��r�h�r�i� � ��Iv� �i� �

�� Finally� since

�h itself can be expressed as the linear combination�

�h �
NX

i��

�i�i�x� �i � �h�xi� �	
�

we can then write �		� as�

NX

i��

�i��ijr�i�r�j� � ��Iv� �j� j � �� � � � � N �	��

subject to the Dirichlet boundary condition� This is the
nite element approximation of ��� which

can equivalently be expressed as a system of N equations with N unknowns �i� � � � � �N �the elec�

trostatic potentials� for example�� In matrix form� the above system can be written as A� � b�

where A � �aij� is called the global sti�ness matrix and has elements �aij� � ��ijr�i�r�j�� while

bi � ��Iv� �i� and is usually termed the load vector�

For volume conductor problems� A contains all of the geometry and conductivity information

of the model� The matrix A is symmetric and positive de
nite� thus it is nonsingular and has a

unique solution� Because the basis function di�ers from zero for only a few intervals� A is sparse

� �only a few of its entries are nonzero�� These features of the matrix A� resulting from a FEM

formulation� will signi
cantly a�ect the strategy for solving the system of equations�

��� The Boundary Element Method

For di�erential operators the system response at any given point to sources and boundary conditions

only depends on the response at neighboring points� In the FDM and FEM approximate di�erential

operators are de
ned on subregions �volume elements� in the domain� hence direct mutual in�uence

�connectivity� only exists between neighboring elements and the coe�cient matrices generated by

these methods have relatively few non�zero coe�cients in any given matrix row� As is clearly

demonstrated by Maxwell�s laws �	��� equations in di�erential forms can often be replaced by

equations in integral forms� e�g� the potential distribution in a domain is uniquely de
ned by the

volume sources and the potential and current density on the boundary� The boundary element

method uses this fact by transforming the di�erential operator de
ned in the domain to integral

operators de�ned on the boundary� In the boundary element method �������	� only the boundary

is discretized� hence the mesh generation is considerably simpler for this method than for the

volume methods� The BEM approximates the potential and the normal derivative of the potential

by series expansions in basis functions de�ned on the surface elements� Boundary solutions are

obtained directly by solving the set of linear equations
 however� potentials and gradients in the

domain can only be evaluated after the boundary solution has been obtained�

For the boundary element formulation a weak form of ��
 is obtained by choosing the anisotropic

Green�s function as the test function � � ���eR� where R is the distance function between the

�eld point �p and the source point �q�

R �

s
�xq � xp
�

�x
�

�yq � yp
�

�y
�

�zq � zp
�

�z
���

and�

�e �
p
�x�y�z ���

Integration of A� � �Iv by parts twice yields Green�s third identity�

�

�
� �H��G

��

�n
��a � � ���

where

�a � �Iv��
 ��	

and G and H are the single and double layer operators�

G
��

�n
�

�

��

Z
S

��

�n
�dS ���

and�

H� �
�

��

Z
S
�
��

�n
dS ���

The Galerkin approximations to the weak form solutions � and ��
�n

in ���
 are expressed as�

��s
 �
NX
i��

�i�i�s

��

�n
�s
 �

NX
i��

�
��

�n

�
i

�i�s
 ���

where s denotes a parameterization of the surface� The functions ��s
 and ��
�n

�s
 are members of

the �nite dimensional space Vh and their coe�cients �i and
�
��
�n

�
i
are determined by the set of

linear equations�

NX
j��

h�
�
	i�j �H�j � �ii�j �

NX
j��

hG�j� �ii
�
��

�n

�
j

� h�a� �ii
 i � �� � � � � N ���

where 	i�j is the Kronecker delta function� The operator G is symmetric and positive de�nite� hence

if the potential is known on the boundary� ���
 yields a symmetric coe�cient matrix� The operator

H is non�symmetric� hence for the Neumann problem and problems with mixed boundary condi�

tions� the coe�cient matrix is non�symmetric� In general the Galerkin formulation presented here

does not satisfy ���� and only for the Dirichlet problem does the method classify as an orthogonal

projection method �����

Equation �	
� de�nes the residual�

R

�

	
� �H��G

��

�n
� �a ����

The true solutions � and ��
�n

satisfy �	
� exactly� hence the residual vanishes everywhere� For the

Galerkin approximation ��	� the residual only vanishes on each element in the average sense�

�R� �i�
 � � i
 �� � � � � N ����

thus �i is acting as a weighting function in the Galerkin Weighted Residual formulation in �����

The matrix coe�cients in the Galerkin BEM requires the evaluation of double surface integrals

and the method is therefore more demanding on computing resources than the collocation method

which only includes single surface integrals� In the latter method the weighting function �i is

replaced by the Dirac delta function ��j�p� �pij� and the inner product h��� ��i is replaced by the

bilinear form ���� ���B

R
S ����dS� The latter is required since the Dirac delta function is not

square integrable and consequently does not belong in the space Vh ����� When the Dirac delta

function is used as the weighting function� the residual only vanishes at node points�

�R� ��j�p� �pij��
 � � i
 �� � � � � N ����

hence in general this method �the Collocation Weighted Residual method� is less accurate than

the Galerkin method� In the Collocation Weighted Residual method the basis functions can be

identical to the basis functions of the Galerkin method� however� the collocation weighting function

is the Dirac delta function� whereas the Galerkin weighting function must be identical to the basis

function� The collocation formulation equivalent to the Galerkin formulation in ��	� is obtained�

NX
j��

�
�

	
�i�j �H�j � ��j�p� �pij�

�
B

�j �
NX
j��

�G�j� ��j�p� �pij��B

�
��

�n

�
j

 ��a� ��j�p� �pij��B � i
 �� � � � � N ����

hence carrying out the outer integrations yields�

NX
j��

�
�

	
�i�j �H�j

�
i

�j �
NX
j��

�G�j�i

�
��

�n

�
j

 ��a�i � i
 �� � � � � N ��
�

where � �i denotes the ith �eld point� The collocation method in ��
� is a non�orthogonal projection

method ����� Since the Galerkin method requires the evaluation of double surface integrals it is

only used if the increased accuracy is essential� We will therefore only discuss the implementation

of the collocation method�

� Comparison of Methods

As demonstrated above� the FDM� FEM� and BEM can all be used to approximate the boundary

value problems which arise in biomedical research problems� The choice depends on the nature of

the problem� The FEM and FDM methods are similar in that the entire solution domain must be

discretized as opposed to the BEM where only the bounding surfaces is discretized� For regular

domains� the FDM is generally the easiest method to code and implement� The FDM usually

requires special modi�cations to de�ne irregular boundaries� abrupt changes in material properties�

and complex boundary conditions� While typically more di�cult to implement� the BEM and FEM

are preferred for problems with irregular� inhomogeneous domains and mixed boundary conditions�

The FEM is superior to BEM for representing nonlinearity and true anisotropy� while the BEM is

superior to FEM for problems where only the boundary solution is of interest or where solutions

are wanted in a set of highly irregularly spaced points in the domain� The computational mesh is

simpler for the BEM than for the FEM� hence less book�keeping is required in a BEM program

than a FEM program� For this reason BE programs are often considered easier to develop than FE

programs� however� the di�culties associated with singular integrals in the BEM are often highly

underestimated� In general FEM is preferred for problems where the domain is highly heterogeneous

whereas the BEM is preferred for highly homogeneous domains�

� Mesh Generation

After deciding upon the particular approximation method to use �and what kind of element and

number of degrees of freedom associated with each element�� we need to construct a mesh of the

solution domain� i�e�� subdividing our model geometry into polygons� For the sake of simplicity�

we will assume that we will use triangles for two�dimensional meshes �corresponding to three�

dimensional BE problems or two�dimensional FD and FE problems� and tetrahedrons for three�

dimensional FD and FE domains �see Figure 	�� Due to the complex geometries often associated

with bioelectric �eld problems� mesh construction and mesh adaption can turn out to be the most

time consuming aspect of the modeling process�

In general� there are two basic approaches to mesh construction� The �rst is the
divide and

conquer� strategy� Simply put� given a set of points which de�ne the bounding surface�s�� the

volume is repeatedly divided into smaller regions until a satisfactory discretization level has been

achieved �we will discuss stopping criteria later�� Usually� the domain is broken up into eight�node

cubic elements� which are then subdivided into �ve �minimally� or six tetrahedral elements for

three�dimensional problems and the corresponding quadrilaterals and triangles for two�dimensional

problems� This methodology has the advantage of being fairly easy to program �also� commercial

mesh generators exist for the divide and conquer method�� Its main disadvantage has to do with

its inability to control the elements which overlap interior boundaries� A single element may span

two di�erent conductive regions� for example� when part of an element represents muscle tissue

�which could be anisotropic� and the other part of the element falls into a region representing fat

Figure �� Finite element mesh for torso model� The gray scale coloring of tetrahedrons denotes
heterogeneous regions with di�erent conductivities�

tissue� It then becomes very di�cult to assign unique conductivity parameters and at the same

time accurately represent the geometry�

A second method of mesh generation is based upon the Delauney strategy� Given a two� or

three�dimensional set of points which de�ne the boundaries and interior regions� tessellate the point

cloud into an optimal mesh of triangles or tetrahedra� The advantages and disadvantages tend to

be exactly contrary to those arising from the divide and conquer strategy� The primary advantage

is that the mesh can be developed to �t any prede�ned geometry� including subsurfaces� by starting

with points which de�ne all the necessary surfaces and then adding additional interior points to

minimize the aspect ratio� For triangles� the aspect ratio is de�ned to be the ratio of the maximal

horizontal length to the maximal vertical length of the element or by the ratio of the diameter of

a circumscribed circle to the maximal distance between vertices� while for tetrahedra� the aspect

ratio can be de�ned as 	
q

�

�

�k
hk

where �k denotes the diameter of the sphere circumscribed about

the tetrahedron and hk is the maximum distance between two vertices� These formulations yield a

value of
 for an �isosceles� tetrahedron
triangle� and a value of � for a degenerate
�at� element

���� The closer to the value of
� the better� The Delauney criterion is basically a method for

minimizing the occurrence of obtuse angles in the mesh� yielding elements which have aspect ratios

as close to
 as possible� given the available point set� While the ideas of Delauney triangulation

are straightforward� the programming is nontrivial and is the primary drawback to this method�

At this point in time� we are unaware of any commercially available implementations of the De�

launey tessellation method for general three� dimensional point clouds� However� there do exist

several public domain� two�dimensional versions from netlib �e�mail� netlib�research�att�com with

message� send index�� For more information on mesh generation� see Bowyer �	
 and Hoole ���
�

Another drawback of the Delaunay method of mesh generation is that it produces elements

in convex regions that lie outside the bounding surface� For example� if one is triangulating a

two�dimensional kidney shaped object� the Delaunay method will construct triangles outside the

bounding contour in the convex C�shaped region� One way to rid the mesh of unwanted triangles

�or tetrahedrons� is to supplement the mesh generator with the following algorithm� based on

the Gauss�Bonnet �GB� theorem of topology �

� If one calculates the angles subtended by the

points bounding a two�dimensional area about a point P �adding consecutive angles with some sign

convention�� the sum will equal �� if P is inside the enclosed contour� � if P is on the boundary�

and � if P lies outside� Thus it is a simple matter to test a questionable element by checking

to see if its centroid is inside or outside the contour� In the analogous three�dimensional version�

one calculates the solid angles about the centroids of each tetrahedron� which will sum to �� for

interior points and � for exterior points� We can exploit this idea further to complete one last

bit of preprocessing before solving the system ���
����
� We need to assign conductivity values to

the various tissue regions� In the FE formulation� we need to assign a conductivity tensor to each

element of the model� This is usually done by using a table look�up scheme in which each element

is given a number according to the type of tissue it contains� During processing� the corresponding

value from a table of conductivity tensors is used to calculate the global sti�ness matrix� making it

a trivial matter to change the various conductivities without changing the geometry or any other

parameters of the model� One can use the GB algorithm to automatically ascertain to which

conductivity group an element belongs by de�ning the boundaries of the various subsurfaces and

determining whether the centroids of the elements are inside or outside the region in question�

assigning each to an appropriate conductivity group number� Once all the conductivity tensors are

assigned to the groups� the preprocessing is complete and we are ready to compute solutions�

� Solution Techniques

Each of the FDM� FEM� and BEM involve a number of similar computational subtasks� discretizing

the domain into a mesh� computing the coe�cients of the matrix A� assembling the matrix A and

solving the system of equations� However� because of the di�erent ways in which the approximation

schemes are formulated� the system of equations is not the same for each method� The structure

of the matrix determines the computational strategy used in a high performance implementation

of the schemes�

��� FD and FEM� Sparse Matrix Methods

In FDM� A is banded �tridiagonal in one�dimensional problems� such that one can use a number of

e�cient solvers operating on matrix diagonals� While it depends on the speci�c underlying prob�

lem� in the case of a regular two� or three�dimensional domain and a Laplace operator� fast direct

methods based on FFTs are often optimal� Banded Cholesky solvers are an often used alternative

choice if the number of gridpoints is not too large� Other options include an appropriately pre�

conditioned conjugate gradient or conjugate residual method� the ADI method� or SOR� Recently�

elliptic problems on regular grids have been e�ciently treated using multigrid methods �����

The FE discretization process results in a matrix A which is symmetric and very sparse� whose

computational size is determined by the maximum bandwidth of the global sti�ness matrix� The

computational load involved in computing the matrix elements depends on the order of the element

and its shape function� For linear triangles and linear tetrahedra� there exist exact forms of the

necessary integrals which allows for the most expedient element matrix evaluations� For higher

order elements� one must evaluate the integrals which increases the necessary element evaluation

time proportionally� For large scale systems� the creation of the global sti�ness matrix is often the

most time consuming aspect of a 	nite element solution� The number of nonzero elements along

any row
or column� depends on the number of nodes that interact via common elements� therefore�

the bandwidth� while potentially small� can become grossly in�ated due to an ine�cient numbering

of the nodes� As the size of the problem increases� a reduction of the matrix bandwidth becomes

increasingly important as a means to reduce overall memory requirements� Since the size of the

system to solve
for bandwidth solvers� is determined by the element which is furthest from the

diagonal� one could imagine a worst case scenario in which there is an element on the diagonal and

one at the right most element
N� in the matrix� One would then store
N�
��
 zeros
assuming

the matrix is symmetric�� Thus� bandwidth minimization can provide a considerable savings in

storage costs�

One method of bandwidth optimization uses an algorithm put forth by Cuthill and McKee �����

This necessitates reordering the nodes in such a way as to minimize the elemental connectivity� and

thus the bandwidth� While this strategy typically reduces the bandwidth by an order of magnitude�

it still leaves numerous zeros in the matrix� A second� and often more successful strategy� involves

storing the global sti�ness matrix using a sparse storage scheme� such as compressed�sparse�row

CSR� format �
��� According to these schemes� only the nonzero values in the matrix are retained�

along with arrays which contain the necessary pointers to locate the original elements� Sparse stor�

age typically reduces the memory needs for the global sti�ness matrix by two orders of magnitude�

While such schemes require more overhead to retrieve and store the data� when used with sparse

matrix solvers on large problems� the overall e�ect is a considerable reduction in computation time

over standard solution strategies�

For problems which can be kept in memory� direct solution strategies are often preferred� Direct

solutions typically consists of 	rst optimizing the bandwidth� then storing the maximum bandwidth

region of the global sti�ness matrix in a one�dimensional array� and 	nally computing the solution

using a bandwidth solver based on a modi	ed Gaussian elimination method ����� Estimates of the

number of operations necessary to perform the various solution decompositions for direct methods

can be made by considering the number of multiplications
including divisions� and additions �����

For an LU factorization the number of multiplications is �

�
mn

�
�

�

�
n
� � �

�
mn �

�

�
n
� � �

�
n and the

number of additions is �

�
mn

�
�

�

�
n
�
�

�

�
mn� �

�
n yielding a total number of �ops�mn�� �

�
n
�
�

�

�
n
�� �

�
n

where m by n is the dimension of the matrix� Once an LU factorization is completed� systems can

be solved by usingNRHS��n��n� total �ops whereNRHS denotes the number of right hand sides�

Cholesky factorization yields �

�
n
�� �

�
n
�� �

�
n total �ops and the solution of systems after Cholesky

factorization requires NRHS��n�� total �ops� For large scale problems� e�cient iterative schemes

are the only alternative� Iterative solution strategies often include implementation of either a Jacobi

method with preconditioned conjugate gradients 	JCG
� a successive overrelaxation 	SOR
 method�

or a symmetric SOR with a conjugate gradient preconditioner 	SSORCG
 ���� while utilizing the

sparse storage techniques described above�

For problems whose size exceeds the memory constraints of a single vector or parallel supercom

puter 	about �� million �oating point numbers on the Cray Y
MP at Pittsburgh Supercomputing

Center� ���� million �oating point numbers on the Cray Y
MP at North Carolina Supercomput

ing Center� and about ��� million �oating point numbers on the Connection Machine CM
� at

Pittsburgh Supercomputing Center
� it is often advantageous to distribute the load over a number

of separate machines 	usually workstations
� By implementing a �distributed paradigm� from the

beginning� it is relatively easy to accomodate larger and larger problems�

Parallel and distributed implementations of iterative methods are often quite attractive for

large scale problems� especially when the matrix has a regular nonzero structure which can be

exploited to obtain a structure that leads to independent substructures ���� ����� ����� ����� ����� �����

����� Unfortunately� no single iterative method is robust enough to solve all sparse linear systems

accurately and e�ciently� An excellent resource for considering various sparse matrix iterative

solution strategies may be found in the text by Dongarra �����

Structured parallel algorithms are usually designed to maximize the amount of computation

performed by a typical task module before communication with other modules� to create an e�cient

intermodule communication topology� and to enforce the interactions among di�erent task modules

	ensuring correctness of the parallel algorithm
� The optimal implementations of these algorithms

are generally machine dependent and are beyond the expertise of the typical biomedical researcher�

Recently there have been general purpose software packages available which can help in the

automatic distribution of ones solution over several processors 	machines� in the case of linked

workstations
 and aid in developing an e�ective parallel scheme� These packages contain proto

cols for processing with sophisticated forms of message passing down to the simplistic 	but still

e�ective
 form of functional replication� where several machines are working on di�erent aspects of

same problem� Examples of available software include� PVM� Express� and Linda� PVM is free and

distributed through netlib� It is �exible� provides all the basic message
passing and process control

functions� and has accessible source code so that one can customize it to more non
generic network

interfaces� One negative aspect of PVM is that the messages are not direct� messages are �rst sent

to an intermediary daemon which then directs the messages to the appropriate processes� Express

	from Parasoft
 is a more integrated package which includes automatic parallelization and a debug

ger� Express provides direct versus indirect message�passing or synchronous versus asynchronous

message�passing �the latter option enables one to hide the communication latency by overlapping

communication with computation� Linda is another commercial package �Scienti�c Computing As�

sociates�� though di�erent from PVM and Express in that it presents a simulated shared memory

model to the programmer �independent of whether the physical underlying memory is shared or

not�� Once again� the speci�c package one chooses is highly dependent on the application and

available hardware�

��� BEM� Full Matrix Methods

The BEM generates a full matrix� or if domain decomposition methods are used� a block sparse

matrix with dense block submatrices� For the full matrix the direct LU factorization method is

the standard approach� whereas block sparse matrices are solved with block equation solvers �	
��

An alternative approach is to use iterative methods� however� since the matrix is nonsymmetric

only the so called generalized iterative solvers ��
� should be used� An interesting combination of

direct and iterative methods is suggested by Bettess ���� who suggests a direct solver be used on a

diagonal band containing the most signi�cant terms and an iterative method is used on the smaller

terms outside the band�

Another issue is whether the matrix should be stored in core memory or on secondary storage

�e�g� disk�� The decision depends on the size of the matrix and the amount of core memory it is

tractable to allocate to the program� It is usually not prudent to allocate the full amount of physical

memory to the job as the job priority will decrease dramatically on time shared computers� Out�

of�core solvers only has a small slab of the matrix resident in memory hence the memory allocation

is much smaller and the job priority much higher� Direct out�of�core equation solvers are very

complex to program ���� and they are not available in general purpose software libraries� thus most

out�of�core equation solvers are based on iterative techniques� Because BEM generates large and

dense matrices� the storage and solution techniques must be designed before designing the algorithm

for computing the matrix coe�cients� One reason for this is that it is usually not possible to store

the coe�cient matrices in memory for the subsequent assemblage of the system matrix� In this

section we will brie�y discuss the computing and solving of BEM equations and point the attention

to factors that can degrade performance�

In many BEM problems� linear or quadratic interpolation functions are needed within each

element to obtain high accuracy� For a surface discretized with quadratic quadrilateral Lagrange

elements containing nine interpolation nodes �	��� the surface integrals in ���� can be approximated

as follows�

NX

j��

�G�j�i

�
��

�n

�
j

�
NeX
j��

�X
l��

�Z
�

��

Z
�

��

�l�s� t�

��eRi�j�s� t�
j �Jj�s� t�jdsdt

��
��

�n

�
j�l

����

�
NeX
j��

�X
l��

�
NsX
m��

NtX
n��

WmWn�l�sm� tn�

��eRi�j�sm� tn�
j �Jj�sm� tn�j

��
��

�n

�
j�l

����

and�

NX

j��

�H�j�i�j �
NeX

j��

�X

l��

�Z
�

��

Z
�

��

�l�s� t�
��ri�j�s� t� � �Jj�s� t�
���eR�

i�j�s� t�
dsdt

�
�j�l ����

�
NeX
j��

�X
l��

�
NsX
m��

NtX
n��

WmWn�l�sm� tn�

���eR
�

i�j�sm� tn�

�
��ri�j�sm� tn� � �Jj�sm� tn�

��
�j�l ����

where Ne denotes the number of elements and �J�s� t� denotes the Jacobian associated with the

transformation from the cartesian coordinate system to the curvilinear �s� t� coordinate system� In

��	� and ���� further approximation is introduced by employing the Gaussian Quadrature integra

tion scheme ���
� The number of Gauss points in the s and t directions are denoted Ns and Nt�

respectively� and the Gauss points are denoted by sm and tn� respectively� Wm and Wn denote the

Gauss weights in the s and t directions� respectively�

The CPU
time required to compute the matrix coe�cients is impossible to predict on a general

basis because the performance on vector processors is strongly dependent on the implementation�

The mathematical expressions in ��	� and ���� for the matrix coe�cients contain �ve indices

�i� j� l�m� n�� The j index divides the matrix into slabs each containing 	 columns associated with

the same element� Index l enumerates the columns in a single slab and index i enumerates the

elements in each column� Hence j and l are partitioned whereas i is sequential from � to N � Each

matrix element is the result of a double summation �indices m and n� of terms in the Gaussian

Quadrature scheme� The Gaussian double summation can be reduced to a single summation by

merging the matrices of Gauss points and weights into sequential arrays�

If the summations are performed in the order written in ��	� and ���� �do loops nested in the

order i� j� l�m� n� each matrix coe�cient is �nished before the next one is computed� This order of

nested summations corresponds to computing the matrix coe�cients in a row
wise order� A more

e�cient nesting of the do loops would be j�m� n� i with the l loop unrolled �written out as 	 separate

statements� inside the i loop� The j loop is chosen as the outer loop such that the Jacobian only

needs to be computed once for an entire matrix slab� The i loop is chosen as the inner loop in

order to obtain a long range of the index of the inner do loop �performance on a vector processor

degrades for a small range in the inner loop index ���
 as is discussed in the next section��

The direct and iterative methods for solving the system of linear equations are fairly standard

and thus it is possible to obtain a good estimate of the cpu
time� The number of �oating point op

erations required by the LU factorization of a nonsymmetric matrix of dimension N is on the order

of �N���� The �oating point performance of the out
of
core solver RLUD ���
 in the BNCHLIB

library installed at North Carolina Supercomputing Center �NCSC� is approximately ��� MFLOPS

�million �oating point operations per second� per cpu� A ���� � ���� matrix requires about ���

CPU
seconds on a single processor� A generalized iterative solver such as the preconditioned bicon

jugate gradient method �PBCG� ���
 requires about ���N��� �oating point operations �assumingp
N iterations� and performances on the order of ��� MFLOPS have been observed during tests�

hence the CPU
time will be about �� CPU
seconds on a single processor� This performance of

the bi�conjugate gradient method was obtained by explicitly inverting the dominant block diagonal

matrix containing singular integrals and use it as preconditioner� A break�even point of N � ���

can be estimated from�

TCPURLUD �
�	N���
FloatOps

	��MFLOPS
TCPUPBCG �

�	�
N���
FloatOps

	��MFLOPS
��	

where the performance data for the PBCG method are obtained from experiments� For most

problems there is a clear speed advantage in using iterative solvers� however� iterative solvers for

nonsymmetric matrices are not often found in general purpose mathematical software libraries and

the user is left to implement custom algorithms optimized to the application� The performances

assumed in the above analysis of out�of�core solvers is based on the application of asynchronous

input�output �I�O
 facilities on the Cray Y�MP� These read and write instructions will not halt

program execution� hence the next slab of a matrix can be read into memory while the iterative

solver operates on the current matrix slab� Utilizing this particular Cray feature can prevent the

performance of the iterative solver from being I�O bound� unfortunately the I�O routines will not

function on the local workstation�

Which solution strategy one uses depends on the size of the system� available computational

resources� stability of the problem� and the availability of functioning computer code� For small

scale BEM problems the two coe�cient matrices and the assembled system matrix can be stored in

memory� If the boundary conditions change� the program only has to go back and reassemble the

system matrix from the two coe�cient matrices� For large scale BEM problems� storage of both

coe�cient matrices and the assembled system matrix may exceed both memory and disk capacity�

Considerable savings on storage is obtained by assembling the system matrix ad hoc without saving

the coe�cient matrices� unfortunately the matrix coe�cients must be recomputed if the boundary

conditions are changed�

� Porting� Optimizing and Benchmarking Programs

Although it is extremely attractive to simulate models on local machines� many large scale problems

require more computing power than the new generation of workstations or data servers can supply�

Such large scale simulation models must be ported to a supercomputer� The types of supercom�

puters of most interest today is the multi processor vector computers �e�g� IBM ���� �� CPUs
�

Cray Y�MP �
 CPUs

 and the massively parallel computers �e�g� Thinking Machines� Connection

Machine �CM�	� �	���
 CPUs
� various hypercubes
�

There are far more vector computers than massively parallel computers� thus we will only

consider the problem of porting a program to a vector computer� These computers achieve their

power through vectorization or pipelining of the inner most do loops� A pipeline can be likened to

a small assembly line ���� which operates on vectors of operands� The idea is that at each clock

cycle each site on the assembly line performs a di�erent operation �e�g� fetch operands� normalize

operands� add�multiply� normalize result� store result
� A typical �oating point operation might

consist of � subtasks� hence on a scalar machine a new result would be obtained only every �ve

clock cycles� For the same operation on a vector processor it takes �ve clock cycles to obtain the

�rst result� however� due to the pipelining of operands� subsequent results are produced every clock

cycle� The startup delay while �lling a pipeline for the arithmetic instruction can be reduced by

linking �oating point operations together into a chain� If for example two vectors are multiplied

term by term and the results are added to a third vector� the multiplication pipeline is chained to

an addition pipeline� The result from the multiplication is fed directly into the addition pipeline�

thereby avoiding intermediate store and fetch operations�

In general� if a scalar �oating point operation consisting of n subtasks can be vectorized in

a pipeline� then the vectorized version should run about n times its non�vectorized speed� This

ideal speedup is rarely achieved since there is some overhead with setting up the pipeline and with

executing the do loop� For example the Cray Y�MP has very fast access vector registers which can

hold vectors �� elements in length� The optimal implementation of a vector operation on a set of

vectors of length N makes use of the vector registers by dividing each of the original vectors into

vectors of length ��� plus a set of remainder vectors� The operation is then executed �� elements

at a time with the operation on the remainder vectors executed out at the end� If the vector

length N is much larger than ��� the relatively large overhead of computing a short remainder is

negligible compared to the total time spent in the loop� Thus performance measured in �oating

point operations per second will increase with increasing vector lengths� Due to the overhead the

speed up of a vectorized code segment is typically between 	
 and �
�

��� Porting of Code

Standardization of operating systems and languages has made it easier to move a model from a

workstation to a supercomputer for large scale simulations� Ideally� to take full advantage of the

supercomputer� the algorithm should be designed with the supercomputer architecture in mind� In

the most common scenario� an investigator has written a program for a scalar workstation but an

increase in the model size demands the greater performance or memory of a larger machine� For

this situation� the ported code will likely require some restructuring� There are three major steps

to converting working scalar code to vector code�

	� Automatic vectorization

�� Rewriting of isolated regions of code or subroutines� inclusion of compiler directives to facili�

tate vectorization� and replacement of code with numerical library utilities�

� Changes to alternative algorithms better suited for vectorization�

In some cases� the investigator may enlist the assistance of a supercomputer programmer� The

�rst step is to remove any syntax or constructs that do not conform with standard Fortran ���

Fortran �
 or ANSI C� Before proceeding� it is important to establish that the new� standardized

program is reliable and well structured� The version of the program emerging after removing all

syntax violations will provide the benchmark for all subsequent optimizations� The next step is to

compile it using the automatic vectorization facilities� These facilities are available on most� if not

all vector computers� In many cases� the user will �nd the auto�vectorized version of the program

will not run much faster than the scalar version on the supercomputer did� In the worst case the

auto�vectorized version may not run faster than the original program on the workstation�

In order to further improve the performance� manual analysis and modi�cations are usually

required� The �rst option is to replace code segments with library routines whenever possible� Su�

percomputers have highly optimized routines to carry out most common mathematical operations�

To solve the compatibility problems associated with library routines� a collection of general pur�

pose Cray compatible routines have been archived in netlib� These algorithms can be ported to the

workstation such that the Cray version of the program also compiles on the workstation� Secondly

it is important to identify the remaining portions of the code which have not been vectorized� Some

of the most common vector inhibitors are�

� Short loops� As mentioned above there is a large overhead associated with setting up a

pipeline� Consequently� very short loops will not be vectorized�

� Data Dependency� A variable stored in one statement is subsequently used in another

statement� hence� operations must be executed in order� Vectorization requires that sev�

eral variables are operated on simultaneously� Two of the most common situations where

data dependency inhibits vectorization are�

� Recursion� In general� loops containing recursion cannot be vectorized� Although it

is often possible to rewrite the relationship to allow vectorization� in some cases the

programmer is forced to choose an alternative algorithm for the calculation�

� Indirect addressing of arrays� Loops which use indirect accessing are rarely vectorized

automatically by the compiler because of the possibility of data dependency�

� Conditions in loops� Although most machines have facilities for vectorizing loops with simple

conditions in them� loops containing nested condition statements cannot usually be vectorized�

Furthermore loops which contain conditions which are rarely true often run faster in scalar

mode�

� Subroutine calls within loops� Strictly speaking it is not possible to vectorize over a change

of control such as a subroutine call�

� I�O inside loops� It is usually not possible to vectorize loops which contain I�O statements�

Once the non�vectorized portions have been identi�ed� the next step is to restructure them for

vectorization� Redesigning the code to remove the vector inhibitors will often yield a considerable

improvement in performance� however� restructuring alone will rarely result in peak performance�

For maximal performance� the program must be modi�ed to exploit the memory architecture and

high speed input�output facilities�

Programming time

P
e
r
f
o
r
m
a
n
c
e

automatic
vectorization

restructuring

modifications to
numerical techniques

scalar speed

100%

50%

Figure �� Performance versus programming time� The time course of porting a typical program�

The optimization process is governed by the law of diminishing returns �see Figure ��� The peak

performance of the program is usually obtained only after making painstaking adjustments that

may take weeks or even months to complete� This small increase is usually not worth the required

e�ort� The targets of optimization has changed from the old generation of compilers to the very

intelligent compilers found on modern high performance computers� When optimizing programs

for compilers of the past� the programmer was targeting code structures on the line level looking

for redundant storage and instructions� On modern compilers the dos and don�ts have almost been

reversed� e�g� it is better to leave invariant and common subexpressions inside the loop� or even

move them back in if they have been moved outside the loop by a 	good meaning
 programmer�

On the line level� the modern day programmer is only responsible for using code constructs that

makes it possible for the compiler to recognize possibilities for optimization� This usually means the

programmer should use parenthesis with caution� The major targets for optimization on modern

computers are global code structures� e�g� in�lining of functions and subroutines� and reorganization

of conditional branching�

� Restructuring of code to minimize the nesting of condition statements within loops� Most

compilers will not vectorize nested if statements� It is always possible to rewrite nested block

with multiple single level blocks which vectorize�

� Removing short loops� The order of nested loops is an extremely important factor� As a

general rule the longest loop should be innermost� Very short inner loops can be unrolled �i�e�

replaced by the explicit instructions�� collapsing two loops into one� Another similar vector

inhibitor which is easily
xed are loops which are iterated an inde
nite number of times� The

compiler estimates the length of the loop and in many cases will not automatically vectorize

it� If it is known that the loop is long� one only need issue a compiler directive to vectorize

it�

� Ensuring indirect addressing of arrays does not lead to data dependency� If it is clear that

there are no data dependencies associated with indirect accessing� it is possible to issue

compiler directives to force the vectorization of loops containing indirect addressing�

� Subroutine and function calls within loops � Frequently used single line functions can be

replaced with statement functions which vectorize� In many cases calls to subroutines can

be replaced with the code itself� Many compilers have a so called inline option making this

transparent to the user� Often the overhead of a call to a small subroutine is of the same

order of magnitude as the instructions themselves thus even if in�lining does not result in

vectorization there are still savings to be realized�

Because the logical structure of the scalar program may have been sacri�ced in the optimization

process� the new version is usually far more cumbersome to modify than the original� Hence�

although the optimized program may also run e�ciently on a conventional computer� it is usually

better to make a new workstation version based on the original scalar program than based on the

vectorized version�

��� Tools for Benchmarking Programs

The implementation of changes to obtain better vectorization is an iterative process� The impact

of each change must be accessed with regard to performance and the correctness of the solution�

Fortunately� there are a number of system tools that can be used to identify computational bottle�

necks and monitor improvements in performance� The tools illustrated in this section are available

on the Cray Y�MP� similar tools are available on other supercomputers� In many algorithms� the

input�output portion of the code may dominate the total CPU time� The PROCSTAT program

	
�� collects run�time statistics for input�output including �lename� maximum �le size� characters

processed� and waiting time� If a large amount of time is spent on I�O� alternative �le formats

should be considered and then tested� Table
 	
�� illustrates the relative speed up obtained for

di
erent methods of I�O� Row a denotes the reference data for the formatted write statement� For

the unformatted output statements in rows b�d the speed up is relative to the row above� i�e� the

speed up in going from method b to method c is ��� for N�
���� Option d refers to the asyn�

chronous I�O facility� a speci�c Cray feature that will not halt execution during the I�O process�

When I�O bottlenecks have been removed or minimized the remainder of the program is ana�

lyzed� The peak performance of a given algorithm will depend on the percentage of the program

that is vectorizable� Vectorization typically speeds up a code segment by roughly a factor of
�� If

a code segment is vectorized and this segment accounts for ��� of the cpu�time of the original code�

the overall execution time for the optimized program will be about ��� of the original execution

time� If ��� is vectorized� the execution time is reduced to
�� of the original code� It is usually

prudent to �rst optimize the most time consuming segments of the code� The FLOWTRACE util�

ity 	
�� analyzes the dynamic �ow through the program� It provides information about callers and

Table �� I�O Performance

N
Examples of write statements �� �� ��� ����

a� write����	�E��
��	��A�i�� i���N� � � � �

b� write���� �A�i�� i���N� ��
� �� ���

c� write���� A �
� �
� �
�

�
d� bu�er out������ �A���� A�N�� �
� �
� �
� �
�

callees� such as the time spent in the routine� the number of times the routine is called� the average

time per call� and a list of the routines that called a particular program unit
 The FLOWVIEW

utility ���� provides a graphical presentation of the information gathered by FLOWTRACE
 In

Figure
 a calling tree is illustrated with the cpu�time of the respective routines in a test program

for an iterative matrix solver
 Routines may be ranked by time� name� number of calls� average

time per call� in�line factor and called by timings

FLOWTRACE generates a dynamic calling tree� showing the �ow path actually taken during

program execution
 Another utility� FTREF ����� generates a static calling tree that represents

the declarations of program units in the code� even though some of these may never be executed

In the example program� the algorithm MATVEC �a matrix�vector multiplication algorithm� uses

about ��� of the cpu�time and should be analyzed further
 A compiler listing with loopmarking is

invaluable in analysing the automatic optimization of loops
 If a loop is vectorized� the loopmarks

will indicate if it is a regular vector loop� a short vector loop or a conditional vector loop� the latter

being a loop containing IF statements
 Following each subroutine is a list of all loops in the code

segment and the type of vector inhibitors that prevented some loops from being vectorized

After removing vector inhibitors a subroutine level benchmark is obtained with PERFTRACE�

PERFVIEW ����
 The information collected by PERFTRACE during execution includes general

information �the number of �oating point operations and the number of �oating point operations

per second�� conditions that prevent the issue of instructions �e
g
 one processor waiting for another

processor to complete a task in a program executing on multiple processors�� memory references

and con�icts �e
g
 ine�cient order of accessing array elements in loops and simultaneous access to

the same memory bank from di�erent CPUs�� and vector operations and number of instructions

of various types �scalar� vector logical and vector integer� vector �oating point� vector memory

instructions� and average number of elements per vector instruction�
 It is clear from the PERF�

TRACE output that a fair amount of knowledge about the hardware is required to make use of the

information

Figure � shows the PERFTRACE output for routine MATVEC and routine MATINV �inverts

a matrix by repeated back substitutions�
 The �instruction bu�er fetch rate� reports how often

a new instruction was read during execution
 If the number is greater than �
�� the program is

not executing optimally and may contain unnecessary GOTO statements �spaghetti code�
 If the

Figure �� FLOWVIEW utility displaying a dynamic calling tree with relative and absolute cpu�time
listed for each routine�

ratio �CPU mem� reference per sec��Floating ops� per sec�� is much larger than ��	
 memory

references prevent e�cient use of CPU registers� Divisions are counted as one reciprocal and three

multiplication operations
 hence divisions should be eliminated as much as possible�

The most cpu intensive loops can be analyzed with the PROF�PROFVIEW utilities ��
�� The

pro�ling utility PROF provides information on a per line basis of the activity of the program�

When the program executes with PROF enabled
 the system subdivides the memory allocated to

the program into intervals �buckets�� Each time the system observes the program executing in a

given area
 the �hit� counter is incremented by one� The more �hits� in a given bucket
 the higher

the amount of CPU activity in that section of the program� PROFVIEW presents graphically or in

tabular format the data gathered by PROF as illustrated in Figure �� The core of the matrix�vector

product routine MATVEC is located in the nested do loops �	�
 and �	�
 hence it is worthwhile

to experiment with the loop ordering to obtain the best performance� Comparison of individual

routines in a program is also possible with PERFTRACE�PERFVIEW� Figure � illustrates that

more than �	� of the total cpu�time is spent in four subroutines� hence
 the optimization should

�rst be performed on these routines�

Figure �� Subroutine level performance data displayed with PERFVIEW� The data includes infor�

mation about the number and rate of �oating point operations and memory operations�

Since the performance of the vector processor increases with increasing range of the innermost

loop index� it is essential that the performance is benchmarked for various loop lengths to see if

the ranking of CPU intensive routines changes� In Figure � the performance of di�erent routines

in a boundary element program is analyzed based on data obtained from a series of PERFTRACE

analyses� As reviewed in the section on computational methods� a typical BE program includes

a routine for computing regular integrals 	o��diagonal matrix blocks
� singular integrals 	diagonal

matrix blocks
� and a matrix solver 	in this case an iterative solver
� The routine computing the

diagonal block shows no change in performance as the problem size increases� This insensitivity to

problem size results because the inner do loop is the Gaussian Quadrature summation loop 	see 	��

and 	
�

� which is independent of the number of elements� The computation of the o��diagonal

blocks is a�ected because the inner do loop iterates over the number of �eld points 	i�e� the i index

in 	��
 and 	
�

 which increases with increasing problem size�

The iterative matrix solver 	preconditioned bi�conjugate gradient solver
 is strongly in�uenced

by the size of the problem because the core task of the solver is the matrix�vector multiplication

operation� The overall performance of the program is a weighted average of the performance of the

Figure �� Line by line activity provided by PROF�PROFVIEW� Most activity is observed in the
nested loops ���� and ��	�

individual routines� where the weighting factor is proportional to the amount of cpu
time spent in

the individual routines� In the case illustrated in Figure � an increasing proportion of the cpu
time

is spent in the routine that computes the o�
diagonal blocks� and the performance of this routine

therefore tends to dominate the overall performance of the program�

� Data Management

Although the development of optimized and vectorized software for mesh generation and problem

solution in large
scale biomedical computing is a formidable task� an important practical consid

eration is the organization of simulation results with respect to the visualization� This part of

the large
scale software development cycle is often postponed until the simulations have been com

pleted� Postponement is unfortunate because the time required to extract and present information

from the simulations can equal or exceed the time required for software development in the parts

described in the preceding sections� The development process for visualization will be shortened

if a �
D display software package can be used� Unfortunately� for many problems the graphics

Figure �� Performance data for the entire program� The column ACM refers to the accumulated

CPU�time in percentage of the whole program� More than ��� is spent in four routines�

software must be developed by the investigator� Under these conditions� it is advantageous to

identify a visualization support person early in the project� Regardless of the software used for the

visualization� we have experienced that the analysis of simulation results requires a considerable

amount of time� even after the visualization software has matured�

��� File Format Design

The challenges with regard to data management and visualization are a consequence of the aspects of

large�scale computing typically considered to be advantages� Namely� supercomputers are capable of

generating enormous amounts of data at high speeds� Meshes are large and often multiple variables

are associated with individual nodes� In time dependent problems� unique data is generated at each

node at each time step� All of these complexities pose a problem in terms of data management�

For example� if we wanted to store the contents of one nodal variable from a single iteration during

a simulation in a mesh with 	�� grid points� direct storage of the results from that iteration would

require space for 	��
oating point values� If we used binary storage and ���bit precision for each

entry� a storage
le would require � MBytes� This
le size is manageable� In addition� operations

off-diagonal blocks

total program

iterations

diagonal blocks

C○

C○ C○ C○ C○

T T T T T

D♦

D♦

D♦

D♦
D♦

S

S S S S

0 2000 4000 6000
 0

100

200

300

MFLOPS

DOF

Figure �� Performance in millions of �oating point operations per second �MFLOPS� as a function
of the number of degrees of freedom �DOF� �range of inner do loop� for a boundary element program

employing an iterative matrix solver�

of this type can be used to construct a �nodal variable map� at one or more selected iterations

from the simulation� Extending the direct storage scheme to include the contents from 	
 nodal

variables at one iteration would require �
 MBytes storage space� This �le size is also manageable�

However
 the CPU time required to simply read the contents of a �
 Mbyte �le will be inconvenient�

To achieve a sampling rate of �
 kHz for the simulation of a 	 second period would require direct

storage of the results from �

 iterations and �

 GBytes storage space� This �le size is likely

to be unmanageable for many investigators�

To design an e�cient �le format
 the investigator must consider how much local and global

information to store� The storage of too little data will mean computationally expensive simula�

tions will need to be executed multiple times to ask di�erent questions based on the results from

the same calculations� The storage of too much data can overwhelm the storage media and make

extraction for post�processing an expensive computational procedure in and of itself� A method

which is appropriate for many model problems is described by Pollard and Barr ��
� for the sim�

ulations of action potential propagation in an anatomically�based model of the human ventricular

conduction system� In the simulation
 a complete description of the transmembrane potential
 Vm

for approximately �

 nodes and �

 iterations was achieved in �les which were less than �

MBytes in size� Records were stored in an ASCII format and after the application of the Unix

compress utility these �les occupied less than � MBytes� To obtain these �le sizes
 an adaptive

sampling scheme based on the fan algorithm ���� was implemented� Although it is not our intention

to describe methods for adaptive sampling in this tutorial� we feel it is worth noting many of the

goals in the development of data compression strategies for multi�channel data acquisition systems

are consistent with the design of e�cient storage schemes for large�scale biomedical computing�

Namely� the transient nature of many biological signals mean a variety of sampling resolutions can

be employed to achieve accurate signal reconstruction with limited storage facilities�

A second factor in the management of data from large scale biomedical simulations is the

identi�cation of 	waveform parameters
 which characterize the local behavior� Figure ��a
 shows

the time course of Vm at a single node� �Vmax is the maximum upstroke velocity� The time of �Vmax

is considered a good indicator of the local activation time �AT
 from a transmembrane potential

recording� Visualization of the manner in which AT varies spatially can provide insight into the

temporal characteristics of action potential propagation during depolarization in a simulation�

Similarly� the action potential duration �APD
 is considered an indicator of repolarization� While

both parameters can be determined from the Vm pro�le after the simulation has been completed�

there are practical advantages to performing some post�processing while the calculations are taking

place� Here it is important for the investigator to determine which parameters can be calculated

at a low computational expense during the simulation�

��� Visualization

An appropriate visualization strategy provides the investigator with a means to ask questions� Was

the mesh generated correctly� What was the local behavior in some region of the mesh� What

was the global behavior at some iteration in the calculations� What was the global behavior of

the waveform parameters� How did the spatial features of these parameters change over the time

course of the calculations�

Each of these questions can be addressed with a visualization strategy that provides methods

for the spatial examination of simulation results� Gallagher and Selker ���� outlined these methods

in a recent report� To answer these questions� the visualization software should be capable of color

blending based on nodal parameter values� isosurface generation� volume slicing and gradient dis�

play� Some of these features are included in software packages that facilitate visualization� Mills

���� reviewed the post�processing capabilities of a number of �nite element packages which included

visualization support operating in a workstation environments� Products such as IMSL�IDL� In�

tergraph MicroStation ���� Adaptive Research Corporation CFD ����� SRAC COSMOS�M� and

ANSYS ��� �to name a few
 provide facilities for the spatial display of data which can answer

the scienti�c questions that arise from the simulations� Work environments such as the Silicon

Graphics IRIS Explorer� Cray Corporation AVS and TaraVisual Corporation�s apE o�er robust

and �exible development tools for the generation of sophisticated graphics applications� With the

latter� applications are constructed by combining software modules into �ow networks� These mod�

ules include graphics primitives for data manipulation and geometric rendering� An example �ow

network for the apE environment is shown in Figure ��� When these tools can be used� appli�

APD

Vmax

time

Vm

a.

b. c.

d

Figure �� Examples of visualization and large�scale biomedical computing �a� a cardiac action

potential and some of the parameters used to describe the action potential� �b� a contour map of
AT values from a ��D simulation of action potential propagation� �c� a raised contour map of APD
values from a ��D simulation of action potential propagation and �d� a contour map of AT values
from a ��D simulation of action potential propagation	 All components were generated on a Silicon

Graphics
D���
 and annotations were placed on the images using Showcase	

b) c)

a)

Figure ��� apE visualization environment� a� Top part shows the canvas containing visualization

modules arranged in a pipeline� Bottom part shows the control dials for steering the visualization

process� b� Iso�sensitivity function for a needle electrode visualized as iso�potential surfaces� c�

Electrode polarity map visualized as terrain plot sliced from ��d volume data�

cations are constructed rapidly� In many cases� however� the commercial products have di�culty

accommodating large unstructured meshes and are therefore inadequate for use in a large�scale

computing environment�

In the sections which follow� we will demonstrate the use of some of these features� The

visualization software was developed in the C programming language using the Silicon Graphics

GL library with support from the Center for Scienti�c Visualization �a component of the Utah

Supercomputer Institute��

In most cases� the local temporal behavior at a given node is best examined with x�y graphs�

In the sample problem� consider the case of the potential distribution as a function of iteration

number� It is possible to obtain an appreciation of the spatial variation at a number of nodes by

examining multiple x�y graph� The most di�cult aspect of this process is not the presentation

�there are a number of software packages for the presentation of x�y graphs in the workstation

and personal computing environments� but rather the development of appropriate mechanisms to

perform the local extractions at many nodes� Here it is advantageous to have redundant means for

that local identi�cation� It should be possible to complete the extraction using node numbers� node

coordinates� or graphical identi�cation tools� In practice� we have also found an adaptive sampling

storage scheme to be advantageous because the time required to construct multiple x�y graphs is

greatly reduced when some data trimming has been performed�

We examine mesh generation in a graphics workstation environment� For large unstructured

meshes� this environment is almost required due to the volume of data displayed� The graphics

workstation should provide rapid rotation and translation of the mesh which will facilitate in�

spection of the nodal positions and elemental connectivities� The workstation should also provide

facilities for automatic color blending across elements when polygons are rendered� This will allow

color blending based on nodal parameter values� which can in turn be used to examine the spatial

behavior from the simulation�

Although it is possible to display ��D data in a variety of ways� the investigator should be

aware of the visualization goals� Inspection of the simulation results using a visualization tool

is di	erent from the generation of publication quality images� While there are advantages in the

selection of unique colors and patterns to demonstrate dominant features of the simulation behavior

during inspection� detailed image construction is time�consuming and should be postponed until

the simulation results are well understood� The image in Figure
�b� was USED DURING THE

INSPECTION PROCESS and was constructed using color blending facilities of the Silicon Graphics

GL library� The �gure shows the spatial distribution of the waveform parameter AT from a ��D

simulation of action potential propagation� Color blending was used to show early �light� and late

�dark� activation within the model during the simulation� With color blending visualization� we

identi�ed the global activation pattern in the model� In addition� we observed a region where the

activation wavefront decelerated as shown by the arrow in the �gure�

Isosurface generation also requires a knowledge of the internodal connections� Although this

method requires more computational work than color blending� an examination of contour surfaces

provides unique information� The image in Figure ��c� was constructed from a combination of

color blending and contour lines� This �gure shows the spatial distribution of APD from the same

��D simulation depicted in Figure ��b�� Nodes in the ��D mesh were drawn as a ��D plot using

z	APD�x
y�� Color blending was introduced to demonstrate how APD varied in the simulation�

APD was maximal �dark� near the region of the stimulus used to initiate action potential propaga�

tion� APD was minimal �light� near the edges of the mesh� APD varied markedly in the two regions

of the mesh where we noted nonuniform activation in the activation map
 Figure ��b�� Contour

lines for APD were drawn in the �x
y
�� plane�

To understand the evolution of calculations from the simulation
 we animate through isosurfaces

from low to high values� A �xed image generated after much testing with animation is shown

in Figure ��d�� Here the spatial distribution of AT from a ��D simulation of action potential

propagation is shown� Following a stimulus in the upper right corner of the model wavefronts

propagated left and down� The individual contour lines on the wavefront surfaces at the times

presented here were generated from triangular elements� By specifying a large number of contour

levels and displaying the resultant wavefronts on a frame�by�frame basis
 we were able to place �

wavefronts on a composite image to demonstrate the spatial distribution of AT�

When the goals of the visualization move from understanding the results of a simulation to the

generation of publication quality images
 it is advantageous to use third�party software packages�

To bridge the di
erences between image �le formats used by di
erent vendors and software pack�

ages
 we have found the Image Conversion toolkit from the San Diego Supercomputer Center to be

very useful� This toolkit is designed to translate bit�mapped images between a number of di
erent

workstation
 personal computer and graphics programming language formats� Once quality images

have been constructed
 it is straightforward to annotate the images with third�party drawing pack�

ages� An example of a publication quality image is presented in Figure ��� This image shows the

mesh from a ��D model of the human torso used for solutions of the forward and inverse problems

in cardiology �����

� Conclusions

As we have shown
 large scale biomedical computing has moved beyond the conventional tools and

methods that have dominatedmodeling over the past decade� A greater fraction of the investigator�s

time is being spent developing or identifying tools to perform the necessary subtasks of constructing

the mesh of the solution domain
 solving the system of equations
 optimizing the algorithm and

visualizing the results� This forces the investigator to keep abreast of the most recent advances in

these areas�

Some of these tools already exist in many supercomputer environments� Commercial FDM

FEM
 and BEM packages can be found on many supercomputers� While these packages may not

be ideal for the solution phase of all biomedical problems
 the pre�processors may be used for some

mesh constructions� Libraries of direct and iterative solvers optimized for peak performance are

HEART

LUNG

SKELETAL
MUSCLE

BODY
SURFACE

TORSO MODEL (Johnson et al, 1992)

Figure ��� Example of a publication quality image� The image shows a cutaway of major compo�
nents in a Finite Element model used to solve the forward and inverse problems in electrocardiology�

This image was generated on an IBM�RS����� and archived in the Utah Raster Graphics �le for�

mat� The image was then translated to a Silicon Graphics �le format and imported into Showcase
for annotation�

HEART

LUNG

SKELETAL
MUSCLE

BODY
SURFACE

TORSO MODEL (Johnson et al, 1992)

Figure ��� Example of a publication quality image� The image shows a cutaway of major compo�
nents in a Finite Element model used to solve the forward and inverse problems in electrocardiology�

This image was generated on an IBM�RS����� and archived in the Utah Raster Graphics �le for�

mat� The image was then translated to a Silicon Graphics �le format and imported into Showcase
for annotation�

usually available on most platforms� Performance analysis tools are commonplace and their use

can signi�cantly enhance the process of identifying performance inhibitors like memory con�icts�

I�O bottlenecks and poorly vectorized subroutines� Visualization tools provide the user with a

comfortable interface to manipulate relatively large data sets and extract information about the

spatial and temporal behavior from each simulation�

In many cases� the unique features of a given problem or the implementation of a given algorithm

may fall outside the capability of existing tools� For example� the commercial general purpose

mesh generators are not well suited for the complex three dimensional geometries expected for

biomedical problems unless the investigator is willing to construct a mesh point by point� This

tedious process prohibits the use of any scheme of adaptive mesh re�nement in which the solution

phase and mesh construction phase must be directly linked� For some problems� the system of

equations resulting from discretization can not always be e�ciently solved with library routines�

The modeler is then left with the di�cult task of implementing and optimizing the solver for the

supercomputer� While the performance analysis tool will help identify trouble areas� the process

still requires experience and a consideration of the architecture� FDM� FEM� and BEM algorithms

can involve often many thousands of lines of code� The programmers of such algorithms must be

cognizant not only of program constructions but also of the organization and readability� Poor

readability and organization can not only signi�cantly slow the debugging process but can make

future modi�cations extremely di�cult� Because large scale models often involve a large volume of

data� the modeler must also consider an e�cient data management scheme as an integral part of

the algorithm� Schemes to compress and reduce data within the program will enable monitoring

the behavior over the entire domain for multiple time steps and generate smaller output �les for

storage on local devices� Better planning in the algorithm development stage can lead to fewer

costly simulations� Finally� many of the commercial module based visualization tools were written

to accommodate a wide class of problems� The large overhead limits the ability to manipulate and

render large meshes� This becomes increasingly di�cult when the visualization tool is not resident

on the display computer but must be accessed remotely via a network�

Although the supercomputer architecture will undoubtedly change over the next few years� the

tasks outlined in this chapter for large scale simulation and modeling will remain essentially the

same� However� if the past is any indicator� there is little guarantee that all the tools needed

to perform these tasks for a particular for biomedical problem will be in place on all computers�

Developing these tools de novo requires a wide range of skills� Consequently� as large scale modeling

becomes the norm� we expect to �nd fewer bioengineers working alone� rather� the scope of the

problems will demand the collaborative� inter�disciplinary e	ort of a
renaissance teams� of experts

with a broad array of knowledge and skills in the clinical applications� the underlying physiology�

the numerical analysis� programming� and visualization�

Acknowledgements

This research was supported in part by awards from the Nora Eccles Treadwell Foundation and

the Richard A� and Nora Eccles Harrison Fund for Cardiovascular Research� U�S� Public Health

Service Grants HL����� and HL ���		� by the Whitaker Foundation� by the Medical Research

Counsil of Canada and the Ministere de l
Enseignement Superior et de la Science du Quebec� by

grants for computing resources from the Utah Supercomputing Institute� which is funded by the

State of Utah and the IBM Corporation� from the North Carolina Supercomputing Center� which

is funded in part by the state of North Carolina and Cray Research Inc� and from the Pittsburgh

Supercomputing Center� which is funded by the National Science Foundation�

References

��
 L�M� Adams� �Iterative algorithms for large sparse linear systems on parallel computers��

NASA CR�������� NASA Langley Research Center� Hampton� VA�� November ��	��

��
 J�E� Akin� Finite Element Analysis for Undergraduates� Academic Press� New York� ��	��

��
 A� Baumgartner and C� Mattheck� �Computer simulation of the remodelling of trabecular

bone�� in Computers in Biomedicine� K�D� Held� C�A� Brebbia� and R�D� Ciskowski �Eds���

Computational Mechanics Publications� Southampton� Boston� pp� �������� �����

��
 E�B� Becker and G�F� Carey� Finite Elements� Mathematical Aspects� Prentice�Hall� New

Jersey� ��	��

��
 O� Betrand� �D �nite element method in brain electrical activity studies� in Biomagnetic Local�

ization and �D Modeling� J� Nenonen� H�M� Rajala� and T� Katila �Eds��� Helsinki University

of Technology� Helsinki� pp� �������� �����

��
 J�A� Bettess� �Economical solution technique for boundary integral matrices�� International

Journal for Numerical Methods in Engineering� ��� pp� ���������� ��	��

��
 J�A� Board� �Grand Challenges in Biomedical Computing�� in High Performace Comuting in

Biomedical Research� CRC Press� Boca Raton� FL� �����

�	
 M� Boulos� C� Oddou� J� Ohayon� and B� Crozatier� �Numerical model for the left ventricle

pump� From the exitation of the �bers to the contraction of the whole heart�� in Proc� of Ann�

Int� Conf� IEEE�EMBS� Vol� ��� No� �� pp� ���������� �����

��
 A� Bowyer� �Computing Dirichlet Tesselations�� Computer J�� ��� pp� �������� ��	��

���
 C�A� Brebbia and J� Dominguez� Boundary Elements� An Introductory Course� Computational

Mechanics Publications� Boston�McGraw�Hill� New York� ��	��

���
 W�L� Briggs A Multigrid Tutorial� Siam� ��	��

���� P�G� Ciarlet and J�L� Lions� Handbook of Numerical Analysis� Volume I� Finite Di�erence

Methods� and Volume II� Finite Element Methods� North�Holland� Amsterdam� �����

��	� Cray Research Inc�� CFT Optimization Guide� SG�
��� ��

� ��

�

���� Cray Research Inc�� BNCHLIB Benchmarking Library and Utilities� ���
�

���� J�M� Crotty� �A block equation solver for large unsymmetric matrices arising in the boundary

integral method�� International Journal for Numerical Methods in Engineering� ��� pp� ����

�
��� ��
��

���� E� Cuthill and J� McKee� �Reducing the bandwith of sparse symmetric matrices�� ACM Proc�

of the ��th Natl� Conf�� �����

���� P�J� Davis and P� Rabinowitz� Methods of Numerical Integration� Academic Press� ��
��

��
� C� Dong and R� Skalak� �A �nite element model of white blood cells�� in Computers in

Biomedicine� K�D� Held� C�A� Brebbia� and R�D� Ciskowski �Eds��� Computational Mechanics

Publications� Southampton� Boston� pp� �������� �����

���� J�J� Dongarra� I�S� Du�� D�C� Sorensen� and H�A� van der Vorst� Solving Linear Systems on

Vector and Shared Memory Computers� SIAM� Philadelphia� �����

��
� I�S� Du� and A�M� Erisman� Direct Methods for Sparse Matrices� Clarendon Press� Oxford�

��
��

���� R�S� Gallagher and P�J� Selker� �Three�dimensional visualization in FE analysis�� Mechanical

Engineering� ���� pp� �����������

���� L�W� Gardenhire� �Data redundancy reduction for biomedical telemetry�� in Biomedical

Telemetry� C�A� Caceres �Ed��� Academic Press� New York� Chapter ��� pp� ������
� �����

��	� R�T� Hart and D�A� Dulitz� �Calculations of the natural frequencies for a human femur�� in

Computers in Biomedicine� K�D� Held� C�A� Brebbia� and R�D� Ciskowski �Eds��� Computa�

tional Mechanics Publications� Southampton� Boston� pp� ��	���
� �����

���� S�R�H� Hoole� Computer�Aided Analysis and Design of Eletromagnetic Devices� Elsevier� New

York� ��
��

���� T�J�R� Hughes� The Finite Element Method� Linear Static and Dynamic Finite Element Anal�

ysis� Prentice�Hall� New Jersey� ��
��

���� N� Ida and W� Lord� �Solution of linear equations for small computer systems�� International

Journal for Numerical Methods in Engineering� ��� pp� �������� ��
��

���� J�D� Jackson� Classical Electrodynamics� John Wiley� �����

���� M�A� Jaswon and G�T� Symm� Integral Equation Methods in Potential Theory and Elastostat�

ics� Academic Press� London� ��		�

���� C�R� Johnson and R�S� MacLeod� Mathematical modeling of bioelectric
elds� in Neural En�

gineering� Y�I� Kim and N�V� Thakor� eds�� Springer�Verlag� New York� ���� �to appear
�

���� C�R� Johnson� R�S� MacLeod� and P�R� Ershler� A computer model for the study of electrical

current �ow in the human thorax� Comp� in Bio� Med�� ���� �to appear
�

���� C�R� Johnson� R�S� MacLeod� and M�A� Matheson� Computer simulations reveal complexity

of electrical activity in the human thorax� Comp� in Phys�� pp� ������	� May�June� �����

���� C�R� Johnson and R�S� MacLeod� �Nonuniform spatial mesh adaption using a posteriori er�

ror estimates� applications to direct and inverse problems�� in Adaptive Methods for Partial

Di�erential Equations� J�E� Flaherty and M�S� Shephard �Eds�
� Elsevier Science� New York�

���� �to appear
�

���� C� Johnson� Numerical Solution of Partial Di�erential Equations by the Finite Element

Method� Cambridge University Press� Cambridge� �����

���� J� Joubert and T� Manteu�el� �Iterative methods for non�symmetric linear systems�� In Itera�

tive Systems for Large Linear Systems� D� Kincaid and L� Hayes �Eds�
� Academic Press� pp�

�����	�� �����

���� H� Kardestuncer �Ed�
� The Finite Element Handbook� McGraw�Hill� New York� ���	�

���� D�R� Kincaid and J�R� Respess� �ITPACK �C� a FORTRAN package for solving large sparse

linear systems by adaptive iterative methods�� Center for Numerical Analysis� University of

Texas������ �����

��	� S� Krucinski� I� Vesely� M�A� Dokainish� and G� Campbell� �On mathematical modelling of

heart valve function�� in Proc� of Ann� Int� Conf� IEEE�EMBS� Vol� ��� No� �� pp� ����������

�����

���� H�T� Kung� �The structure of parallel algorithms�� in Advances in Computers� Academic Press�

New York� vol� ��� pp� ������� �����

���� C� L� Lawson� �Software for C� surface interpolation�� in Mathematical Software II� J�R� Rice�

ed�� Academic Press� New York� pp� �������� ��		�

���� J�M� Levesque and J�W� Williamson� A Guidebook to Fortran on Supercomputers� Academic

Press� San Diego� �����

���� C�G� Lewis� D�J� Leone� and M�D� Nowak� �Finite element analysis and mechanical veri
cation

of an orthotropic femoral implant model�� in Computers in Biomedicine� K�D� Held� C�A�

Brebbia� and R�D� Ciskowski �Eds�
� Computational Mechanics Publications� Southampton�

Boston� pp� �������� �����

���� G�M� Luo� S�C� Cowin� and A�M� Sadegh� �A boundary element method investigation of

di�erent frictional boundary conditions on bone ingrowth�	 in Computers in Biomedicine�

K�D� Held� C�A� Brebbia� and R�D� Ciskowski
Eds��� Computational Mechanics Publications�

Southampton� Boston� pp� ��
����� �����

���� R�S� MacLeod� C�R� Johnson� and M�A� Matheson� �Visualization tools for computational

electrocardiography�	 Visualization in Biomedical Computing� �����
to appear��

���� C� Mattheck and H� Huber�Betzer �CAO� Computer simulation of adaptive growth in bones

and trees�	 in Computers in Biomedicine� K�D� Held� C�A� Brebbia� and R�D� Ciskowski
Eds���

Computational Mechanics Publications� Southampton� Boston� pp� �������� �����

���� R� Mills� �Finite element modelers� friendly faces for FEA�	 Comp� Aided Eng�� ��� pp� ������

�����

���� A�R� Mitchell and D�F� Gri�ths� The Finite Di�erence Method in Parital Di�erential Equa�

tions� John Wiley and Sons� New York� ��
��

���� J�M� Ortega and R�G� Voigt� �Solution of partial di�erential equations on vector computers�	

SIAM Review� ��
��� pp� �������� ��
��

��
� J�M� Ortega� Numerical Analysis� A Second Course� SIAM� Philadelphia� �����

���� S� Ortlo�� H�M� Tensi� H� Gese� and G� Wynarsky� �The e�ect of porous coating and material

properties on micromotion of a cementless femoral total hip replacement�	 in Proc� of Ann�

Int� Conf� IEEE�EMBS� Vol� ��� No� �� pp� ���������� �����

���� A�E� Pollard and R�C� Barr� �Computer simulations of activation in an anatomically�based

model of the human ventricular conduction system�	 IEEE Trans� Biomed� Eng�� ��� pp�

�
����� �����

���� W�H� Press� B�P� Flannery� S�A� Teukolsky� and W�T� Vetterling� Numerical Recipes� Cam�

bridge University Press� Cambridge� ��
��

���� G� Rodrique
Ed��� Parallel Computations� Academic Press� New York� ��
��

���� M� Salama� S� Utku� and R� Melosh� �Parallel solution of �nite element equations�	 Proc� of

the Eighth ASCE Conf� on Electronic Computation� University of Houston� Houston TX�� pp�

�������� Feb�� ��
��

���� A�H� Sameh� �Numerical Parallel Algorithms � a survey�	 in High Speed Computer and Algo�

rithm Orgainization� Academic Press� New York� pp� ������
� �����

���� I�M� Singer and J�A� Thorpe� Lecture Notes on Elementary Topology and Geometry� Springer�

Verlag� New York� �����

���� C�W� Steele� Numerical Computation of Electric and Magnetic Fields� Van Nostrand Reinhold�

��	
�

��
� J�C� Strikwerda� Finite Di�erence Schemes and Partial Di�erential Equations� Wadsworth

and Brooks�Cole� California� ��	��

��	� C�C� Vesier� R�A� Levine� and A�P� Yoganathan� �Simulation of blood
ow in the left ven�

tricle� The e�ect of papillary muscle geometry on mitral valve function�� in Computers in

Biomedicine� K�D� Held� C�A� Brebbia� and R�D� Ciskowski �Eds��� Computational Mechanics

Publications� Southampton� Boston� pp� �������� �����

