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This document is dedicated to the memory of Hans Petter Langtangen (1962–2016),
a passionate scholar, teacher, and advocate of computational science and engineering.
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Abstract

This report presents challenges, opportunities and directions for computational science and engineering (CSE)
research and education for the next decade. Over the past two decades the field of CSE has penetrated both ba-
sic and applied research in academia, industry, and laboratories to advance discovery, optimize systems, support
decision-makers, and educate the scientific and engineering workforce. Informed by centuries of theory and exper-
iment, CSE performs computational experiments to answer questions that neither theory nor experiment alone is
equipped to answer. CSE provides scientists and engineers with algorithmic inventions and software systems that
transcend disciplines and scales. CSE brings the power of parallelism to bear on troves of data. Mathematics-based
advanced computing has become a prevalent means of discovery and innovation in essentially all areas of science,
engineering, technology, and society; and the CSE community is at the core of this transformation. However, a
combination of disruptive developments—including the architectural complexity of extreme-scale computing, the
data revolution and increased attention to data-driven discovery, and the specialization required to follow the ap-
plications to new frontiers—is redefining the scope and reach of the CSE endeavor. With these many current and
expanding opportunities for the CSE field, there is a growing demand for CSE graduates and a need to expand CSE
educational offerings. This need includes CSE programs at both the undergraduate and graduate levels, as well
as continuing education and professional development programs, exploiting the synergy between computational
science and data science. Yet, as institutions consider new and evolving educational programs, it is essential to con-
sider the broader research challenges and opportunities that provide the context for CSE education and workforce
development.
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1 CSE: DRIVING SCIENTIFIC AND ENGINEERING PROGRESS

1 CSE: Driving Scientific and Engineering Progress

1.1 Definition of CSE
Computational science and engineering (CSE) is a multidisciplinary field lying at the intersection of mathematics
and statistics, computer science, and core disciplines of science and engineering (Figure 1). While CSE builds
on these disciplinary areas, its focus is on the integration of knowledge and methodologies from all of them and
the development of new ideas at their interfaces. As such, CSE is a field in its own right, distinct from any of the
core disciplines. CSE is devoted to the development and use of computational methods for scientific discovery
in all branches of the sciences, for the advancement of innovation in engineering and technology, and for the
support of decision-making across a spectrum of societally important application areas. CSE is a broad and vitally
important field encompassing methods of high-performance computing (HPC) and playing a central role in the
data revolution.
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Figure 1: CSE at the intersection of mathematics and statistics, computer science, and core disciplines from the
sciences and engineering. This combination gives rise to a new field whose character is different from its original
constituents.

While CSE is rooted in the mathematical and statistical sciences, computer science, the physical sciences, and
engineering, today it increasingly pursues its own unique research agenda. CSE is now widely recognized as an
essential cornerstone that drives scientific and technological progress in conjunction with theory and experiment.
Over the past two decades CSE has grown beyond its classical roots in mathematics and the physical sciences and
has started to revolutionize the life sciences and medicine. In the 21st century its pivotal role continues to expand
to broader areas that now include the social sciences, humanities, business, finance, and government policy.

1.2 Goal of This Document
The 2001 report on graduate education in CSE by the SIAM Working Group on CSE Education [38] (see page 2)
was instrumental in setting directions for the then nascent CSE field. While its target focus was CSE education, the
report more broadly emphasized the critical need to consider research and education together when contemplating
future directions. Thus, recognizing that much has changed since the 2001 report, the goal of this document is
twofold: (1) examine and assess the rapidly expanding role of CSE in the 21st-century landscape of research and
education and (2) discuss new directions for CSE research and education in the coming decade. We explore chal-
lenges and opportunities across CSE methods, algorithms, and software, while examining the impact of disruptive
developments resulting from emerging extreme-scale computing systems, data-driven discovery, and comprehen-
sive broadening of the application fields of CSE. We discuss particular advances in CSE methods and algorithms,
the ubiquitous parallelism of all future computing, the sea change provoked by the data revolution and the synergy
with data science, the importance of software as a foundation for sustained CSE collaboration, and the resulting
challenges for CSE education and workforce development.
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1 CSE: DRIVING SCIENTIFIC AND ENGINEERING PROGRESS

CSE Success Story: SIAM Working Group Inspires Community to Create CSE Education Programs

The landmark 2001 report on
“Graduate Education in Com-
putational Science and En-
gineering” by L. Petzold et
al. [38] played a critical role in
helping define the then-nascent
field of CSE. The report pro-
posed a concrete definition of
CSE’s core areas and scope,
and it laid out a vision for CSE
graduate education. In doing
so, it contributed a great deal
to establishing CSE’s identity,
to identifying CSE as a priority
interdisciplinary area for fund-
ing agencies, to expanding and
strengthening the global offer-
ings of CSE graduate education, and ultimately to creating the current generation of early-career CSE
researchers.
Much of the 2001 report remains relevant today; yet much has changed. Sixteen years later, there is a
sustained significant demand for a workforce versed in mathematics-based computational modeling and
simulation, as well as a high demand for graduates with the interdisciplinary expertise needed to develop
and/or utilize computational techniques and methods in many fields across science, engineering, business,
and society. These demands necessitate that we continue to strengthen existing programs as well as lever-
age new opportunities to create innovative programs.

1.3 Importance of CSE
The impact of CSE on our society has been so enormous—and the role of modeling and simulation so ubiquitous—
that it is nearly impossible to measure CSE’s impact and too easy to take it for granted. It is hard to imagine
the design or control of a system or process that has not been thoroughly transformed by predictive modeling
and simulation. Advances in CSE have led to more efficient aircraft, safer cars, higher-density transistors, more
compact electronic devices, more powerful chemical and biological process systems, cleaner power plants, higher-
resolution medical imaging devices, and more accurate geophysical exploration technologies—to name just a few.
A rich variety of fundamental advances have been enabled by CSE in areas such as astrophysics, biology, climate
modeling, fusion-energy science, hazard analysis, human sciences and policy, management of greenhouse gases,
materials science, nuclear energy, particle accelerator design, and virtual product design [27, 3, 36, 5, 34, 13, 6,
37, 28, 30].
CSE as a complement to theory and experiment. CSE closes the centuries-old gap between theory and experi-
ment by providing technology that converts theoretical models into predictive simulations. It creates a systematic
method to integrate experimental data with algorithmic models. CSE has become the essential driver for progress in
science when classical experiments or conventional theory reach their limits, and in applications where experimen-
tal approaches are too costly, slow, dangerous, or impossible. Examples include automobile crash tests, nuclear test
explosions, emergency flight maneuvers, and operator emergency response training. Experiments in fundamental
science may be impossible when the systems under study span microscopic or macroscopic scales in space or time
that are beyond reach. Although traditional theoretical analysis would not suffer from these limitations, theory
alone is insufficient to create predictive capabilities. For example, while the well-established mathematical models
for fluid dynamics provide an accurate theoretical description of the atmosphere, the equations elude analytical
solutions for problems of interest because of their nonlinearity. When combined with the power of numerical
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Figure 2: CSE cycle—from physical problem to model and algorithms to efficient implementation in simulation
software with verification and validation driven by data—leading to new insight in science and engineering.

simulation and techniques to assimilate vast amounts of measured data, these mathematical models become useful
for complex problems such as predicting tomorrow’s weather or designing more energy-efficient aircraft wings.
Another example is the use of simulation models to conduct systematic virtual experiments of exploding super-
novae: CSE technology serves as a virtual telescope reaching farther than any real telescope, expanding human
reach into outer space. And computational techniques can equally well serve as a virtual microscope, being used
to understand quantum phenomena at scales so small that no physical microscope could resolve them.
CSE and the data revolution. The emergence and growing importance of massive data sets in many areas of
science, technology, and society, in conjunction with the availability of ever-increasing parallel computing power,
are transforming the world. Data-driven approaches enable novel ways of scientific discovery. Using massive
amounts of data and mathematical techniques to assimilate the data in computational models offers new ways
of quantifying uncertainties in science and engineering and thus helps make CSE truly predictive. At the same
time, relying on new forms of massive data, we can now use the scientific approach of quantitative, evidence-
based analysis to drive progress in many areas of society where qualitative forms of analysis, understanding, and
decision-making were the norm until recently. Here the CSE paradigm contributes as a keystone technology to the
data revolution, in synergy with data science.
CSE cycle. Many CSE problems can be characterized by a cycle that includes mathematical modeling techniques
(based on physical or other principles), simulation techniques (such as discretizations of equations and scalable
solvers), and analysis techniques (data mining, data management, and visualization, as well as the analysis of error,
sensitivity, stability, and uncertainty)—all encapsulated in high-performance scientific software. The CSE cycle is
more than a sequential pipeline since it is connected through multiple feedbacks, as illustrated in Figure 2. Models
are revised and updated with new data. When they reach a sufficient level of predictive fidelity, they can be used
for design and control, which are often posed formally as optimization problems.
CSE success stories. Throughout this document, we highlight a few examples of CSE success stories in call-out
boxes to illustrate how combined advances in CSE theory, analysis, algorithms, and software have made CSE
technology indispensable for applications throughout science and industry.

3



1 CSE: DRIVING SCIENTIFIC AND ENGINEERING PROGRESS

CSE Success Story: Computational Medicine

Computational medicine has always
been at the frontier of CSE: the virtual
design and testing of new drugs and
therapies accelerate medical progress
and reduce cost for development and
treatment. For example, CSE re-
searchers have developed elaborate
models of the electromechanical activ-
ity of the human heart.1 Such complex
processes within the human body lead
to elaborate multiscale models. Car-
diac function builds on a complicated
interplay between different temporal
and spatial scales (i.e., body, organ,
cellular, and molecular levels), as well
as different physical models (i.e., me-
chanics, electrophysiology, fluid me-
chanics, and their interaction). CSE advances in computational medicine are helping, for example, in
placing electrodes for pacemakers and studying diseases such as atrial fibrilation. Opportunities abound for
next-generation CSE advances: The solution of inverse problems can help identify suitable values for ma-
terial parameters, for example, to detect scars or infarctions. Using uncertainty quantification, researchers
can estimate the influence of varying these parameters or varying geometry.

1.4 Challenges and Opportunities for the Next Decade
While the past several decades have witnessed tremendous progress in the development of CSE methods and their
application within a broad spectrum of science and engineering problems, a number of challenges and opportunities
are arising that define important research directions for CSE in the coming decade.

In science and engineering simulations, large differences in temporal and spatial scales must be resolved to-
gether with handling uncertainty in parameters and data, and often different models must be coupled together to
become complex multiphysics simulations. This integration is necessary in order to tackle applications in a mul-
titude of new fields such as the biomedical sciences. High-fidelity predictive simulations require feedback loops
that involve inverse problems, data assimilation, and optimal design and control. Algorithmic advances in these
areas are at the core of CSE research; and in order to deal with the requirements of ever more complex science and
engineering applications, new fundamental mathematical and algorithmic developments are required.

Several recent disruptive developments yield the promise of further fundamental progress if new obstacles can
be overcome. Since single-processor clock speeds have stagnated, any further increase in computational power
must result from a further increase in parallelism. New mathematical and computer science techniques need
to be explored that can guide development of modern algorithms that are effective in the new era of ubiquitous
parallelism and extreme-scale computing. In addition, the sea change provoked by the data revolution requires new
methods for data-driven scientific discovery and new algorithms for data analytics that are effective at very large
scale, as part of the comprehensive broadening of the application fields of CSE to almost every field of science,
technology, and society, in synergy with data science. Moreover, software itself is now broadly recognized as a
key crosscutting technology that connects advances in mathematics, computer science, and domain-specific science
and engineering to achieve robust and efficient simulations on advanced computing systems. In order to deliver the
comprehensive CSE promise, the role of CSE software ecosystems must be redefined—encapsulating advances in
algorithms, methods, and implementations and thereby providing critical instruments to enable scientific progress.

These exciting research challenges and opportunities will be elaborated on in Section 2 of this document.
1Parallel and adaptive simulation method described in T. Dickopf, T. Krause, R. Kraus, and M. Potse, SIAM J Sci Comput 36(2), C163-

C189, 2014.
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1 CSE: DRIVING SCIENTIFIC AND ENGINEERING PROGRESS

1.5 The Broad CSE Community
The past two decades have seen tremendous growth in the CSE community, including a dramatic increase in
both the size and breadth of intellectual perspectives and interests. The growth in community size can be seen,
for example, through the membership of the SIAM Activity Group on CSE, which has steadily increased from
approximately 1,000 members in 2005 to more than 2,500 in 2017. The biennial SIAM CSE Conference [43] is
now SIAM’s largest conference, with growth from about 400 attendees in 2000 to over 1,700 attendees in 2017.
The increased breadth of the community is evidenced in many ways: by the diversity of minisymposium topics at
SIAM CSE conferences; through a new broader structure for SIAM’s Journal on Scientific Computing, including
a new journal section that focuses on computational methods in specific problems across science and engineering;
and by the sharply increased use of CSE approaches in industry [37, 19].

As we envision the future of CSE, and in particular as we consider educational programs, we must keep in mind
that such a large and diverse intellectual community has a correspondingly broad set of needs. Figure 3 presents
one way to view the different aspects of the broad CSE community: (1) CSE Core Researchers and Developers—
those engaged in the conception, analysis, development, and testing of CSE algorithms and software and (2)
CSE Domain Scientists and Engineers—those primarily engaged in developing and exploiting CSE methods for
progress in particular science and engineering campaigns. The latter community can usefully be further categorized
into those who interact with the core technologies at a developer level within their own applications, creating their
own implementations and contributing to methodological/algorithmic improvements, and those who use state-of-
the-art CSE technologies as products, combining them with their expert knowledge of an application area to push
the boundaries of a particular application. Within the CSE Core Researchers and Developers group in Figure 3,
we further identify two groups: those focused on broadly applicable methods and algorithms and those focused
on methods and algorithms motivated by a specific domain of application. This distinction is a useful way to
cast differences in desired outcomes for different types of CSE educational programs as they will be discussed
in Section 3. As with any such categorization, the dividing lines in Figure 3 are fuzzy, and in fact any single
researcher might span multiple categories.

CSE Domain Scientists and Engineers
method users

CSE Domain Scientists and Engineers
method developers

CSE Core Researchers and Developers
method-focused domain-focused

Figure 3: One view of the different aspects of the broad CSE community. The part of the CSE community that
focuses on developing new methods and algorithms is labeled CSE Core Researchers and Developers. This group
may be driven by generally applicable methods or by methods developed for a specific application domain. CSE
Domain Scientists and Engineers focus their work primarily in their scientific or engineering domain and make
extensive use of CSE methods in their research or development work.

1.6 Organization of This Document
The remainder of this document is organized as follows. Section 2 presents challenges and opportunities in CSE
research, organized into four main areas. First we discuss key advances in core CSE methods and algorithms, and
the ever-increasing parallelism in computing hardware culminating in the drive toward extreme-scale applications.
Next we describe how the ongoing data revolution offers tremendous opportunities for breakthrough advances in
science and engineering by exploiting new techniques and approaches in synergy with data science, and we discuss

5



2 CHALLENGES AND OPPORTUNITIES IN CSE RESEARCH

the challenges in advancing CSE software given its key role as a crosscutting CSE technology. Section 3 discusses
how major changes in the CSE landscape are affecting the needs and goals of CSE education and workforce
development. Section 4 summarizes findings and formulates recommendations for CSE over the next decade.

2 Challenges and Opportunities in CSE Research
The field of CSE faces important challenges and opportunities for the next decade, following disruptive develop-
ments in extreme-scale computing and ubiquitous parallelism, the emergence of big data and data-driven discovery,
and a comprehensive broadening of the application areas of CSE. This section highlights important emerging de-
velopments in CSE methods and algorithms, in HPC, in data-driven CSE, and in software.

2.1 Advances in CSE through Mathematical Methods and Algorithms
Algorithms (e.g., see [20]) occupy a central role in CSE. They all transform inputs to outputs, but they may differ
in their generality, in their robustness and stability, and in their complexity—that is, in the way their costs in
operations, memory, and data motion scale with the size of the input. Mathematical theories and methods are of
fundamental importance for the algorithms developed and employed in CSE. The types of algorithms employed in
CSE are diverse. They include geometric modeling, mesh generation and refinement, discretization, partitioning,
load balancing, solution of ordinary differential equations (ODEs) and differential algebraic equations, solution of
partial differential equations (PDEs), solution of linear and nonlinear systems, eigenvalue computations, sensitivity
analysis, error estimation and adaptivity, solution of integral equations, surrogate and reduced modeling, random
number generation, upscaling and downscaling between models, multiphysics coupling, uncertainty quantification,
numerical optimization, parameter identification, inverse problems, graph algorithms, discrete and combinatorial
algorithms, graphical models, data compression, data mining, data visualization, and data analytics.

2.1.1 Impact of Algorithms in CSE

Compelling CSE success stories stem from breakthroughs in applied mathematics and computer science that have
dramatically advanced simulation capabilities through better algorithms, as encapsulated in robust and reliable
software. The growing importance of CSE in increasingly many application areas has paralleled the exponential
growth in computing power according to “Moore’s law”—the observation that over the past five decades the density
of transistors on a chip has doubled approximately every 18 months as a result of advances in lithography allowing
miniaturization. Less appreciated but crucial for the success of CSE is the progress in algorithms in this time span.
The advances in computing power have been matched or even exceeded by equivalent advances of the mathematics-
based computational algorithms that lie at the heart of CSE. Indeed, the development of efficient new algorithms
has been crucial to the effective use of advanced computing capabilities. And as the pace of advancement in
Moore’s law slows,2 advances in algorithms and software will become even more important. Single-processor
clock speeds have stagnated, and further increase in computational power must come from increases in parallelism.
CSE now faces the challenge of developing efficient methods and implementations in the context of ubiquitous
parallelism (as discussed in Section 2.2).

As problems scale in size and memory to address increasing needs for fidelity and resolution in grand-challenge
simulations, the computational complexity must scale as close to linearly in the problem size as possible. Without
this near-linear scaling, increasing memory and processing power in proportion—the way parallel computers are
architected—the result will be computations that slow down in wall-clock time as they are scaled up. In practice,
such optimal algorithms are allowed to have a complexity of NplogNqp, where N is the problem size and p is some
small power, such as 1 or 2. Figure 4 illustrates the importance of algorithmic innovation since the beginnings of
CSE. We contrast here the importance of algorithmic research with technological progress in computers by using
the historical example of linear solvers for elliptic PDEs. Consider the problem of the Poisson equation on a
cubical domain, discretized into n cells on a side, with a total problem size N “ n3. The total memory occupied
is Opn3q, and the time to read in the problem or to write out the solution is also Opn3q. Based on the natural
ordering, banded Gaussian elimination applied to this problem requires Opn7q arithmetic operations. Perhaps

2as documented in the TOP 500 list, https://www.top500.org
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2 CHALLENGES AND OPPORTUNITIES IN CSE RESEARCH

worse, the memory to store intermediate results bloats to Opn5q—highly nonoptimal, so that if we initially fill
up the memory with the largest problem that fits, it overflows. Over a quarter of a century, from a paper by
Von Neumann and Goldstine in 1947 to a paper by Brandt in 1974 describing optimal forms of multigrid, the
complexity of both operations and storage was reduced, in a series of algorithmic breakthroughs, to an optimal
Opn3q each. These advances are depicted graphically in a log-linear plot of effective speedup over time in the
left-hand side of Figure 5. During the same period, Moore’s law accounted for approximately 24 doublings, or a
factor of 224 « 16 million in arithmetic processing power per unit square centimeter of silicon, with approximately
constant electrical power consumption. This same factor of 16 million was achieved by mathematical research on
algorithms in the case that n “ 26 in the example above. For grids finer than 64 ˆ 64 ˆ 64, as we routinely use
today, the progress of optimal algorithms overtakes the progress stemming from Moore’s law, by an arbitrarily
large factor. Remarkable progress in multigrid has been made since this graph was first drawn. Progress can be
enumerated along two directions: extension of optimality to problems with challenging features not present in
the original Poisson problem and extension of optimal algorithms to the challenging environments of distributed
memory, shared memory, and hybrid parallelism, pushing toward extreme scale.

Figure 4: Left: Moore’s law for algorithms to solve the 3D Poisson equation (black) plotted with Moore’s law
for transistor density (red), each showing 24 doublings (factor of approximately 16 million) in performance over
an equivalent period. For algorithms, the factor can be made arbitrarily large by increasing the problem size
N “ n3. Here n “ 64, which is currently a modest resolution even on a single processor. Right: Increase in
CSE model complexity and approximate computational cost over time, where the y-axis indicates a qualitative
notion of complexity in the combination of models, algorithms, and data structures. Simulations have advanced
from modestly sized forward simulations in simple geometries to incorporate complex domains, adaptivity, and
feedback loops. The stage is set for new frontiers of work on advanced coupling, numerical optimization, stochastic
models, and many other areas that will lead to truly predictive scientific simulations.

Algorithmic advances of similar dramatic magnitudes across many areas continue to be the core of CSE re-
search. These advances are often built on the development of new mathematical theories and methods. Each decade
since Moore stated his law in 1965, computational mathematicians have produced new algorithms that have revo-
lutionized computing. The impact of these algorithms in science and engineering, together with the technological
advances following Moore’s law, has led to the creation of CSE as a discipline and has enabled scientists to tackle
problems with increasing realism and complexity, as shown in the right-hand side of Figure 4.
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CSE Success Story: Lightning-Fast Solvers for the Computer Animation Industry

CSE researchers have teamed
up with computer animators
at Walt Disney Animation
Studios Research to dramat-
ically improve the efficiency
in linear system solvers that
lie at the heart of many
computer animation codes.
Building on advanced mul-
tilevel methods originally
developed for engineering
simulations of elastic struc-
tures and electromagnetic
systems, researchers showed
that movie animations with cloth simulation on a fully dressed character discretized on an unstructured
computational grid with 371,000 vertices could be accelerated by a factor of 6 to 8 over existing solution
techniques.3 These improvements in computational speed enable greater productivity and faster turnaround
times for feature film production with realistic resolutions. Another application is real-time virtual try-on
of garments in e-commerce.

2.1.2 Challenges and Opportunities in CSE Methods and Algorithms

Without attempting to be exhaustive, we highlight here several areas of current interest where novel CSE algorithms
have produced important advances. This often goes hand-in-hand with formulating new mathematical theories and
their advancement. We also discuss challenges and opportunities for the next decade in these fields.

Linear, nonlinear, and timestepping solvers. As exemplified by the pursuit of optimality for algorithms for
elliptic PDEs described above, algebraic solvers receive extensive attention because they represent the dominant
computational cost and dominant memory occupancy of many important CSE applications. In fact, five of the
“top ten algorithms of the twentieth century” as described by the guest editors of the January 2000 issue of Com-
puting in Science & Engineering [12] fall into the category of solvers. Important types of problems requiring
solvers that operate in floating point include linear algebraic systems, nonlinear algebraic systems, and eigen-
systems. Timestepping algorithms for differential equations, after discretization, also rely on algebraic solvers,
applying a forward operator for explicit techniques, an inverse operator for implicit techniques, or a combination
for implicit-explicit approaches. Root-finding problems for nonlinear algebraic systems are conventionally handled
with linearization and Newton-type iteration, focusing the main issue for progress in many CSE applications on
linear solvers. Nevertheless, some recent algorithmic approaches directly work with nonlinear algebraic systems.

A key approach in the pursuit of linearly scaling methods, for example for elliptic PDE operators, is to employ
a hierarchy of resolution scales. The most classical algorithm of this kind is the fast Fourier transformation (FFT)
that is applicable in many important special cases. Other prominent methods that rely on a hierarchy of scales
are the multigrid, wavelet, multipole and multilevel Monte Carlo methods, including their many extensions and
descendants. Another fruitful approach is to exploit known structures and properties arising from the underlying
physics, as, e.g., in physics-based preconditioning techniques and mimetic methods. Geometric multigrid methods
iteratively form a hierarchy of problems derived from the original one on a succession of coarser scales and remove
on each scale the components of the overall error most effectively represented on that scale. Challenging features
common in applications include inhomogeneity, anisotropy, asymmetry, and indefiniteness. Geometric multigrid
may lose its optimality on such challenging problems; however, algebraic multigrid methods have revolutionized
many fields that were previously computationally intractable at finely resolved scales. Parallel preconditioners

3See video at https://youtu.be/_mkFBaqZULU and paper by R. Tamstorf, T. Jones, and S. McCormick, ACM SIGGRAPH Asia
2015, at https://www.disneyresearch.com/publication/smoothed-aggregation-multigrid/.
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based on advanced domain decomposition approaches also contribute to robustly scalable linear solvers. Further
progress in multigrid focuses, for example, on indefinite high-frequency wave problems and efficient performance
and resilience for extreme-scale architectures.

In such environments, data motion represents a higher cost than does arithmetic computation, and global syn-
chronization makes algorithms vulnerable to load and performance imbalance among millions or billions of par-
ticipating processors. The fast multipole method possesses arithmetic intensity (the ratio of flops to bytes moved)
up to two orders of magnitude greater, in some phases, than does the sparse matrix-vector multiply that is the core
of many other solvers. In addition, fast multipole, being essentially a hierarchically organized fast summation, is
less vulnerable to frequent synchronization. These properties have led fast multipole methods to be considered as
a replacement whenever an analytically evaluated Green’s function kernel is available.

Fast multipole is optimal because, for a given accuracy requirement, it compresses interactions at a distance
into coarse representations, which can be translated at low cost and re-expanded locally, relying on the ability to
represent the interactions with operators of low effective rank. Many relevant operators have hierarchical low-rank
structure even when they do not admit a constructive Green’s function expansion. This structure enables replace-
ment of the dominant coupling represented in off-diagonal portions of a matrix by low-rank representations with
controllable loss of accuracy and major gains in storage, arithmetic complexity, and communication complexity.
Today, hierarchically low-rank or “rank-structured” methods of linear algebra are finding use in developing optimal
solvers for an increasing class of challenging problems. Efficient approximate eigendecomposition methods are
needed in order to generate low-rank approximations to off-diagonal blocks in hierarchical matrices, identifying
the dominant subspace. Methods such as randomized singular value decomposition are of specific interest. While
progress since [38] has been fruitful, the quest for powerful scalable solvers will likely always be at the heart of
CSE.

CSE Success Story: Transforming the Petroleum Industry

Few industries have been
as transformed by CSE
as petroleum, in which a
decision to drill can com-
mit $100,000,000 or more.
Reservoir imaging solves
inverse problems (seismic
and electromagnetic) to
locate subsurface fluids in
highly heterogeneous media
and distinguish hydrocarbons
from water. Reservoir mod-
eling simulates the flow of
fluids between injection and
production wells. Correctly
predicting a pocket of oil left
behind can justify an entire
corporate simulation depart-
ment. Optimizing reservoir
exploitation while reducing uncertainty requires simulating many forward scenarios. Oil companies have
been behind the earliest campaigns to improve linear algebraic solvers and today operate some the world’s
most powerful computers. In the figure,4 a reservoir is modeled with a coarse grid (left) and with a finer
grid (right). Diamonds are injection wells, and circles are production wells. Unresolved on the coarse grid
are two pockets of oil recoverable with horizontal drilling extensions.

4Figure used by permission of Saudi Aramco.
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Uncertainty quantification. Recent years have seen increasing recognition of the critical role of uncertainty
quantification (UQ) in all phases of CSE, from inference to prediction to optimization to decision-making. Just
as the results of an experiment would not be meaningful unless accompanied by measures of the uncertainty in
the experimental data, so too in CSE scientists need to know what confidence they can have in the predictions
of models. This issue is becoming urgent as CSE models become increasingly for decision-making about critical
technological and societal systems. As one indication of the explosion of interest in UQ in the past few years, the
recent 2016 SIAM UQ conference had more minisymposia than does the SIAM annual meeting. Moreover, several
U.S. federal agency-commissioned reports focusing wholly or partially on status, opportunities, and challenges in
UQ have appeared in recent years [1, 37].

The need to quantify uncertainties arises in three problem classes within CSE: (1) The inverse problem: Given
a model, (possibly noisy) observational data, and any prior knowledge of model parameters (used in the broadest
sense), infer unknown parameters and their uncertainties by solving a statistical inverse problem. (2) The prediction
(or forward) problem: Once model parameters and uncertainties have been estimated from the data, propagate the
resulting probability distributions through the model to yield predictions of quantities of interest with quantified
uncertainties. (3) The optimization problem: Given an objective function representing quantities of interest and
decision variables (design or control) that can be manipulated to influence the objective, solve the optimization
problem governed by the stochastic forward problem to produce optimal values of these variables.

These three classes can all be thought of as “outer problems,” since they entail repeated solution of the deter-
ministic forward problem, namely, the “inner problem,” for different values of the stochastic parameters. However,
viewing the stochastic inverse, forward, and optimization problems merely as drivers for repeated execution of the
deterministic forward problem is prohibitive, especially when these problems involve large complex models (such
as with PDEs) and high-dimensional stochastic parameter spaces (such as when parameters represent discretized
fields). Fundamentally, what ties these three problems together is the need to explore a parameter space where each
point entails a large-scale forward model solve. Randomly exploring this space with conventional Monte Carlo
methods is intractable.

The key to overcoming the severe mathematical and computational challenges in bringing UQ to CSE models
is to recognize that beneath the apparently high-dimensional inversion, prediction, and optimization problems
lurk much lower-dimensional manifolds that capture the maps from (inversion/design/control) inputs to outputs of
interest. Thus, these problems are characterized by their much smaller intrinsic dimensions. Black-box methods
developed as generic tools are incapable of exploiting the low-dimensional structure of the operators underlying
these problems. Intensive research is ongoing to develop UQ methods that exploit this structure, for example
by sparsity-capturing methods, reduced-order models, randomized algorithms, and high-order derivatives. This
research integrates and cross-fertilizes ideas from statistics, computer science, numerical analysis, and applied
mathematics, while exploiting the structure of the specific inverse, prediction, and optimal design and control
operators in the context of target CSE problems. The new high-fidelity, truly predictive science that has emerged
within the past decade and that addresses these issues can be referred to as predictive CSE. Ultimately, the ability
to account for uncertainties in CSE models will be essential in order to bring the full power of modeling and
simulation to bear on the complex decision-making problems facing society.

Optimization and optimal control. The past several decades have seen the development of theory and methods
for optimizing systems governed by large-scale CSE models, typically involving ODEs or PDEs. Such problems
usually take the form of optimal control, optimal design, or inverse problems. Among other reasons, these prob-
lems are challenging because, upon discretization, the ODEs or PDEs result in very high-dimensional nonlinear
constraints for the optimization problem; exploiting the structure of these constraints is essential in order to make
the solution of the differential equation-constrained optimization problem tractable. The optimization problems
are made further challenging by additional inequality constraints, in the form of state or control constraints.

We identify five areas where research is needed. First, the successes of the methods mentioned above must
be extended to more complex (multiscale/multiphysics) state equations. Second, methods must be developed that
overcome the curse of dimensionality associated with discrete decision variables. Third, enhancing scalability of
methods developed for nonsmooth objectives or constraints is critical for a number of large-scale applications.
Fourth, the increasing interest in optimization of systems governed by stochastic ODEs or PDEs necessitates the
creation of a new class of stochastic optimization methods that can handle problems with very high-dimensional
constraints and random variables. This requires advancing mathematical models of optimal control under uncer-
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tainty and risk. Fifth, optimization methods are needed that can rigorously employ reduced models for much
(or even all) of the optimization as surrogates for the underlying high-fidelity ODE/PDE models when the latter
become particularly expensive to solve.

CSE Success Story: Bayesian Inversion for the Antarctic Ice Sheet

The question of how one infers un-
known parameters characterizing a
given model of a physical system
from observations of the outputs of
that model is fundamentally an in-
verse problem. In order to address
the intrinsic ill-posedness of many
inverse problems, regularization is
invoked to render the inverse solu-
tion unique. The Bayesian formu-
lation of the inverse problem seeks
to infer all models, with associated
uncertainty, in the model class that
are consistent with the data and
any prior knowledge. The figure
illustrates the Bayesian solution of
an inverse problem to infer friction at the base of the Antarctic ice sheet, from InSAR satellite observations
of the surface ice flow velocity and a non-Newtonian model of the flow. The upper left image depicts the
observed surface velocity field; the upper right image shows the inferred basal friction field. The upper
row thus illustrates the classical regularization-based solution. The Bayesian solution contains additional
information about uncertainty in the inverse solution, as illustrated in the lower right image of the variance
of the inferred basal friction. The lower left image shows the predicted surface velocity field, using the
inferred basal friction. In order to overcome the prohibitive nature of large-scale Bayesian inversion, the
low-rank structure of the parameter-to-observable map is exploited.5

Highly accurate discretizations and adaptive grid refinement. Complex simulations on realistic geometries
challenge the capabilities of traditional single-scale methods that utilize quasi-equidistant grids and methods of
fixed order. Furthermore, hardware developments favor methods with high arithmetic complexity and low memory
footprint. The natural answer to these challenges is to focus on accurate discretizations, often of high or variable
order, in combination with full spatial adaptivity; substantial developments have occurred in both of these key
technologies.

Discontinuous Galerkin methods are a prominent example of a family of discretizations that have come to
fruition as flexible and robust modeling tools. Challenges remain when strong discontinuities occur in the solution,
and uniformly high-order accurate limiters are needed that remain robust for complex problems on complex grids.
Another class of successful methods is the high-order accurate essentially non-oscillatory (ENO) schemes and
weighted essentially non-oscillatory (WENO) schemes. Isogeometric methods, based on rational splines used in
geometry descriptions, have positioned themselves as a powerful tool for fluid-structure problems and complex
multiphysics problems. Another area of important advances is the development of mimetic finite-volume and
finite-element methods. These methods aim to retain physically relevant geometric and conservation properties of
the PDE operators on the discrete level, often leading to important advantages in terms of stability, accuracy, and
convergence. Numerical methods for fractional and stochastic differential equations are further areas of current
interest, along with meshless methods, boundary element methods, and radial basis function methods.

Solution-adaptive grid refinement is a key methodology for tackling problems with widely varying spatial
scales. Diverse methods have been developed that may use block-based, patch-based, or cell-based approaches,

5Figures from T. Isaac, N. Petra, G. Stadler, and O. Ghattas, Journal of Computational Physics 296, 348–368, 2015.
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with or without overlap. Research in error estimation has a long tradition, but the essential question in com-
putational practice—how discretization and iteration error affect each other—remains an open problem. Other
research topics include the dynamic coarsening and refinement on ever-increasing processor numbers as well as
local timestepping for time-dependent problems. In order to ensure the usefulness of solution-adaptive simulations
on future computers, dynamic load-balancing must be developed to work in scenarios with millions of processors.

The development of highly accurate methods during the past decade has addressed a number of key bottlenecks,
and substantial advances have been made that enable the robust solution of large multiscale and multiphysics
problems using advanced computing platforms. One central challenge that touches on all existing techniques is
the development of robust and efficient linear and nonlinear solvers and preconditioning techniques in these more
complex scenarios. The development significantly trails that of low-order solvers, and progress is needed to fully
benefit from high-order methods in large-scale problems of scientific and industrial relevance.

Approximation: simplified, surrogate, and reduced models. A significant body of CSE research concerns
the conception, analysis, scalable implementation, and application of approximation methods. These methods
introduce systematic approximations to the computational model of the system at hand—thus reducing the com-
putational cost of solving the model, while at the same time effecting rigorous control of the resulting error. While
computational efficiency is important in all applications, it is a critical consideration in two particular settings.
First is the real-time setting, which translates into (often severe) constraints on analysis time, and sometimes also
constraints on memory and bandwidth. Real-time applications span many fields, such as process control, aircraft
onboard decision-making, and visualization. Second is the many-query setting, in which an analysis (i.e., a for-
ward simulation) must be conducted many times. Examples of many-query applications include optimization,
uncertainty quantification, parameter studies, and inverse problems.

Approximation methods can take many forms. The power of multilevel approximations, such as hierarchies of
spatial discretizations in a multigrid solver, has long been recognized as an elegant means for exploiting the mathe-
matical structure of the problem and thus obtaining computational speedups. More recently, multilevel approxima-
tions have been shown to have similar benefits in uncertainty quantification, such as through the multilevel Monte
Carlo method. Another class of approximation methods seeks to approximate the high-fidelity model of interest
by deriving a surrogate model. This surrogate model may take many forms—by applying simplifying physical
assumptions, through data-fit regression and interpolation approaches, or via projection of the high-fidelity model
onto a low-dimensional subspace. Projection-based model reduction has become a widely used tool, particularly
for generating efficient low-cost approximations of systems resulting from parameterized PDEs. Data-driven sur-
rogate models, often drawing on the tools of machine learning, are also starting to see wider development within
the CSE community. In the context of sampling and integration, Quasi-Monte Carlo methods are explored as
alternatives to Monte Carlo methods for high-dimensional problems. With the drive toward CSE applications of
increasing complexity, ensuring the computational tractability of CSE methods and algorithms is becoming in-
creasingly important but also increasingly more challenging. In this regard, an important area of future research
involves extending rigorous approximation methods to problems with high dimensionality and with challenging
nonlinear and multiphysics behavior.

Randomized algorithms.
The field of design and analysis of scalable randomized algorithms is experiencing rapid growth. In the context

of science and engineering problems, randomized algorithms find applications in the numerical solution of PDEs,
model reduction, optimization, inverse problems, UQ, machine learning, and network science.

Many classical sequential and parallel algorithms are based on randomization, for example in discrete math-
ematics (sorting, hashing, searching, and graph analysis problems), computational geometry (convex hulls, trian-
gulation, nearest-neighbors, clustering), and optimization and statistics (derivative-free solvers, sampling, random
walks, and Monte Carlo methods). In the past two decades, however, significant developments have broadened the
role of randomized algorithms by providing new theoretical insights and significant opportunities for research in
CSE. A first example is compressive sensing, in which under certain conditions one can circumvent the Nyquist
density sampling barrier by exploiting sparsity. A second example is the factorization of matrices and tensors by
using probing, in which one exposes and exploits global or block-hierarchical low-rank structures that may exist
in the target matrices and tensors. Such algorithms can be used for accelerating algebraic operations with tensors
and matrices such as multiplication and factorization. A third example is randomized gradient descent (especially
for nonsmooth problems) for large-scale optimization, which is popular in both large-scale inverse problems and
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machine learning applications. A fourth example is sampling for computational geometry and signal analysis, such
as sparse FFTs and approximate nearest-neighbors.

Deep connections exist among these apparently different problems. Their analysis requires tools from func-
tional and matrix analysis, high-dimensional geometry, numerical linear algebra, information theory, and proba-
bility theory. These algorithms achieve dimension reduction by exploiting sparsity and low-rank structures of the
underlying mathematical objects and exposing these structures using ingenious sampling. Despite the success of
these new algorithms, however, several challenges remain: extensions to nonlinear operators and tensors, algorith-
mic and parallel scalability for large-scale problems, and development of software libraries for high-performance
computing systems.

Multibody problems and mesoscopic methods. Simulating a large number of interacting objects is among the
most important and computationally challenging problems in CSE. Applications range from simulations of very
large objects such as stars and galaxies to very small objects such as atoms and molecules. In between is the human
scale, dealing with moving objects such as pedestrians, or the mesoscopic scale, dealing with granular objects
such as blood cells that are transported through microfluidic devices. Multibody and particle-based modeling, for
example, in the form of the discrete element method, is rapidly gaining relevance since the models can capture
behavior that cannot be represented by traditional PDE-based methods and since its high computational cost can
now be accommodated by parallel supercomputers. When short-range interactions dominate, efficient parallel
implementations can be constructed by suitable data structures and a dynamic partitioning of the computational
domain. Long-range interactions (such as gravity or electrostatic forces) are even more challenging since they
inevitably require a global data exchange that can be realized efficiently only by advanced parallel hierarchical
algorithms such as multipole methods, FFTs, or multigrid methods.

Mesoscopic methods are based on a kinetic modeling paradigm, with the lattice Boltzmann method and
smoothed particle hydrodynamics being particularly successful representatives. Mesoscopic algorithms are de-
rived in a nonclassical combination of model development and discretization using the principles of statistical
physics. This results in an algorithmic structure that involves explicit timestepping and only nearest-neighbor
communication, typically on simple grid structures. Kinetic methods are particularly successful when employed in
a multiphysics context. Here the underlying particle paradigm and statistical physics nature enable new and pow-
erful approaches to model interactions, as, for example, when using the so-called momentum exchange method
for fluid-structure interaction. Challenges lie in improving the algorithms and their parallel implementation, in
particular by improving stability, analyzing and controlling errors, reducing timestep restrictions, deriving better
boundary conditions, developing novel multiphase models, and incorporating mesh adaptivity.

Multiscale and multiphysics models. Because of increasing demands that simulations capture all relevant in-
fluences on a system of interest, multiscale and multiphysics simulations are becoming essential for predictive
science.

A multiscale model of a physical system finds use when important features and processes occur at multiple
and widely varying physical scales within a problem. In many multiscale models, a solution to the behavior of
the system as a whole is aided by computing the solution to a series of subproblems within a hierarchy of scales.
At each level in the hierarchy, a subproblem focuses on a range of the physical domain appropriate to the scale
at which it operates. Important advances have been made in this area, but challenges remain, such as atomistic-
continuum coupling and problems without a separation of scales. The coupling of scales can also lead to powerful
algorithms; we note that some of the most successful methods for simulating large systems, such as the multigrid
method, owe their efficiency to using the interaction of multiple scales.

A multiphysics system consists of multiple coupled components, each component governed by its own princi-
ple(s) for evolution or equilibrium. Coupling individual simulations may introduce stability, accuracy, or robust-
ness limitations that are more severe than the limitations imposed by the individual components. Coupling may
occur in the bulk, over interfaces, or over a narrow buffer zone. In typical approaches one attempts to uncouple
dynamics by asymptotics and multiscale analysis that eliminates stiffness from mechanisms that are dynamically ir-
relevant to the goals of the simulation. Numerical coupling strategies range from loosely coupled Gauss-Seidel and
operator-splitting approaches to tightly coupled Newton-based techniques [28]. Recent progress includes aspects
of problem formulation, multiphysics operator decomposition, discretization, meshing, multidomain interfaces,
interpolation, partitioned timestepping, and operator-specific preconditioning.

Next-generation advances require further mathematical analysis and software design to ensure that splitting
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and coupling schemes are accurate, stable, robust, and consistent and are implemented correctly. Programming
paradigms and mathematics both need to be revisited, with attention to less-synchronous algorithms employing
work stealing, so that different physics components can complement each other in cycle and resource scavenging
without interference.

2.2 CSE and High-Performance Computing – Ubiquitous Parallelism
The development of CSE and high-performance computing are closely interlinked. The rapid growth of available
compute power drives CSE research toward ever more complex simulations in ever more disciplines. In turn, new
paradigms in HPC present challenges and opportunities that drive future CSE research and education.

2.2.1 Symbiotic Relationship between CSE and HPC

HPC and CSE are intertwined in a symbiotic relationship: HPC technology enables breakthroughs in CSE research,
and leading-edge CSE applications are the main drivers for the evolution of supercomputer systems [27, 39, 48,
49, 50, 40, 31]. Grand-challenge applications exercise computational technology at its limits and beyond. The
emergence of CSE as a fundamental pillar of science has become possible because computer technology can deliver
sufficient compute power to create effective computational models. Combined with the tremendous algorithmic
advances (see Figure 4), these computational models can deliver predictive power and serve as a basis for important
decisions.

On the other hand, the computational needs of CSE applications are a main driver for HPC research. CSE appli-
cations often require closely interlinked systems, where not only is the aggregate instruction throughput essential,
but also the tight interconnection between components: CSE often requires high-bandwidth and low-latency inter-
connects. These requirements differentiate scientific computing in CSE from other uses of information-processing
systems. In particular, many CSE applications cannot be served efficiently by weakly coupled networks as in grid
computing or generic cloud computing services.

2.2.2 Ubiquitous Parallelism: A Phase Change for CSE Research and Education

Parallelism is fundamental for extreme-scale computing, but the significance of parallelism goes much beyond
the topics arising in supercomputing. All modern computer architectures are parallel, even those of moderate-
sized systems and desktop machines. Since single-processor clock speeds have stagnated, any further increase in
computational power can be achieved only by a further increase in parallelism, with ever more complex hierarchical
and heterogeneous system designs. High-performance computing architectures already are incorporating large
numbers of parallel threads, possibly reaching a billion by the year 2020.

Future mainstream computers for science and engineering will not be accelerated versions of current archi-
tectures but, instead, smaller versions of extreme-scale machines. In particular, they will inherit the node and
core architecture from the larger machines. Although computer science research is making progress in developing
techniques to make architectural features transparent to the application developer, doing so remains an ongoing
research effort. Moreover, the technological challenges in miniaturization, clock rate, bandwidth limitations, and
power consumption will require deep and disruptive innovations, dramatically increasing the complexity of soft-
ware development.

Parallel computing in its full breadth thus has become a central and critical issue for CSE. Programming
methodologies must be adapted, not only for the extreme scale but also for smaller parallel systems. Efficient
and sustainable realizations of numerical libraries and frameworks must be designed. Furthermore, for high-end
applications, the specifics of an architecture must be explicitly exploited in innovative algorithm designs. To meet
these demands requires a dramatic phase change for both CSE research and education.

2.2.3 Emergent Topics in HPC-Related Research and Education

Extending the scope of CSE through HPC technology. Low-cost computational power, becoming available
through accelerator hardware such as graphic processing units (GPUs), increasingly is enabling nontraditional
uses of HPC technology for CSE. One significant opportunity arises in real-time and embedded supercomputing.
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Figure 5 illustrates a selection of possible future development paths, many of which involve advanced interactive
computational steering and/or real-time simulation. Once simulation software can be used in real time, it can also
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Figure 5: Some emerging developments based on real-time or embedded HPC methodology for CSE applications.

be used for training and education. A classical application is the flight simulator, but the methodology can be
extended to many other situations where humans operate complex technical objects and where systematic training
on a simulator may save time and money as well as increase preparedness for emergency situations. Further uses of
fast, embedded CSE systems include the development of simulators for the modeling of predictive control systems
and for patient-specific biomedical diagnosis. The development of these emerging CSE applications, shown in
Figure 5, will require a focused investment in parallel computing research and education.

As another example, extreme-scale computing will enable mesoscale simulation to model the collection of cells
that make up a human organ or a large collection of particles directly, without resorting to averaging approaches.
The simulation of granular material has tremendous practical importance. The examples range from the transport
and processing of bulk materials and powders in industry to the simulation of avalanches and landslides. The
potential that arises with the advent of powerful supercomputers can be seen when realizing that exascale means
1018 but that a human has ”only” around 1011 neurons and 1013 red blood cells, and that the 3D printing of a
medical implant may require to process 108 individual grains of titanium alloy. Thus, extreme-scale computation
may open the route to modeling techniques where each cell or grain is represented individually. This gives rise
to research directions that are out of reach on conventional computer systems but that will exceed the predictive
power of continuum models for such simulation scenarios. In order to exploit these opportunities, new simulation
methods must be devised, new algorithms invented, and new modeling paradigms formulated. New techniques for
validation and verification are needed. Fascinating opportunities in fundamental research arise that go far beyond
just developing new material laws and increasing the mesh resolution in continuum models.

Quantitative performance analysis of algorithms and software. The advent of exascale and other performance-
critical applications requires that CSE research and education address the performance abyss between the tradi-
tional mathematical assessment of computational cost and the implementation of algorithms on current computer
systems. The traditional cost metrics based on counting floating-point operations fail increasingly to correlate
with the truly relevant cost factors, such as time to solution or energy consumption. Research is necessary in or-
der to quantify more complex algorithmic characteristics, such as memory footprint and memory access structure
(cache reuse, uniformity of access, utilization of block transfers, etc.), processor utilization, communication, and
synchronization requirements. These effects must be built into better cost and complexity models.
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Furthermore, the traditional approach to theory in numerical analysis provides only an insufficient basis to
quantify the efficiency of algorithms and software, since many theorems are only qualitative and leave the con-
stants unspecified. Such mathematical results, although themselves rigorous, permit only heuristic—and thus often
misleading—predictions of real computational performance. Thus much of current numerical analysis research
must be fundamentally extended to become better guiding principles for the design of efficient simulation methods
in practice.

Performance engineering and co-design. In current CSE practice, performance models are used to analyze
existing applications for current and future computer systems; but the potential of performance analysis techniques
is rarely used as a systematic tool for designing, developing, and implementing CSE applications. In many cases
an a priori analysis can be used to determine the computational resources that are required for executing a specific
algorithm. Where available, such requirements (e.g., flops, memory, memory bandwidth, network bandwidth)
should be treated as nonfunctional goals for the software design.

Required here is a fundamental shift from the current practice of treating performance as an a posteriori di-
agnostic assessment to recognizing performance as an a priori design goal. This step is essential because when
performance criteria are considered too late in the design process, fundamental decisions (about data structures
and algorithms) cannot be revised, and improvements are then often limited to an unsatisfactory code-tuning and
tweaking. The idea of an a priori treatment of performance goals in scientific software engineering is related to
the co-design paradigm and has become a new trend for developing next-generation algorithms and application
software systems. The nations of the G-8 have instituted regular meetings to strategize about the formidable task
of porting to emerging exascale architectures the vast quantity of software on which computational science and
engineering depend. These co-design efforts were codified in the 2011 International Exascale Software Project
Roadmap [10].

Ultrascalability. For the foreseeable future all growth in compute power will be delivered through increased par-
allelism. Thus, we must expect that high-end applications will reach degrees of parallelism of up to 109 within a
decade. This situation poses a formidable challenge to the design and implementation of algorithms and software.
Traditional paradigms of bulk-synchronous operation are likely to face significant performance obstacles. New
communication-avoiding algorithms must be designed and analyzed. Many algorithms permit increased asyn-
chronous executions enabling processing to continue even if a small number of processors stay behind; but this is a
wide-open area of research because it requires a new look at data dependencies, exploiting task-based parallelism,
and possibly also nondeterministic execution schedules. Additionally, system software must be extended to permit
the efficient and robust implementation of such asynchronous algorithms.

Power wall. The increasing aggregate compute capacity in highly parallel computers both on the desktop and
on the supercomputer promises to enable the simulation of problems with unprecedented size and resolution.
However, electric power consumption per data element is not expected to drop at the same rate. This creates a
power wall, and power consumption is emerging as one of the fundamental bottlenecks of large-scale computing.
How dramatic this will be for computational science can be seen from the following simple example.

Assume that the movement of a single word of data can be estimated by 1 NJoule (“ 10´9 Joule) of energy [41].
If we now assume that a specific computation deals with N “ 109 entities (such as mesh nodes or particles), then
using an OpN2q algorithm to transfer N ˆN data items for an all-to-all interaction, such as computing a pairwise
distance, will cause an energy dissipation of 1018 NJoule « 277 kWh. Assuming a petaflop computer (which
may become available on the desktop in the coming decade), we could in theory execute the N2 operations in
1000 seconds. However, a cost of 277 kWh for the naively implemented data movement will require more than
1 MW of sustained power intake. Clearly such power levels are neither feasible nor affordable in a standard
environment.

The situation gets even more dramatic when we transition to terascale problems with N “ 1012 on super-
computers. Then the same all-to-all data exchange will dissipate an enormous 277 GWh, which is equivalent to
the energy output of a medium-size nuclear fusion explosion. Clearly, in application scenarios of such scale, a
global data movement with OpN2q complexity must be classified as practically impossible. Only with suitable
hierarchical algorithms that dramatically reduce the complexity can we hope to tackle computational problems of
such size. This kind of bottleneck must be addressed in both research and education. In the context of CSE, the
power wall becomes primarily a question of designing the most efficient algorithm in terms of operations and also
the data movement. Additionally, more energy-efficient hardware systems need to be developed.
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Fault tolerance and resilience. With increasing numbers of functional units and cores and with continued minia-
turization, the potential for hardware failures rises. Fault tolerance on the level of a system can be reached only by
redundancy, which drives the energy and investment cost. At this time many algorithms used in CSE are believed to
have good potential for so-called algorithm-based fault tolerance. That is, the algorithm either is naturally tolerant
against certain faults (e.g., still converges to the correct answer, but perhaps more slowly) or can be augmented to
compensate for different types of failure (by exploiting specific features of the data structures and the algorithms,
for example). Whenever there is hierarchy, different levels and pre-solutions can be used for error detection and
circumvention. At present, many open research questions arise from these considerations, especially when the
systems, algorithms, and applications are studied in combination.

2.3 CSE and the Data Revolution: The Synergy between Computational Science and
Data Science

The world is experiencing an explosion of digital data. Indeed, since 2003, new data has been growing at an
annual rate that exceeds the data contained in all previously created documents. The coming of extreme-scale
computing and data acquisition from high-bandwidth experiments across the sciences is creating a phase change.
The rapid development of networks of sensors and the increasing reach of the Internet and other digital networks
in our connected society create new data-centric analysis applications in broad areas of science, commerce, and
technology [2, 37, 22]. The massive amounts of data offer tremendous potential for generating new quantitative
insight, not only in the natural sciences and engineering, where they enable new approaches such as data-driven
scientific discovery and data-enabled uncertainty quantification, but also in almost all other areas of human activity.
For example, biology and medicine have increasingly become quantitative sciences over the past two or three
decades, aided by the generation of large data sets. Data-driven approaches are also starting to change the social
sciences, which are becoming more quantitative [29].

2.3.1 CSE and the Data Revolution: The Paradigms of Scientific Discovery

CSE has its roots in the third paradigm of scientific discovery – computational modeling, and it drives scientific
and technological progress in conjunction with the first two paradigms, theory and experiment, making use of
first-principles models that reflect the laws of nature. These models may, for example, include the PDEs of fluid
mechanics and quantum physics or the laws governing particles in molecular dynamics. The advent of big data
is sometimes seen as enabling a fourth paradigm of scientific discovery [18], in which the sheer amount of data
combined with statistical models leads to new analysis methods in areas where first-principles models do not exist
(yet) or are inadequate.

Massive amounts of data are indeed creating a sea change in scientific discovery. In third-paradigm CSE appli-
cations (that are based on first-principles models) big data leads to tremendous advances: it enables revolutionary
methods of data-driven discovery, uncertainty quantification, data assimilation, optimal design and control, and,
ultimately, truly predictive CSE. At the same time, in fourth-paradigm approaches big data makes the scientific
method of quantitative, evidence-based analysis applicable to entirely new areas where until recently quantita-
tive data and models were mostly nonexisting. The fourth paradigm also enables new approaches in the physical
sciences and engineering, for example, for pattern finding in large amounts of observational data. Clearly, CSE
methods and techniques have an essential role to play in all these quantitative endeavors enabled by big data.

2.3.2 Role of Big Data in CSE Applications

In core application areas of CSE [37], our ability to produce data is rapidly outstripping our ability to use it. With
exascale data sets, we will be creating far more data than we can explore in a lifetime with current tools. Yet,
exploring these data sets is the essence of new paradigms of scientific discovery. Thus, one of the greatest chal-
lenges is to create new theories, techniques, and software that can be used to understand and make use of this
rapidly growing data for new discoveries and advances in science and engineering. For example, the CSE focus
area of uncertainty quantification aims at characterizing and managing the uncertainties inherent in the use of CSE
models and data. To this end, new methods are being developed that build on statistical techniques such as Monte
Carlo methods, Bayesian inference, and Markov decision processes. While these underlying techniques have
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broad applications in many areas of data science, CSE efforts tend to have a special focus on developing efficient
structure-exploiting computational techniques at scale, with potential for broad applicability in other areas of data
analytics and data science. Data assimilation methods have over several decades evolved into crucial techniques
that ingest large amounts of measured data into large-scale computational models for diverse geophysical applica-
tions such as weather prediction and hydrological forecasting. Large amounts of data are also a crucial component
in other CSE focus areas, such as validation and verification, reduced-order modeling, and analysis of graphs
and networks. Also, enormous potential lies in the emerging model-based interpretation of patient-specific data
from medical imaging for diagnosis and therapy planning. CSE techniques to address the challenges of working
with massive data sets include large-scale optimization, linear and nonlinear solvers, inverse problems, stochastic
methods, scalable techniques for scientific visualization, and high-performance parallel implementation.

Exploiting large amounts of data is having a profound influence in many areas of CSE applications. The
following paragraphs describe some striking examples.

Many geoscience systems are characterized by complex behavior coupling multiple physical, chemical, and/or
biological processes over a wide range of length and time scales. Examples include earthquake rupture dynamics,
climate change, multiphase reactive subsurface flows, long-term crustal deformation, severe weather, and mantle
convection. The uncertainties prevalent in the mathematical and computational models characterizing these sys-
tems have made high-reliability predictive modeling a challenge. However, the geosciences are at the cusp of a
transformation from a largely descriptive to a largely predictive science. This is driven by continuing trends: the
rapid expansion of our ability to instrument and observe the Earth system at high resolution, sustained improve-
ments in computational models and algorithms for complex geoscience systems, and the tremendous growth in
computing power.

The problem of how to estimate unknown parameters (e.g., initial conditions, boundary conditions, coefficients,
sources) in complex geoscience models from large volumes of observational data is fundamentally an inverse
problem. Great strides have been made in the past two decades in our ability to solve very large-scale geoscience
inverse problems, and many efforts are under way to parlay these successes for deterministic inverse problems into
algorithms for solution of Bayesian inverse problems, in which one combines possibly uncertain data and models
to infer model parameters and their associated uncertainty. When the parameter space is large and the models are
expensive to solve (as is the usual case in geoscience inverse problems), the Bayesian solution is prohibitive.

However, advances in large-scale UQ algorithms in recent years [1] are beginning to make feasible the use
of Bayesian inversion and Markov chain Monte Carlo methods to infer parameters and their uncertainty in large-
scale complex geoscience systems from large-scale satellite observational data. Two examples are global ocean
modeling and continental ice sheet modeling. Continued advances in UQ algorithms, Earth observational systems,
computational modeling, and HPC systems over the coming decades will lead to more sophisticated geoscience
models capable of much greater fidelity. These in turn will lead to a better understanding of Earth dynamics as
well as improved tools for simulation-based decision making for critical Earth systems.

Big data methods are revolutionizing the related fields of chemistry and materials science, in a transformation
that is illustrative of those sweeping all of science, leading to successful transition of basic science into practical
tools for applied research and early engineering design. Chemistry and materials science are both mature com-
putational disciplines that through advances in theory, algorithms, and computer technology are now capable of
increasingly accurate predictions of the physical, chemical, and electronic properties of materials and systems.
The equations of quantum mechanics (including Schrödinger’s, Dirac’s, and density functional representations)
describe the electronic structure of solids and molecules that controls many properties of interest, and statisti-
cal mechanics must be employed to incorporate the effects of finite temperature and entropy. These are forward
methods—given a chemical composition and approximate structure, one can determine a nearby stable structure
and compute its properties. To design new materials or chemical systems, however, one must solve the inverse
problem—what is the system that has specific or optimal properties? Moreover, the system must be readily syn-
thesized, inexpensive, and thermally and chemically stable under expected operating conditions. Breakthrough
progress has recently been made in developing effective constrained search and optimization algorithms for pre-
cisely this purpose [7], with this process recognized in large funding initiatives such as the multiagency U.S.
Materials Genome Initiative [14]. This success has radically changed the nature of computation in the field. Less
than ten years ago most computations were generated and analyzed by a human, whereas now 99.9% of computa-
tions are machine generated and processed as part of automated searches that are generating vast databases with
results of millions of calculations to correlate structure and function [32, 35]. In addition to opening important
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new challenges in robust and reliable computation, the tools and workflows of big data are now crucial to further
progress.

CSE Success Story: Visual Analytics Brings Insight to Terabytes of Simulation Data

New techniques are being
developed that allow scien-
tists to sift through terabytes
of simulation data in order
to gain important new in-
sights from science and en-
gineering simulations on the
world’s largest supercomput-
ers. The figure shows a
visualization of a topologi-
cal analysis and volume ren-
dering of one timestep in
a large-scale, multi-terabyte
combustion simulation. The
topological analysis identi-
fies important physical features (ignition and extinction events) within the simulation, while the volume
rendering allows viewing the features within the spatial context of the combustion simulation.6

In scientific visualization, new techniques are being developed to give visual insight into the deluge of data
that is transforming scientific research. Data analysis and visualization are key technologies for enabling advances
in simulation and data-intensive science, as well as in several domains beyond the sciences. Specific big data visual
analysis challenges and opportunities include in situ interactive analysis, user-driven data reduction, scalable and
multilevel hierarchical algorithms, representation of evidence and uncertainty, heterogeneous data fusion, data
summarization and triage for interactive queries, and analysis of temporally evolved features [24, 25, 51].

Computation and big data also meet in characterization of physical material samples using techniques such
as X-ray diffraction and adsorption, neutron scattering, pytchography, transmission electron, and atomic micro-
scopes. Only for essentially perfect crystals or simple systems can one directly invert the experimental data
and determine the structure from measurements. Most real systems, typically with nanoscale features and no
long-range order, are highly underdetermined [4]. Reliable structure determination requires fusion of multiple
experimental data sources (now reaching multiple terabytes in size) and computational approaches. Computation
provides a forward simulation (e.g., given a structure, determine what spectrum or diffraction pattern results), and
techniques from uncertainty quantification are among those proving successful in making progress.

2.3.3 Synergy between Computational Science and Data Science

Big data is transforming the fabric of society, in areas that go beyond research in the physical sciences and en-
gineering [22]. Data analytics aims at extracting information from large amounts of data in areas as diverse as
business intelligence, cybersecurity, social network recommendation, and government policy. Analysis of the data
is often based on statistical and machine learning methods from data science. Similar to CSE, data science is
built on fundamentals from mathematics and statistics, computer science, and domain knowledge; and hence it
possesses an important synergy with CSE.

The paradigm of scalable algorithms and implementations that is central to CSE and HPC is also relevant to
emerging trends in data analytics and data science. Data analytics is quickly moving in the direction of mathe-
matically more sophisticated analysis algorithms and parallel implementations. CSE will play an important role
in developing the next generation of parallel high-performance data analytics approaches that employ descriptions
of the data based on physical or phenomenological models informed by first principles, with the promise of ex-
tracting valuable insight from the data that crucially goes beyond what can be recovered by statistical modeling

6Simulation by J. Chen, Sandia National Laboratories; visualization by the Scientific Computing and Imaging Institute, University of Utah.
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alone. Important mathematical and algorithmic advances in areas such as optimization, randomized algorithms,
and approximation are currently driven by problems in machine learning and deep learning.

HPC supercomputers and cloud data centers serve different needs and are optimized for applications that have
fundamentally different characteristics. Nevertheless, they face challenges that have many commonalities in terms
of extreme scalability, fault tolerance, cost of data movement, and power management. The advent of big data
has spearheaded new large-scale distributed computing technologies and parallel programming models such as
MapReduce, Hadoop, Spark, and Pregel, which offer innovative approaches to scalable high-throughput comput-
ing, with a focus on data locality and fault tolerance. These frameworks are finding applications in CSE problems,
for example, in network science; and large-scale CSE methods, such as advanced distributed optimization algo-
rithms, are increasingly being developed and implemented in these environments. In many applications, the need
for distributed computing arises from the sheer volume of the data to be processed and analyzed, and, similar to
the discussions on HPC in Section 2.2, the growing levels of parallelism in computer architectures require software
in distributed machine learning systems such as TensorFlow to be highly parallel. Extensive potential exists for
cross-fertilization of ideas and approaches between extreme-scale HPC and large-scale computing for data analy-
sis. Economy-of-scale pressures will contribute to a convergence of technologies for computing at large scale.

Overall, the analysis of big data requires efficient and scalable mathematics-based algorithms executed on high-
end computing infrastructure, which are core CSE competencies that translate directly to big data applications.
CSE education and research must foster the important synergies with data analytics and data science that are
apparent in a variety of emerging application areas.

2.4 CSE Software
CSE software ecosystems provide fundamental and pervasive technologies that connect advances in applied math-
ematics, computer science, and core disciplines of science and engineering for advanced modeling, simulation,
discovery, and analysis. We discuss the importance and scope of CSE software, the increasing challenges in CSE
software development and sustainability, and the future CSE software research agenda.

2.4.1 Importance and Scope of CSE Software

Software is an essential product of CSE research when complex models of reality are cast into algorithms; more-
over, the development of efficient, robust, and sustainable software is at the core of CSE. The CSE agenda for
research includes the systematic design and analysis of (parallel) software, its accuracy, and its computational
complexity (see Section 2.2). Beyond this, CSE research must deal with the assessment of computational cost
on the relevant hardware platforms, as well as with criteria such as flexibility, usability, extensibility, and inter-
operability. Software that contributes to modeling, simulation, and analysis is only part of the software required
in CSE. Equally important are operating systems, programming models, programming languages, compilers, de-
buggers, profilers, source-to-source translators, build systems, dynamic resource managers, messaging systems,
I/O systems, workflow controllers, and other types of system software that support productive human-machine
interaction. Software in this wider sense also includes the infrastructure necessary to support a CSE research
ecosystem, such as version control, automatic tests for correctness and consistency, documentation, handbooks,
and tutorials. All this software is essential for CSE to continue to migrate up computational scales, and it requires
an interdisciplinary community to produce it and to ensure that it coheres.

While the volume and complexity of scientific software have grown substantially in recent decades [15], sci-
entific software traditionally has not received the focused attention it so desperately needs in order to fulfill this
key role as a cornerstone of long-term CSE collaboration and scientific progress [23, 16, 17]. Rather, “software
has evolved organically and inconsistently, with its development and adoption coming largely as by-products of
community responses to other targeted initiatives” [26].

2.4.2 Challenges of CSE Software

The community faces increasing challenges in CSE software design, development, and sustainability as a result of
the confluence of disruptive changes in computing architectures and demands for more complex simulations. New
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architectures require fundamental algorithm and software refactoring, while at the same time enabling new ranges
of modeling, simulation, and analysis.

New science frontiers: increasing software demands. CSE’s continual push toward new capabilities that enable
predictive science dramatically affects how codes are designed, developed, and used. Software that incorporates
multiphysics and multiscale modeling, capabilities beyond interpretive simulations (such as UQ and design opti-
mization), and coupled data analytics presents a host of difficulties not faced in traditional contexts, because of the
compounded complexities of code interactions [28, 16, 23]. A key challenge is enabling the introduction of new
models, algorithms, and data structures over time—that is, balancing competing goals of interface stability and
software reuse with the ability to innovate algorithmically and develop new approaches.
Programmability of heterogeneous architectures. Designing and developing CSE software to be sustainable are
challenging software engineering tasks, not only in the extreme scale, but also in conventional applications that
run on standard hardware. The best software architecture is often determined by performance considerations, and
it is a high art to identify kernel routines that can serve as an internal interface to a software performance layer.
While the optimization of the kernel routines inevitably requires detailed knowledge of a specific target machine,
the design the software architecture must support optimizations not only for current but also for future generations
of computer systems. Such long term sustainability of software is essential to amortize the high cost of developing
complex CSE applications, but it requires a deep understanding of computer architecture and its interplay with
algorithms.

All modern computers are hierarchically structured. This structure, in turn, creates the need to develop software
with the hierarchy and the architecture in mind, often using a hybrid combination of different languages and tools.
For example, a given application may utilize MPI on the system level, OpenMP on the node level, and special
libraries or low-level intrinsics to exploit core-level vectorization. Newer techniques from computer science, such
as automatic program generation, annotations, and domain-specific languages, may eventually help reduce the gap
between real-life hardware structures and model complexity.

This complexity will need to be managed, and to some extent alleviated, in the future. For example, the
development of new and improved unifying languages, combined with the tools to select appropriate algorithms
for target architectures and to implement these algorithms automatically, may ease the burden on CSE software
developers. Such tools are topics of current research and are therefore far from reaching the level of maturity
required to support large-scale development. Consequently, CSE developers must currently rely on an approach
that includes hardware-optimized libraries; or they must master the complexity—typically in larger teams where
members can specialize—by undertaking explicitly hardware-aware development. This task is even more complex
when accelerators, such as GPUs, are to be used.
Composability, interoperability, extensibility, portability. As CSE applications increase in sophistication, no
single person or team possesses the expertise and resources to address all aspects of a simulation. Interdisciplinary
collaboration using software developed by independent groups becomes essential. CSE researchers face daunting
challenges in developing, deploying, maintaining, extending, and effectively using libraries, frameworks, tools,
and application-specific infrastructure.

Practical difficulties in collaborative research software stem from the need for composable and interoperable
code with support for managing complexity and change as architectures, programming models, and applications
continue to advance. Challenges include coordinating the interfaces between components that need to interoperate
and ensuring that multiple components can be used side by side without conflicts between programming models
and resources. Even more difficult challenges arise with the need to exchange or control data between compo-
nents, where many issues center on ownership and structure of the data on which components act. Moreover, good
software must be extensible, to meet not only requirements known at the time of its design but also unanticipated
needs that change over time. Software must also be portable across target architectures, including laptops, work-
stations, and moderately sized clusters for much of the CSE community. Even researchers who employ the full
resources of emerging extreme-scale machines typically develop and test their code first on laptops and clusters,
so that portability across this entire spectrum is essential.
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CSE Success Story: Numerical Libraries Provide Computational Engines for Advanced CSE Applications
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Notation: A     B: A can use B to provide functionality on behalf of A 
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CSE Applications 
Community collaboration and support
are essential in driving and transform-
ing how large-scale, open-source soft-
ware is developed, maintained, and used.
Work is under way in developing the
Extreme-scale Scientific Development Kit
(xSDK),7 which is improving the inter-
operability, portability, and sustainability
of CSE libraries and application compo-
nents. The vision of the xSDK is to pro-
vide the foundation of an extensible scien-
tific software ecosystem developed by di-
verse, independent teams throughout the
community, in order to improve the qual-
ity, reduce the cost, and accelerate the development of CSE applications. The xSDK incorporates, for
example, the high-performance numerical libraries hypre, PETSc, Sundials, SuperLU, and Trilinos, which
are supported by the U.S. Department of Energy and encapsulate cutting-edge algorithmic advances to
achieve robust, efficient, and scalable performance on high-performance architectures. These packages
provide the computational engines for thousands of advanced CSE applications, such as hydrology and
biogeochemical cycling simulations using PFLOTRAN and coupled 3D microscopic-macroscopic steel
simulations (far left and far right images, respectively, in the “CSE Applications” box in the diagram).
For example, this multiphase steel application, which uses nonlinear and linear FETI-DP domain decom-
position methods (in PETSc) and algebraic multigrid (in hypre), demonstrates excellent performance on
the entire Blue Gene/Q at the Jülich Supercomputing Centre (JUQUEEN, 458K cores) and the Argonne
Leadership Computing Facility (Mira, 786K cores).

2.4.3 Software as a Research Agenda for CSE

CSE software ecosystems, which support scientific research in much the same way that a light source or tele-
scope does, require a substantial investment of human and capital resources, as well as basic research on scientific
software productivity so that the resulting software artifacts are fully up to the task of predictive simulations and
decision support. Scientific software often has a much longer lifetime than does hardware; in fact, software fre-
quently outlives the teams that originally create it. Traditionally, however, support for software has generally
been indirect, from funding sources focused on science or engineering outcomes, and not the software itself. This
circumstance—sporadic, domain-specific funding that considers software only secondary to the actual science it
helps achieve—has caused huge difficulties, not only for sustainable CSE software artifacts, but also for sustain-
able CSE software careers. This in turn has increasingly led to a mismanagement of research investment, since
scientific software as an important CSE research outcome is rarely leveraged to its full potential.

Recent community reports express the imperative to firmly embrace the fundamental role of open-source CSE
software as a valuable research product and cornerstone of CSE collaboration and thus to increase direct investment
in the software itself, not just as a byproduct of other research [3, 15, 16, 17, 23, 26]. The past decade has seen
the development of many successful community-based open-source CSE software projects and community science
codes. Aided by advances in supporting technology such as version control, bug tracking, and online collaboration,
these projects leverage broad communities to develop free software with features at the leading edge of algorithmic
research. Examples in the area of finite-element methods include the deal.II, Dune, and FEniCS projects; and
similar efforts have made tremendous contributions in many other areas of CSE.

7 Information on xSDK available via https://xsdk.info. PFLOTRAN simulations by G. Hammond (Sandia National Laboratories).
Multiphase steel simulations described in A. Klawonn, M. Lanser, and O. Rheinbach, SIAM J Sci Comput 37(6), C667-C696, 2015; image
courtesy of Jörg Schröder, Universität Duisburg-Essen.

22

https://xsdk.info


2 CHALLENGES AND OPPORTUNITIES IN CSE RESEARCH

Reproducibility and sustainability. CSE software often captures the essence of research results. It must there-
fore be considered equivalent to other scientific outcomes and must be subjected to equivalent quality assurance
procedures. This requirement in turn means that criteria such as the reproducibility of results [45] must be given
higher priority and that CSE software must be more rigorously subjected to critical evaluation by the scientific
community. Whenever a research team is faced with increased expectations for independent review of computa-
tional results, the team’s interest in improved software methodologies increases commensurately. In fact, it is not
too strong to say that the affordability and feasibility of reproducible scientific research are directly proportional
to the quality and sustainability of the software. Community efforts are beginning to address issues in software
sustainability, or the ability to maintain the scientifically useful capability of a software product over its intended
life span, including understanding and modifying a software product’s behavior to reflect new and changing needs
and technology [52, 16, 17]. Work is needed to determine value metrics for CSE software that fully acknowl-
edge its key role in scientific progress; to increase rewards for developers of open-access, reliable, extensible, and
sustainable software; and to expand career paths for expert CSE software developers.
Software engineering and productivity. The role of software ecosystems as foundations for CSE discoveries
brings to the forefront issues of software engineering and productivity, which help address reproducibility and
sustainability. Software productivity expresses the effort, time, and cost of developing, deploying, and maintaining
a product having needed software capabilities in a targeted scientific computing environment [16, 23]. Work
on software productivity focuses on improving the quality, decreasing the cost, and accelerating the delivery of
scientific applications, as a key aspect of improving overall scientific productivity. Software engineering, which
can be defined as “the application of a systematic, disciplined, quantifiable approach to the development, operation,
and maintenance of software” [21], is central to any effort to increase CSE software productivity.

While the scientific community has much to learn from the mainstream software engineering community, CSE
needs and environments are in combination sufficiently unique so as to require fundamental research specifically
for scientific software. In particular, scientific software domains require extensive academic background in order
to understand how software can be designed, written, and used for CSE investigations. Also, scientific software is
used for discovery and insight, and hence requirements (and therefore all other phases of the software lifecycle)
are frequently changing.

Consequently, CSE software ecosystems and processes urgently require focused research and substantial in-
vestment. Another pressing need is education on software engineering and productivity methodologies that are
specifically tailored to address the unique aspects of CSE, in the contexts of both academic training and ongoing
professional development (see Section 3). With respect to many of these issues, CSE software research is still
nascent, since these themes have been largely neglected in the evolution of the field to date. As stated in a recent
NITRD report [16], “The time is upon us to address the growing challenge of software productivity, quality, and
sustainability that imperils the whole endeavor of computation-enabled science and engineering.”

2.5 Emergence of Predictive Science
The advances in CSE modeling, algorithms, simulation, big data analytics, HPC, and scientific software summa-
rized in this document all have the overarching goal of achieving truly predictive science capabilities. Scientific
experimentation and theory, the classical paradigms of the scientific method, both strive to describe the physical
world. However, high-fidelity predictive capabilities can be achieved only by employing numerical computation.
Predictive science now lies at the core of the new CSE discipline.

CSE draws its predictive power from mathematics, statistics, and the natural sciences as they underlie model
selection, model calibration, model validation, and model and code verification, all in the presence of uncertainties.
Ultimately CSE must also include the propagation of uncertainties through the forward problem and the inverse
problem, to quantify the uncertainties of the outputs that are the target goals of the simulation. When actual
computer predictions are used for critical decisions, all of these sources of uncertainty must be taken into account.

Current algorithms and methods for coping with these issues have their roots in the mathematics and statistics
of the past century and earlier. In order to deal with the complexities of predictive modeling, however, new
models, algorithms, and methodologies are needed. Their development, analysis, and implementation constitute
the new research agenda for CSE. Achieving these goals will require substantial research efforts and significant
breakthroughs.
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What predictive science and therefore what CSE will eventually be is not yet fully understood. We may see the
coastline of the “continent of predictive science” ahead of us, but we still have to explore the whole mass of land
that lies behind this coastline. We can already clearly see, however, that CSE and the transition to predictive science
will have a profound impact on education, on how scientific software is developed, on research methodologies, and
on the design of tomorrow’s computers.

3 CSE Education and Workforce Development
With the many current and expanding opportunities for the CSE field, there is a growing demand for CSE graduates
and a need to expand CSE educational offerings. This need includes CSE programs at both the undergraduate and
graduate levels, as well as continuing education and professional development programs. In addition, the increased
presence of digital educational technologies provides an exciting opportunity to rethink CSE pedagogy and modes
of educational delivery.

3.1 Growing Demand for CSE Graduates
Industry, national laboratories, government, and broad areas of academic research are making more use than ever
before of simulations, high-end computing, and simulation-based decision-making. This trend is apparent broadly
across domains—for example, energy, manufacturing, finance, and transportation are all areas in which CSE is
playing an increasingly significant role, with many more examples across science, engineering, business, and
government. Research and innovation, both in academia and in the private sector, are increasingly driven by large-
scale computational approaches. A National Council on Competitiveness report points out that high-end computing
plays a “vital role in driving private-sector competitiveness ... all businesses that adopt HPC consider it indispens-
able for their ability to compete and survive” [8]. With this significant and increased use comes a demand for a
workforce versed in technologies necessary for effective and efficient mathematics-based computational modeling
and simulation. There is high demand for graduates with the interdisciplinary expertise needed to develop and/or
utilize computational techniques and methods in order to advance the understanding of physical phenomena in a
particular scientific, engineering, or business field and to support better decision-making [13].

As stated in a recent report on workforce development by the U.S. Department of Energy Advanced Scientific
Computing Advisory Committee [47], “All large DOE national laboratories face workforce recruitment and reten-
tion challenges in the fields within Computing Sciences that are relevant to their mission. ... There is a growing
national demand for graduates in Advanced Scientific Computing Research-related Computing Sciences that far
exceeds the supply from academic institutions. Future projections indicate an increasing workforce gap.” This
finding was based on a number of reports, including one from the High End Computing Interagency Working
Group [19] stating: “High end computing (HEC) plays an important role in the development and advanced capa-
bilities of many of the products, services, and technologies that are part of our everyday life. The impact of HEC
on the agencies of the federal government, on the quality of academic research, and on industrial competitiveness
is substantial and well documented. However, adoption of HEC is not uniform, and to fully realize its potential
benefits we must address one of the most often cited barriers: lack of HEC skills in the workforce.” Additional
workforce and education issues are discussed in [16].

The U.S. Department of Energy has for 25 years been investing in the Computational Science Graduate Fellow-
ship [9] program to prepare approximately 20 Ph.D. candidates per year for interdisciplinary roles in its laboratories
and beyond. Fellows take at least two graduate courses in each of computer science, applied mathematics, and an
application from science or engineering requiring large-scale computation, in addition to completing their degree
requirements for a particular department. They also spend at least one summer at a DOE laboratory in a CSE in-
ternship and attend an annual meeting to network with their peers across other institutions. This program has been
effective in creating a sense of community for CSE students that is often lacking on any individual traditionally
organized academic campus.

In order to take advantage of the transformation that high-performance and data-centric computing offers to
industry, the critical factor is a workforce versed in CSE and capable of developing the algorithms, exploiting the
compute platforms, and designing the analytics that turn data with its associated information into knowledge to
act. This is the case for large companies that have traditionally had in-house simulation capabilities and may have
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dedicated CSE-focused groups to support a wide range of products; it is also increasingly the case for small- and
medium-sized companies with more specialized products and a critical need for CSE to support their advances in
research and development. In either case, exploiting emerging computational tools requires the critical thinking
and the interdisciplinary background that is prevalent in CSE training [37]. The CSE practitioner has the expertise
to apply computational tools in uncharted areas, often applying previous domain-specific understanding. The CSE
practitioner also has the analytical skills to tease out the problems that often are encountered when commercial
enterprises seek to design new products, develop new services, and create novel approaches from the wealth of
data available. While often a member of a team of others from varying disciplines, the CSE practitioner is the
catalyst driving the change that industry seeks in order not only to remain competitive but also to be first to market,
providing the necessary advantage to thrive in a rapidly evolving technological ecosystem.

3.2 Future Landscape of CSE Educational Programs
CSE educational programs are needed in order to create professionals who meet this growing demand and who
support the growing CSE research field. These include CSE programs at both the undergraduate and graduate
levels, as well as continuing education and professional development programs. They also include programs that
are “CSE focused” and those that follow more of a “CSE infusion” model. The former include programs that
have CSE as their primary focus (e.g., B.S., M.S., or Ph.D. in computational science and engineering), while
the latter include programs that embed CSE training within another degree structure (e.g., a minor, emphasis, or
concentration in CSE complementing a major in mathematics, science, or engineering or a degree in a specific
computational discipline such as computational finance or computational geosciences). In fact, interdisciplinary
quantitative and computer modeling skills are quickly becoming indispensable for any university graduate, not
only in the physical and life sciences, but also in the social sciences. Universities must equip their graduates with
these skills. Information about a variety of CSE educational programs can be found online [42, 11].

Undergraduate education. At the undergraduate level, the breadth and depth of topics covered in CSE de-
grees depends on the specific degree focus. However, the following high-level topics are important content for an
undergraduate program:

1. Foundations in mathematics and statistics, including calculus, linear algebra, mathematical analysis, ordi-
nary and partial differential equations, applied probability, stochastic processes, and discrete mathematics

2. Simulation and modeling, including conceptual, data-based, and physics-based models, use of simulation
tools, and assessment of computational models

3. Computational methods and numerical analysis, including errors, solutions of systems of linear and non-
linear equations, Fourier analysis, interpolation, regression, curve fitting, optimization, numerical differ-
entiation and integration, Monte Carlo methods, statistical inference, numerical methods for ODEs, and
numerical methods for PDEs

4. Computing skills, including compiled high-level languages, algorithms (numerical and nonnumerical), ele-
mentary data structures, analysis of algorithms and their implementation, parallel programming, scientific
visualization, awareness of computational complexity and cost, and use of good software engineering prac-
tices including version control

Feedback from the community has noted an increasing demand for CSE graduates trained at the bachelor’s level,
with particular note of the increased opportunities at small- and medium-sized companies. A report from the SIAM
Working Group on CSE Undergraduate Education further develops foundations for directions in undergraduate
CSE education [46].

Graduate education. At the graduate level, again the breadth and depth of topics covered depends on the
specific degree focus. In the next section, we make specific recommendations in terms of a set of learning out-
comes desired for a CSE graduate program. We also note the growing importance of and demand for terminal
master’s degrees, which can play a large role in fulfilling the industry and national laboratory demand for grad-
uates with advanced CSE skills. All CSE graduates should possess the attributes of having a solid foundation in
mathematics; an understanding of probability and statistics; a grasp of modern computing, computer science, pro-
gramming languages, principles of software engineering, and high-performance computing; and an understanding
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of foundations of modern science and engineering, including biology. These foundations should be complemented
by deep knowledge in a specific area of science, engineering, mathematics and statistics, or computer science.
CSE graduates should also possess skills in teamwork, multidisciplinary collaboration, and leadership. A valuable
community project would be to collect resources to assist early-career researchers in advancing skills to support
CSE collaboration and leadership.

Continuing and professional education. A third area of educational programs is that of continuing and pro-
fessional education. Opportunities exist for SIAM or other institutions to engage with industry to create and offer
short courses, including those that target general CSE skills for the non-CSE specialist as well as those that target
more advanced skills in timely opportunity areas (such as parallel and extreme-scale computing, CSE-oriented soft-
ware engineering, and computing with massive data). Often one assumes that much of the workforce for industry
in CSE will come at the postgraduate level; increasingly, however, industry needs people who have an understand-
ing of CSE even at the undergraduate level in order to realize the full potential growth in a rapidly expanding
technological workplace. Future managers and leaders in business and industry must be able to appreciate the skill
requirements for the CSE professional and the benefits that accrue from CSE. Continuing education can play a
role in fulfilling this need. The demand for training in CSE-related topics exists broadly among graduate students
and researchers in academic institutions and national laboratories, as evidenced by the growing number of summer
schools worldwide, as well as short courses aimed at the research community. For example, the Argonne Training
Program on Extreme-Scale Computing [33] covers key topics that CSE researchers must master in order to develop
and use leading-edge applications on extreme-scale computers. The program targets early-career researchers to fill
a gap in the training that most computational scientists receive and provides a more comprehensive program than
do typical short courses.8 Continuing education also has an important role to play in addressing the challenge
of changing computer architectures—skills developed around optimizing algorithms for today’s machines might
become obsolete within the lifetime of a student’s professional career. Lastly, we note that the recent creation of
the SIAM Activity Group on Applied Mathematics Education represents another opportunity for collaboration to
pursue some of these ideas in continuing and professional education.

Institutional structure. Because of CSE’s intrinsically interdisciplinary nature and its research agenda reach-
ing beyond the traditional disciplines, the development of CSE is often impeded by traditional institutional bound-
aries. CSE research and education have found great success over the past decade in those settings where CSE
became a clearly articulated focus of entire university departments,9 faculties,10 or large interdisciplinary cen-
ters.11 In many of the newer universities in the world, institutional structures often develop naturally in line with
the CSE paradigm.12 In other cases, institutional traditions and realities make it more natural for successful CSE
programs to develop within existing departments13 or in cross-departmental14 or cross-faculty15 initiatives. Infor-
mation about a variety of CSE educational programs can be found online [42, 11]. In any case, universities and
research institutes will need to implement new multidisciplinary structures that enable more effective CSE research
and education. One ingredient appears crucial for success, regardless of the particular institutional structure: It is
critical to have both top-down support from the university administration and ground-up enthusiasm from the fac-
ulty. To fully realize its potential, the CSE endeavor requires its own academic structures, funding programs, and
educational programs.

8Videos and slides of lectures are available via the ATPESC website http://extremecomputingtraining.anl.gov.
9For example, the School of Computational Science & Engineering at the Georgia Institute of Technology and the Department of Scientific

Computing at Florida State University.
10For example, the Division of Computer, Electrical, and Mathematical Sciences and Engineering at the King Abdullah University of Science

and Technology (KAUST).
11For example, the Institute for Computational Engineering and Sciences at the University of Texas at Austin, the Scientific Computing and

Imaging Institute at the University of Utah, the Cluster of Excellence in Simulation Technology at the University of Stuttgart, and CERFACS
(Centre Europen de Recherche et de Formation Avance en Calcul Scientifique) in Toulouse.

12KAUST is, again, a good example.
13For example, the master’s program in CSE at the Technische Universität München.
14For example, CSE graduate programs in engineering faculties at the University of Illinois at Urbana-Champaign, at the Massachusetts

Institute of Technology, and at the Technische Universität Darmstadt
15For example, the School of Computational Science and Engineering at McMaster University, the Institute for Computational and Mathe-

matical Engineering at Stanford University, and the master’s program in CSE at the Ecole Polytechnique Federale de Lausanne.
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CSE Success Story: Computational Modeling and Data Analytics Undergraduate Degree at Virginia Tech
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In Spring 2015, Virginia Tech launched a new un-
dergraduate major in Computational Modeling and
Data Analytics (CMDA). The curriculum is a col-
laboration among the Departments of Computer
Science, Mathematics, and Statistics, across the
Colleges of Science and Engineering. The pro-
gram includes ten new courses specially designed
for the major, building skills in dynamical systems
and mathematical modeling, statistics and data an-
alytics, and high-performance computing; special-
ized options in physics and economics are avail-
able. The curriculum intentionally builds an inter-
disciplinary perspective. For example, sophomore
level multivariable calculus, differential equations,
probability, and statistics are taught together in two
6-credit courses (Integrated Quantitative Science),
team taught by a mathematician and statistician. A capstone project course emphasizes leadership, team-
work, communication, and project management skills, as small teams tackle semester-long modeling and
analytics challenges from clients. The new degree program has proven to be popular: total enrollment in
Spring 2017 was already above 300 students, with the first class of 22 graduating in May 2017.

3.3 Graduate Program Learning Outcomes
A learning outcome is defined as what a student is expected to be able to do as a result of a learning activity. In
this section, we describe a set of learning outcomes desired of a student graduating from a CSE Ph.D. program.
We focus on outcomes because they describe the set of desirable competencies without attempting to prescribe any
specific degree structure. These outcomes can be used as a guide to define a Ph.D. program that meets the needs
of the modern CSE graduate; they can also play an important role in defining and distinguishing the CSE identity
and in helping employers understand the skills and potential of CSE graduates.

In Table 1, we focus on the “CSE Core Researchers and Developers” category in Figure 3. We distinguish
between a CSE Ph.D. with a broadly applicable CSE focus and a CSE Ph.D. with a domain-driven focus. An
example of the former is a “Ph.D. in computational science and engineering” while an example of the latter is a
“Ph.D. in computational geosciences.” The listed outcomes relate primarily to those CSE-specific competencies
that will be acquired through classes. Of course, the full competencies of the Ph.D. graduate must also include
the more general Ph.D.-level skills, such as engaging deeply in a research question, demonstrating awareness of
research context and related work, and producing novel research contributions, many of which will be acquired
through the doctoral dissertation. We note that it would be desirable for graduates of a CSE master’s degree
program to also achieve most (if not all) of the outcomes in Table 1. In particular, in educational systems with no
substantial classwork component for the Ph.D., the learning outcomes of Table 1 would also apply to the master’s
or honors degree that may precede the Ph.D.

In the next two subsections, we elaborate on the interaction between CSE education and two areas that have
seen considerable change since the design of many existing CSE programs: extreme-scale computing and comput-
ing with massive data.

3.4 Education in Parallel Computing and Extreme-Scale Computing
Engineers and scientists need to be better prepared for the age of ubiquitous parallelism (as addressed in Sec-
tion 2.2; see also [19, 39, 48, 47, 50]). Parallelism has become the basis for all computing technology and necessi-
tates a shift in teaching even the basic concepts. Simulation algorithms and their properties have been in the core of
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Table 1: Learning outcomes desired of a student graduating from a CSE Ph.D. program. Italicized text denotes
differences in learning outcomes for programs with a broadly applicable CSE focus (left) and a domain-driven
focus in a particular field of science or engineering (right). Learning outcomes that are common to both types of
Ph.D. programs span left and right columns.

CSE Ph.D. with Broadly Applicable CSE Focus CSE Ph.D. with Domain-Driven Focus in Field X
Combine mathematical modeling, physical princi-
ples, and data to derive, analyze, and assess models
across a range of systems (e.g., statistical mechanics,
continuum mechanics, quantum mechanics, molecu-
lar biology).

Combine mathematical modeling, physical princi-
ples and data to derive, analyze, and assess a range
of models within field X.

Demonstrate graduate-level depth in devising, analyzing, and evaluating new methods and algorithms
for computational solution of mathematical models (including parallel, discrete, numerical, statistical
approaches, and mathematical analysis).
Demonstrate mastery in code development to exploit
parallel and distributed computing architectures and
other emerging modes of computation in algorithm
implementation.

Demonstrate proficiency in code development to ex-
ploit parallel and distributed computing architectures
and other emerging modes of computation in algo-
rithm implementation.

Be aware of available tools and techniques from software engineering, their strengths and their weak-
nesses; select and apply techniques and tools from software engineering to build robust, reliable, and
maintainable software.
Develop, select, and use tools and methods to represent and visualize computational results.
Critically analyze and evaluate results using mathematical and data analysis, physical reasoning, and
algorithm analysis, and understand the implications on models, algorithms, and implementations.
Identify the sources of errors in a CSE simulation (such as modeling errors, code bugs, premature termi-
nation of solvers, discretization errors, roundoff errors, numerical instabilities), and understand how to
diagnose them and work to reduce or eliminate them.
Appreciate and explain the context of decision-
making as the end use of many CSE simulations,
and as appropriate be able to formulate, analyze, and
solve CSE problems in control, design, optimization,
or inverse problems.

Appreciate and explain the context of decision-
making as the end use of many CSE simulations,
and as appropriate be able to formulate, analyze and
solve CSE problems in control, design, optimization
or inverse problems as relevant to field X.

Understand data as a core asset in computational research, and demonstrate appropriate proficiencies in
processing, managing, mining, and analyzing data throughout the CSE/simulation loop.
Demonstrate the ability to develop, use, and analyze sophisticated computational algorithms in data sci-
ence and engineering, and understand data science and engineering as a novel field of application of CSE.
Demonstrate graduate-level proficiency in one do-
main in science or engineering.

Demonstrate graduate-level depth in domain knowl-
edge in field X.

Communicate across disciplines and collaborate in a team.
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CSE education, but now we must emphasize parallel algorithms. The focus used to be on abstract notions of accu-
racy of methods and the complexity of algorithms; today it must be shifted to the complexity of parallel algorithms
and the real-life cost of solving a computational problem—a completely different notion. Additionally, the asymp-
totic complexity and thus algorithmic scalability become more important when the machines grow larger. At the
same time, the traditional complexity metrics increasingly fail to give guidance about which methods, algorithms,
and implementations are truly efficient. As elaborated in Sections 2.2 and 2.4, designing simulation software has
become a complex, multifaceted art. The education of future computational scientists must address these topics
that arise from the disruptive technology that is dramatically changing the landscape of computing.

Extreme-scale computing also presents new challenges to education. Education in programming techniques
needs to be augmented with parallel programming elements and a distinctive awareness of performance and compu-
tational cost. Additionally the current trends are characterized by a growing complexity in the design of computer
architectures, which are becoming hierarchical and heterogeneous. These architectures are reflected by complex
and evolving programming models that should be addressed in a modern CSE education.

Today’s extreme scale is tomorrow’s desktop. An analogous statement holds for the size of the data that must
be processed and that is generated through simulations. In education we need to distinguish between those whose
research aims to simulate computationally demanding problems (see Section 2.2 and Figure 5) and the wider class
of people who are less driven by performance considerations. For example, many computational engineering
problems exist in which the models are not extremely demanding computationally or in which model reduction
techniques are used to create relatively cheap models.

In defining the educational needs in parallel and high-performance computing for CSE, we must distinguish
between different intensities. Any broad education in CSE will benefit from an understanding of parallel comput-
ing, simply because sequential computers have ceased to exist. All students must be trained to understand concepts
such as concurrency, algorithmic complexity, and its relation to scalability, elementary performance metrics, and
systematic benchmarking methodologies. In more demanding applications, parallel computing expertise and per-
formance awareness are necessary and must go significantly beyond the content of most current curricula. This
requirement is equally true in those applications that may be only of moderate scale but that nevertheless have high-
performance requirements, such as those in real-time applications or those that require interactivity; see Figure 5.
Here, CSE education must include a fundamental understanding of computer architectures and the programming
models that are necessary to exploit these architectures.

Besides classification according to scientific content and HPC intensity, educational structures in CSE must
also address the wide spectrum of the CSE community that was described and analyzed in Section 1.5 (see also
Figure 3).
CSE Domain Scientists and Engineers – Method Users. Users of CSE technology typically employ dedicated
supercomputer systems and specific software on these computers; they usually do not program HPC systems
from scratch. Nevertheless, they need to understand the systems and the software they use, in order to achieve
leading-edge scientific results. They must be capable of extending the existing applications, if needed, possibly in
collaboration with CSE and HPC specialists.

An appropriate educational program for CSE users in HPC can be organized in courses and tutorials on specific
topics such as are regularly offered by computing centers and other institutions. These courses are often taught
in compact format (ranging from a few hours to a week) and are aimed at enabling participants to use specific
methods and software or specific systems and tools. They naturally are of limited depth, but a wide spectrum of
such courses is essential in order to widen the scope of CSE and HPC technology and to bring it to bear fruit as
widely as possible.
CSE Domain Scientists and Engineers – Method Developers. Developers of CSE technology are often domain
scientists or engineers who have specialized in using computational techniques in their original field. They often
have decades of experience in computing and using HPC, and thus historically they are mostly self-taught. Regard-
ing the next generation of scientists, students of the classical fields (such as physics, chemistry, or engineering)
will increasingly want to put stronger emphasis on computing within their fields.

The more fundamental knowledge that will be needed to competently use the next generation of HPC systems
thus cannot be adequately addressed by compact courses as described above. A better integration of these topics
into the university curriculum is necessary, by teaching the use of computational methods as part of existing courses
or by offering dedicated HPC- and simulation-oriented courses (as electives) in the curriculum. An emphasis on
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CSE and HPC within a classical discipline may be taught in the form of a selection of courses that are offered
as electives by CSE or HPC specialists, or—potentially especially attractive—by co-teaching of a CSE specialist
jointly with a domain scientist.
CSE Core Researchers and Developers. Scientists who work at the core of CSE are classified in two groups
according to Figure 3. Domain-driven CSE students as well as those focusing on broadly applicable methods
should be expected to spend a significant amount of time learning about HPC and parallel computing topics. These
elements must be well integrated into the CSE curriculum. Core courses from computer science (such as parallel
programming, software engineering, and computer architecture) may present the knowledge that is needed also
in CSE, and they can be integrated into a CSE curriculum. Often, however, dedicated courses that are especially
designed for students in CSE will be significantly more effective, since such courses can be adapted to the special
prerequisites of the student group and can better focus on the issues that are relevant for CSE. Often again co-
teaching such courses, labs, or projects may be fruitful, especially when such courses cover several stages of the
CSE cycle (see Figure 2).

These three levels of CSE education are naturally interdependent, but we emphasize that all three levels are
relevant and important. In particular, the problem of educating the future generation of scientists in the competent
use of computational techniques cannot be addressed solely by offering one-day courses on how to use the latest
machine in the computing center.

CSE Success Story: Computer-Aided Engineering in the Automotive Industry

CSE-based simulation using
computer-aided engineering
(CAE) methods and tools
has become an indispensable
component of developing ad-
vanced products in industry.
Based on mathematical mod-
els (e.g., differential equa-
tions and variational princi-
ples), CAE methods such as
multibody simulation, finite
elements, and computational
fluid dynamics are essential
for assessing the functional
behavior of products early in
the design cycle when phys-
ical prototypes are not yet
available. The many advan-
tages of virtual testing com-
pared with physical testing
include flexibility, speed, and cost. This figure16 shows selected application areas of CAE in the auto-
motive industry. CSE provides widely applicable methods and tools. For example, drop tests of mobile
phones are investigated by applying simulation methods that are also used in automotive crash analysis.

3.5 CSE Education in Uncertainty Quantification and Data Science
The rising importance of massive data sets in application areas of science, engineering, and beyond has broadened
the skillset that CSE graduates may require. For example, data-driven uncertainty quantification requires statistical
approaches that may include tools such as Markov chain Monte Carlo methods and Bayesian inference. Analysis of

16Figure courtesy of AUDI AG.
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large networks requires skills in discrete mathematics, graph theory, and combinatorial scientific computing. Sim-
ilarly, many data-intensive problems require approaches from inverse problems, large-scale optimization, machine
learning, and data stream and randomized algorithms.

The broad synergies between computational science and data science offer opportunities for educational pro-
grams. Many CSE competencies translate directly to the analysis of massive data sets at scale using high-end
computing infrastructure. Computational science and data science are both rooted in solid foundations of mathe-
matics and statistics, computer science, and domain knowledge; this common core may be exploited in educational
programs that prepare the computational and data scientists of the future.

We are already beginning to see the emergence of such programs. For example, the new undergraduate major in
“Computational Modeling and Data Analytics” at Virginia Tech17 includes deep integration among applied math-
ematics, statistics, computing, and science and engineering applications. This new degree program is intentionally
designed not to be just a compilation of existing classes from each of the foundational areas; rather, it comprises
mostly new classes with new perspectives emerging from the intersection of fields and is team taught by faculty
across departments. Another example is the Data Engineering and Science Initiative at Georgia Tech.18 Degree
programs offered include a one-year M.S. in analytics, and M.S. and Ph.D. programs with a data focus on CSE
and biotech fields. These programs are jointly offered by academic units drawn from the colleges of computing,
engineering, and business. About a quarter of the courses are offered by the School of CSE, with the focus on
computational algorithms and high-performance analytics. A similar picture is emerging around the world, with
interdisciplinary programs that combine data analytics and mathematics-based high-end computing.19

CSE Success Story: Simulation-Based Optimization of 3D Printing

CSE researchers have developed
advanced models of 3D printing
processes, where thin layers of
metal powder are molten by a
high-energy electron beam that
welds the powder selectively to
create complex 3D metal struc-
tures with an almost arbitrary ge-
ometry by repeating the process
layer by layer. The two snapshots
on the right visualize the effects
of a simulated electron beam that
scans over a powder bed in a se-
quence of parallel lines. Simu-
lation can be used for designing
the electron beam gun, develop-
ing the control system, and gen-
erating the powder layer, thereby
accelerating the printing process in commercial manufacturing, for example, of patient-specific medical
implants. The greatest simulation challenge is to develop numerical models for the complex 3D multi-
physics welding process. A realistic simulation with physical resolution of a few microns requires millions
of mesh cells and several hundreds of thousands of timesteps—computational complexity that can be tack-
led only with parallel supercomputers and sophisticated software.20

17http://www.science.vt.edu/ais/cmda/
18http://bigdata.gatech.edu/, http://www.analytics.gatech.edu/
19See, e.g., several of the programs listed at http://www.kdnuggets.com/education/index.html
20 Simulation results from M. Markl, R. Ammer, U. Rüde, and C. Körner, International Journal of Advanced Manufacturing Technology, 78,

239-247, 2015.
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4 CONCLUSIONS AND RECOMMENDATIONS

3.6 Software Sustainability, Data Management, and Reproducibility
As discussed in Section 2.4, simulation software is becoming increasingly complex and often involves many devel-
opers, who may be geographically distributed and who may enter or leave the project at different times. Education
is needed on issues in software productivity and sustainability, including software engineering for CSE and tools
for software project management. For example, code repositories that support version control are increasingly
used as a management tool for projects of all sizes. Teaching students at all levels to routinely use version control
will increase their productivity and allow them to participate in open-source software projects in addition to better
preparing them for many jobs in large-scale CSE.

Researchers in CSE fields (and from governments, funding agencies, and the public) also have experienced
growing concern about the lack of reproducibility of many scientific results based on code and data that is not
publicly available and often not properly archived in a manner that allows future confirmation of the results. Many
agencies and journals are beginning to require open sharing of data and/or code. CSE education should include
training in the techniques that support this trend, including data management and provenance, licensing of code and
data, full specification of models and algorithms within publications, and archiving of code and data in repositories
that issue permanent identifiers such as DOIs.

The important issues of ethics and privacy also come into play with an increased community focus on sharing
data and codes. These topics are an essential part of CSE education—they should be covered as part of a class as
well as reinforced through research process and mentoring.

3.7 Changing Educational Infrastructure
As we think about CSE educational programs, we must also consider the changing external context of education,
particularly with regard to the advent of digital educational technologies and their associated impact on the delivery
of education programs.

One clear impact is an increased presence of online digital materials, including digital textbooks, open edu-
cational resources, and massive open online courses (MOOCs). Recent years have already seen the development
of online digital CSE resources, as well as widespread availability of material in fields relevant to CSE, such as
HPC, machine learning, and mathematical methods. An opportunity exists to make better community use of cur-
rent materials, as well as to create new materials. There is also an opportunity to leverage other resources, such
as Computational Science Graduate Fellowship essay contest winners21 and archived SIAM plenaries and other
high-profile lectures. The time is right for establishing a SIAM working group that creates and curates a central
repository linking to CSE digital materials and coordinates community development of new CSE online modules.
This effort could also be coordinated with an effort to pursue opportunities in continuing education.

Digital educational technologies are also having an impact on the way university courses are structured and
offered. For example, many universities are taking advantage of digital technologies and blended learning models
to create “flipped classrooms,” where students watch video lectures or read interactive online lecture notes in-
dividually and then spend their face-to-face class time engaged in active learning activities and problem solving.
Digital technologies are also offering opportunities to unbundle a traditional educational model—introducing more
flexibility and more modularity to degree structures. Many of these opportunities are well suited for tackling the
challenges of building educational programs for the highly interdisciplinary field of CSE.

4 Conclusions and Recommendations

4.1 Summary
Over the past two decades, computational science and engineering has become tremendously successful and influ-
ential at driving progress and innovation in the sciences and technology. CSE is intrinsically interdisciplinary, and
as such it often suffers from the entrapments created by disciplinary boundaries. While CSE and its paradigm of
quantitative computational analysis and discovery are permeating increasingly many areas of science, engineering,

21https://www.krellinst.org/csgf/outreach/cyse-contest
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and beyond, CSE has been most successful when realized as a clearly articulated focus within its own well-defined
academic structures and its own targeted funding programs and aided by its own focused educational programs.
The past decade has seen a comprehensive broadening of the application fields and methodologies of CSE. For ex-
ample, mathematics-based computing is an important factor in the quantitative revolution that is sweeping through
the life sciences and medicine, and powerful new methods for uncertainty quantification are being developed that
build on advanced statistical techniques.

Quantitative and computational thinking is becoming ever more important in almost all areas of scientific en-
deavor. Hence, CSE skills and expertise must be included in curricula across the sciences, including the biomedical
and social sciences. A well-balanced system of educational offerings is the basis for shaping the future of CSE.
Creating a unique identity for CSE education is essential. Dedicated CSE programs have been created up to now
only in a relatively small number of universities, mostly in the United States and Europe. More such undergradu-
ate and graduate-level (masters and Ph.D.) programs in CSE are necessary in order to train and prepare the future
generation of CSE scientists to make new scientific and engineering discoveries. This core CSE education will
require designing dedicated curricula; and where such programs already exist, continuous adaptation is needed to
address the rapidly changing landscape of CSE.

4.2 Central Findings
• F1: CSE as a discipline. CSE has matured to be a discipline in its own right. It has its own unique

research agenda, namely, to invent, analyze, and implement broadly applicable computational methods and
algorithms that drive progress in science, engineering, and technology. A major current focus of CSE is to
create truly predictive capability in science. Such CSE-based scientific predictions will increasingly become
the foundation of technical, economic, societal, and public policy advances and decisions in the coming
decades.

• F2: Algorithms and software as research artifacts. Innovations in mathematical methods and computa-
tional algorithms lie at the core of CSE advances. Scientific software, which codifies and organizes algorith-
mic models of reality, is the primary means of encapsulating CSE research to enable advances in scientific
and engineering understanding. CSE algorithms and software can be created, understood, and properly
employed only by using a unique synergy of knowledge that combines an understanding of mathematics,
computer science, and target problem areas.

• F3: CSE and the data revolution. CSE methods and techniques are essential in order to capitalize on
the rapidly growing ubiquitous availability of scientific and technological data, which is a major challenge
that calls for the development of new numerical methods. In order to achieve deeper scientific benefit,
data analytics must proceed beyond the exposition of correlations. CSE develops new statistical computing
techniques that are efficient at scale, and it incorporates physical models informed by first principles to
extract from the data insights that go far beyond what can be recovered by statistical modeling alone.

4.3 General Recommendations
• R1: Universities and research institutions should expand CSE to realize its broad potential for driving

scientific and technological progress in the 21st century. This requires removing disciplinary boundaries,
engaging with new application areas, and developing new methodologies. Multidisciplinary research and
education structures where CSE is a clearly articulated focus should be increasingly encouraged.

• R2: Funding agencies should develop focused and sustained funding programs that address the specific
needs of research in CSE. These programs should acknowledge the multidisciplinary nature of CSE and
account for specific research agendas of CSE, including CSE algorithms and software ecosystems as crit-
ical instruments of a novel kind of predictive science and access to leading high-performance computing
facilities.
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4.4 Recommendations for CSE Education
• E1: Universities should strengthen and broaden computational thinking in all relevant academic areas

and on all levels. This effort is vital for driving scientific, technological, and societal progress and needs to
be addressed systematically at the university level as a crucial factor in workforce development for the 21st
century.

• E2: Dedicated CSE programs at all university degree levels should be created to educate future core
CSE researchers for jobs in the private and government sectors, in research laboratories, and in academia.
New CSE-centric teaching materials are required to support such programs.

• E3: The common core of CSE and data science, as well as their synergy, should be exploited in edu-
cational programs that will prepare the computational and data scientists of the future. Aided by scientific
visualization and interactive computational experiments, CSE is a powerful motivator for study in the STEM
disciplines at pre-university levels. Outreach materials are required.
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