
PrefixRL: Optimization of Parallel Prefix Circuits using Deep
Reinforcement Learning

Rajarshi Roy, Jonathan Raiman, Neel Kant, Ilyas Elkin, Robert Kirby,
Michael Siu, Stuart Oberman, Saad Godil, Bryan Catanzaro

NVIDIA, Santa Clara, CA, USA
{rajarshir, jraiman, nkant, ielkin, rkirby, msiu, soberman, sgodil, bcatanzaro}@nvidia.com

Abstract—In this work, we present a reinforcement learning (RL)
based approach to designing parallel prefix circuits such as adders
or priority encoders that are fundamental to high-performance digital
design. Unlike prior methods, our approach designs solutions tabula rasa
purely through learning with synthesis in the loop. We design a grid-based
state-action representation and an RL environment for constructing legal
prefix circuits. Deep Convolutional RL agents trained on this environment
produce prefix adder circuits that Pareto-dominate existing baselines with
up to 16.0% and 30.2% lower area for the same delay in the 32b and 64b
settings respectively. We observe that agents trained with open-source
synthesis tools and cell library can design adder circuits that achieve
lower area and delay than commercial tool adders in an industrial cell
library.

Index Terms—machine learning, reinforcement learning, datapath
optimization

I. INTRODUCTION

Several fundamental digital design building blocks such as adders,
priority encoders, inc(dec)rementers and gray-to-binary code convert-
ers can be reduced to prefix-sum computations and implemented as
(parallel) prefix circuits [1]. Thus, the optimization of prefix circuits
for area, delay and power is an important and well studied problem
in digital hardware design.

The optimization of prefix circuits is challenging as their large
design space grows exponentially with input length and is intractable
to enumerate. As a result, exhaustive search approaches do not
scale beyond small input lengths [2]. Several regular prefix circuit
structures [3]–[5] have been proposed that trade off logic level,
maximum fanout and wiring tracks. Another set of algorithms [6]–
[9] optimize prefix circuit size and level properties. However, [10]
observes that prefix circuit level and maximum fanout properties do
not map to circuit area, power and delay due to physical design
complexities such as capacitive loading and congestion.

Meanwhile, there are a growing number of success stories in other
domains using deep reinforcement learning (RL) [11] to produce so-
phisticated solutions to sequential decision problems. RL agents have
outperformed humans in complex games [12] and produced novel
solutions to search and design problems [13]. PrefixRL continues
this trend in the circuit design domain. The key contributions of this
work are:

• An RL framework that trains an agent, tabula rasa, to explore
the unrestricted prefix circuit space with synthesis in the loop
(Fig. 1) while optimizing for area and delay.

• We demonstrate the capabilities of PrefixRL with the task of
optimizing 32b and 64b prefix adder circuits. PrefixRL explores
the massive O(2N

2

) design space and generates state-of-the-
art frontiers of designs that Pareto-dominate all the designs
found by prior work using simulated annealing [14], exhaustive
search with pruning [15] [10] and regular structures [3]–[5]
when synthesized in an industrial process technology, achieving

a maximum area savings of 16.0% and 30.2% for equivalent
delay targets in the 32b and 64b settings.

• We observe that agents trained with open-source synthesis tools
(OpenPhySyn [16]) and cell library (Nangate45 [17]) design
adder circuits that can achieve lower area and delay than
commercial tool adders in an industrial cell library (8nm).

• We illustrate the challenges of training an RL agent with
continuous synthesis feedback and the solutions required to
handle workloads in similar use cases. With our state-of-the-
art results, these solutions provide a compelling blueprint for
future RL approaches to design automation.

(0,0)

(1,0) (1,1)

(2,0) (2,1) (2,2)

(3,0) (3,1) (3,2) (3,3)

(3,3) (2,2) (1,1) (0,0)

(1,0)

(2,0)

(3,0)

(0,0)

(1,0) (1,1)

(2,0) (2,1) (2,2)

(3,0) (3,1) (3,2) (3,3)

(3,3) (2,2) (1,1) (0,0)

(1,0)

(2,0)(3,0)

(3,3) (2,2) (1,1) (0,0)

(1,0)

(2,0)

(3,0)

Representation

Q values

st

add (3,2)

at

st+1

rt
∆(area)

∆(delay)Q-network

st

PrefixRL Agent PrefixRL Environment

Circuit

Synthesis

(area, delay)t

(area, delay)t+1

Circuit

Synthesis

Fig. 1: PrefixRL flow. st shown is the ripple-carry prefix graph, a possible
starting state s0. The Q-network takes action (3,2) modifying the circuit
and receiving a reward computed by the area/delay difference in the circuits
corresponding to st and st+1. Refer to Section IV-D for circuit synthesis
details. For clarity we show a 4b circuit but our primary results are obtained
in the 32b and 64b setting.

II. RELATED WORK

Several approaches attempt to optimize the prefix circuits directly
for area, power and delay. [15] utilizes a combination of heuristic
rules to prune the intractable design space of 8, 16, 32 and 64 bit
adders to a small subset that can be exhaustively searched. [10]
extends this technique by proposing an alternative set of pruning
heuristics that result in a larger set of pruned adders which are then
searched using a machine learning model that is trained to predict
physical metrics. Our approach is fundamentally different as it does
not rely on any hand-crafted heuristics. Our agents learn tabula rasa
to explore the full prefix adder space with synthesis in the loop.

Another work [14] uses simulated annealing (SA) [18] to randomly
modify and legalize 32b prefix adder graphs towards optimal struc-
tures in an unrestricted design space evaluated using an analytical
model. They obtain a frontier of designs that optimize these com-
peting metrics more effectively than the regular structures [3]–[5]
as well as those obtained by the previously mentioned exhaustive
search on a heuristically pruned search space [15]. However, all of

978-1-6654-3274-0/21/$31.00 ©2021 IEEE 853

20
21

 5
8t

h
A

C
M

/IE
EE

 D
es

ig
n

A
ut

om
at

io
n

C
on

fe
re

nc
e

(D
A

C
) |

 9
78

-1
-6

65
4-

32
74

-0
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
D

A
C

18
07

4.
20

21
.9

58
60

94

Authorized licensed use limited to: The University of Utah. Downloaded on November 24,2021 at 17:20:46 UTC from IEEE Xplore. Restrictions apply.

these results are limited to analytical evaluation metrics. Our prefix
RL approach instead optimizes physical synthesis metrics directly
with synthesis in the loop. We investigate applying our approach
with the analytical evaluation metrics and demonstrate that our prefix
circuits Pareto dominate the SA based baseline circuits (Section
V-D). However, we observe that these circuits that were found
using the analytical evaluation metric significantly degrade in quality
once they go through physical synthesis. Note that since physical
synthesis is significantly more computationally intensive than the
analytical evaluation, it would not be feasible to scale a fundamentally
sequential algorithm such as SA to use physical synthesis in the loop.

III. BACKGROUND

A. Prefix Graphs

The generalized prefix-sum computation is to compute yi = xi ◦
xi−1 ◦ · · · ◦ x0 for 0 ≤ i ≤ N − 1, given N inputs x0, x1, ..., xN−1

and a binary associative operator ◦ [19].
An N-input prefix-sum computation can be performed in several

ways due to the associativity of the operator. For example, two of
the ways the 4-input prefix sum can be computed are:

y0 = x0, y1 = x1 ◦ y0, y2 = x2 ◦ y1, y3 = x3 ◦ y2
y0 = x0, y1 = x1 ◦y0, y2 = x2 ◦y1, z3:2 = x3 ◦x2, y3 = z3:2 ◦y1

Introducing the additional term z3:2, breaks the dependency of y3
on y2 and allows it to be computed in parallel with y2, thus the term
parallel prefix [20]. In general, we denote zi:j to represent xi◦xi−1◦
· · · ◦ xj . Then the outputs yi can be rewritten as zi:0 and inputs xi
can be rewritten as zi:i. Note that y0 and x0 both correspond to z0:0

Parallel prefix computations can be represented as a directed
acyclic prefix graph where every computation unit zi:j is a graph
node that performs a single operation on a pair of inputs: zi:j =
zi:k ◦ zk−1:j where i ≥ k > j. We use the notation from [15] where
the most and least significant bits (MSB, LSB) of computation node
zi:j is (i, j). Using this notation we will term the node (i, k) as the
upper parent of (i, j) and the node (k−1, j) as its lower parent. The
prefix graphs corresponding to the 4-input prefix sum computations
above are shown in Fig. 1 as st and st+1 . In both graphs, the upper
and lower parents of node (2, 0) are (2, 2) and (1, 0).

Every legal N -input prefix graph must have input nodes (i, i),
output nodes (i, 0) for 1 ≤ i ≤ N − 1, and the input/output node
(0, 0). Furthermore, every non-input node must have exactly one
upper parent (up) and one lower parent (lp) such that:

LSB(node) = LSB(lp(node))

LSB(lp(node)) ≤MSB(lp(node))

MSB(lp(node)) = LSB(up(node))− 1

LSB(up(node)) ≤MSB(up(node))

MSB(up(node)) =MSB(node) (1)

B. Deep Reinforcement Learning

Reinforcement learning (RL) [11] is a class of algorithms applica-
ble to sequential decision making tasks. RL makes use of the Markov
Decision Process (MDP) formalism wherein an agent attempts to
optimize a function in its environment. An MDP can be completely
described by a state space S (with states s ∈ S), an action space A
(with actions a ∈ A), a transition function T : S × A → S and a
reward function R : S × A → R. In an MDP, an episode evolves
over discrete timesteps t = 0, 1, 2, .. where the agent observes st and
responds with action at using a policy π(at|st). The environment
provides to the agent the next state st+1 = T (st, at) and the reward

rt = R(st, at). The agent is tasked with maximizing the return
(cumulative future rewards) by learning an optimal policy π∗.

The Q value of a state-action pair (st, at) under a policy π is
defined to be the expected return if action at is taken at state st and
future actions are taken using the policy π.

Qπ(st, at) = E[rt + γrt+1 + γ2rt+2 + · · ·], γ ∈ [0, 1] (2)

The discount factor γ ∈ [0, 1] balances short-term versus long-term
rewards. The Q-learning algorithm [21] starts the agent with a random
policy and uses the experience gathered during its interaction with
the environment (st, at, rt, st+1) to iterate towards an optimal policy
by updating Q with a learning rate α ∈ [0, 1]:

Q(st, at)← (1−α)∗Q(st, at)+α∗ (rt+γmax
a′

Q(st+1, a
′)) (3)

The policy for a Q-learning agent is simply π(·|st) =
argmax

a
Q(st, a). We use the ε-greedy policy, where random actions

are chosen with a probability ε to increase exploration in the state
space. ε is annealed to zero during the course of training and is always
zero when doing evaluation.

The DQN (deep Q network) algorithm [22] uses a deep neural
network as a Q value function approximator to achieve human-level
performance on several Atari games. DQN stabilizes training using a
second target network to estimate the Q values of (st+1, a

′) that is
updated less frequently and sampling an experience replay buffer. The
Double-DQN algorithm [23] further improves training by reducing
harmful overestimations in DQN.

IV. PREFIXRL IMPLEMENTATION

We frame the optimization of prefix circuits as a RL task by
creating an MDP for their construction. We pick prefix adders due
to their importance in arithmetic datapaths and focus on minimizing
circuit area and delay. We then train multiple PrefixRL agents to
design an area-delay minimized Pareto frontier of adders.

A. Reinforcement Learning Environment

The PrefixRL state space S consists of all legal N -input prefix
graphs. N -input graphs can be represented in a N×N grid with rows
representing MSB and columns representing LSB (Fig. 1). Note
that the input nodes (MSB = LSB) will lie on the diagonal, output
nodes will lie on the first column (LSB = 0) and locations above
the diagonal (LSB > MSB) cannot contain a node. The remaining
(N − 1)(N − 2)/2 locations where non-input/output nodes may or
may not exist define the O(2(N−1)(N−2)/2) = O(2N

2

) state space
of N -input prefix graphs. For example, 32-input graphs will have
|S| = O(2465) with a lower exact value because not all combinations
of nodes in those locations will meet the legality constraints in (1).

The action space A for an N -input prefix graph consists of two
actions (add or delete) for any non-input/output node i.e. where
LSB ∈ [1, N − 2] and MSB ∈ [LSB + 1, N − 1]. Hence,
|A| = (N − 1)(N − 2)/2. The environment evolution through T
always maintains a legal prefix graph by:

1) Applying a legalization procedure after an action that may add
or delete additional nodes to maintain legality.

2) Forbidding redundant actions that gets undone by the legaliza-
tion procedure.

During legalization, the upper parent of a node, up(node), is the
existing node with same MSB and the next highest LSB. The lower
parent of a node is computed using the node and its upper parent (1):

(MSBlp(node), LSBlp(node)) = (LSBup(node) − 1, LSBnode)

854

Authorized licensed use limited to: The University of Utah. Downloaded on November 24,2021 at 17:20:46 UTC from IEEE Xplore. Restrictions apply.

An illegal condition happens only when the lower parent lp(node) of
a node does not exist, so the legalization procedure adds any missing
lower parent nodes.

Algorithm 1: PrefixRL N-input prefix graph actions
Function Initialize:

nodelist← ∅,minlist← ∅;
for m← 0 to (N − 1) do // add in/out nodes

add (m,m), (m, 0) to nodelist
end

Function Add(msb,lsb):
add (msb, lsb) to minlist;
// remove new node’s and child’s lps from minlist
for l← (msb− 1) to 0 do

if (msb, l) is in minlist then
delete lp(msb, l) from minlist

end
end
Legalize()

Function Delete(msb,lsb):
delete (msb, lsb) from minlist;
Legalize()

Function Legalize:
nodelist←− minlist;
for m← 0 to (N − 1) do // add in/out nodes

add (m,m), (m, 0) to nodelist
end
for m← (N − 1) to 0 do // add missing lps

for l← (m− 1) to 0 do
if (m, l) is in nodelist then

add lp(m, l) to nodelist
end

end
end

The action of adding a node that already exists (in nodelist)
is redundant and is forbidden. Deleting is limited to nodes in
minlist (nodes that are not lower parents of other nodes) to prevent
legalization from adding back deleted nodes (Algorithm 1).

B. Scalarized Double Deep Q Learning

PrefixRL uses a scalarized version of the Double-DQN algorithm
[23]. Every episode starts the environment with the initial state s0
randomly chosen to be either a ripple-carry or a Sklansky [3] graph.
These are prefix graphs with the minimum node and level count
respectively. Every action at from the agent modifies the legal prefix
graph st to another legal prefix graph st+1 and returns a reward
vector rt that indicates the decrease in the normalized circuit area
and delay when its prefix graph is modified from st to st+1 (Fig. 1).
Details of how we measure area and delay are given in Section IV-D.

rt = [area(st)− area(st+1), delay(st)− delay(st+1)]

With competing objectives such as area and delay, the same
improvement in the scalarized objective can occur from either an
improvement in area or delay, but the resulting prefix graph structures
would be very different. Thus, it is difficult for a Q-learning agent
to infer how its actions affect prefix graphs if it can only observe a
scalarized objective. The scalarized deep Q-learning algorithm [24]
updates the Q-learning algorithm for such multi-objective settings by
receiving rewards and learning the Q value for different objectives
separately but choosing actions after scalarizing the Q values with a
weight vector w.

The PrefixRL agent estimates the Q function vector Q(s, a) =
[Qarea(s, a), Qdelay(s, a)] for a pair of prefix graph state and modi-
fication action using a deep neural network. The double-DQN training
procedure [23] is used with the target, loss and action selection
extended for scalarization:

yt = rt + γQ(st+1, argmax
a

[w>Q(st+1, a; θt)]; θ
′
t) (4)

Loss(Q(st, at; θt),yt) (5)

at = argmax
a

[w>Q(st, a; θt)] (6)

Where θt and θ′t are the parameters of the local and target networks
in the double-DQN algorithm.

A Pareto frontier of designs can then be obtained by solving
multiple single-objective optimization problems, each with the scalar-
ized objective w>m = warea · area + wdelay · delay using
different scalarization weights w. We conceptually encode a tradeoff
of objectives by normalizing w such that its elements are nonnegative
and sum to 1. However, we must also scale the raw values of area
and delay since their units are incomparable. Our procedure for this
is to multiply those values by scaling constants carea, cdelay such
that the Pareto frontier for different w evenly covers the breadth of
baseline prefix graph designs synthesized with multiple delay targets.
In our experiments we use carea = 0.001 and cdelay = 10.

C. Q Network Architecture

The deep neural network Q value approximator takes the state st as
the input and predicts ∀a ∈ A : [Qarea(st, a), Qdelay(st, a)]. Based
on the N × N grid based representation of prefix graphs described
in Section IV-A, the input to the neural network is a N × N × 4
tensor where the 4 channels encode node features as:

1) 1 if node (MSB,LSB) in nodelist, 0 otherwise
2) 1 if node (MSB,LSB) in minlist, 0 otherwise
3) level of node (MSB,LSB) in nodelist, 0 otherwise
4) fanout of node (MSB,LSB) in nodelist, 0 otherwise

where the fanout of a node refers to the number of children it has and
the level of a node refers to its topological depth from input nodes
in the prefix graph. Features are normalized to [0, 1].

NxNx4

CONV 3x3, STRIDE1

BATCHNORM

LRELU

RESIDUAL BLOCK

RESIDUAL BLOCK

RESIDUAL BLOCK

CONV 1x1, STRIDE1

BATCHNORM

LRELU

CONV 1x1, STRIDE1

B Blocks
C Channels

CONV 5x5, STRIDE1

BATCHNORM

LRELU

CONV 5x5, STRIDE1

BATCHNORM

LRELU

NxNx4

QAREA(ADD)
QAREA(DEL)

QDELAY(ADD)
QDELAY(DEL)

PREFIX
GRAPH
NODE

FEATURES

Fig. 2: Q-network architecture for N -input prefix graphs. For both 32b and
64b, our architecture uses B = 32 and C = 256.

The PrefixRL agent uses a convolutional architecture [25] in
a residual network [26] configuration similar to [12]. The neural
network consists of a “body” followed by a Q-value “head”, with the
details of the layer types and connections given in Fig. 2. The output
is a N×N×4 matrix where the 4 channels represent the Qarea and
Qdelay values for adding and for deleting the node (MSB,LSB).
We use nodelist and minlist to set the Q values of illegal actions
to −∞ so that they are never chosen. In our experiments, we use a
discount factor of γ = 0.75, an experience buffer with up to 4×105

elements, synchronize our target Q-network every 60 gradient steps
and train using the Adam optimizer with learning rate 4× 10−5.

855

Authorized licensed use limited to: The University of Utah. Downloaded on November 24,2021 at 17:20:46 UTC from IEEE Xplore. Restrictions apply.

D. Training System Description

Building the deep learning training system for PrefixRL is a
nontrivial task due to the time and resource-intensiveness of the
reward calculation R(s, a). For each prefix graph state we perform
circuit synthesis by generating a gate level netlist (Section V-A) and
applying timing-driven synthesis optimizations at 4 delay targets. We
use the OpenPhySyn physical synthesis tool [16] for optimizations
such as gate sizing, gate cloning, buffer insertion and pin swapping
to prefix circuits. Section V-D highlights the importance of these
optimizations. After synthesis optimization, we interpolate an area-
delay tradeoff curve using PChip Interpolation (Fig. 3). Processing a
single state with OpenPhySyn takes up to 36 seconds on average for
the 64b case (see Table I) and RL training runs usually span on the
order of at least 105 environment steps so it is necessary to parallelize
synthesis as much as possible.

Area

D
e

la
y

st
st+1

Area

D
e

la
y

st
st+1

Area

D
e

la
y

st
st+1

a) Real metrics b) Sampled and interpolated c) Reward calculation

Fig. 3: Process for calculating reward in PrefixRL. (a) Each prefix state
corresponds to a curve of synthesized circuit metrics based on physical
synthesis timing constraints. (b) We only sample 4 such points and interpolate
a curve for the metrics. (c) The reward is then calculated as the vector
difference between the w-optimal points on the curves from st and st+1.

We implement an asynchronous distributed system to efficiently
perform synthesis in the training loop. Our main training process
launches additional processes on separate nodes with large CPU
resources to run the OpenPhySyn workload and returns the final area
and delay information. This asynchronous workflow is made efficient
through pipeline parallelism which hides the latency of individual
calls and amortizes the overall delay to be asymptotically minimal.
Furthermore, we cache synthesized state designs to reduce redundant
calculations and find that as the exploration parameter ε diminishes,
the cache hit percentage becomes 50% in the 32b case and 10% in
the 64b case.

Aside from parallelizing synthesis in the loop, we also built a
distributed framework for efficient RL. The key observation is that
DQN is an off-policy RL algorithm, meaning that training can be done
on experience gathered by any policy, not simply the current version.
This effectively decouples and allows for parallelizing the process of
generating new experience and training on prior experience. For this
to be viable, we must ensure an appropriate amount of new experience
is generated with each new version of the parameters. We found that
having 192 synthesis worker processes generating experience was
empirically sufficient to satisfy this condition.

V. RESULTS AND DISCUSSION

A. Prefix Adder Optimization with OpenPhySyn

With the objective of minimizing the synthesized area and delay
of prefix adder circuits, multiple PrefixRL agents were trained with
15 area-delay scalarization weights w in the range [0.10, 0.99]. The
prefix adders were generated from prefix graphs using alternating
NAND/NOR, OAI/AOI, XNOR, NOR and INV gates in the Nan-
gate45 cell library [17] based on the implementation described in
[27]. The training approach described in Section IV-D was used with
the timing-driven synthesis optimizations in the OpenPhySyn [16]

2000 2500 3000 3500 4000 4500
Area (m2)

0.30

0.35

0.40

0.45

0.50

D
el

ay
 (

ns
)

Sklansky
KoggeStone
BrentKung
SA
PS
PrefixRL

(a) 32b Adder Synthesis. OpenPhySyn, Nangate45.

5000 6000 7000 8000 9000 10000
Area (m2)

0.35

0.40

0.45

0.50

0.55

0.60

0.65

D
el

ay
 (

ns
)

Sklansky
KoggeStone
BrentKung
CL
PrefixRL

(b) 64b Adder Synthesis. OpenPhySyn, Nangate45.
Fig. 4: Area-delay Pareto curves for 32b and 64b adders synthesized with
OpenPhySyn. PrefixRL adders Pareto-dominate all prior work. (Sklansky [3],
KoggeStone [4], BrentKung [5], SA [14], PS [15], CL [10])

synthesis tool. Since OpenPhySyn and Nangate45 are in the open-
source domain, our training procedure and results are reproducible
without requiring commercial tools.

We note that circuit power is an important metric that should
ideally be jointly optimized with area and delay. However, due to
the computational requirements of power simulation, we did not
integrate this as a third objective. We leave the integration of a power
objective to the optimization as future work. Furthermore, PrefixRL
agents learn policies to design prefix circuits under uniform timing
constraints since the circuit synthesis environment specify uniform
arrival and departure times for inputs and outputs. An interesting
future direction would be to train generalizable agents that adapt to
various nonuniform timing constraints.

After training, the various PrefixRL agents learn to design adders
specializing at various area-delay tradeoff points after considering
synthesis optimizations. We synthesize the various adders generated
by PrefixRL and baseline approaches at 40 delay targets with
OpenPhySyn and Nangate45. Since each delay target potentially
generates a different circuit for the same design, we bin all adder
circuits for an approach and present the area-delay Pareto front.

The baselines for 32b prefix adders are regular Sklansky [3],
Kogge-Stone [4], Brent-Kung [5] adders, and adders from simulated
annealing (SA) [14] and pruned search (PS) [15] approaches. (Fig. 4a)
shows that Prefix-RL agents learn to design 32b adders that Pareto
dominate all these approaches. Throughout much of the delay targets
(≥ 30 ns), the percent improvement in area is consistent but only
2 to 8 percentage points. However, the gains become much more
significant at lower targets, reaching a maximum area saving of
16.0% at delay target 0.293 ns.

The baselines for 64b prefix adders are the regular adders, and 1100
adders from the machine learning driven cross layer optimization
approach (CL) [10]. (Fig. 4b) shows that Prefix-RL agents produce
64b adders that Pareto dominate this work as well. Samples of the
learnt adders are visible in Fig. 7. Compared to the 32b setting, we

856

Authorized licensed use limited to: The University of Utah. Downloaded on November 24,2021 at 17:20:46 UTC from IEEE Xplore. Restrictions apply.

20 25 30 35 40 45 50
Area (m2)

0.25

0.30

0.35

0.40

0.45

0.50
D

el
ay

 (
ns

)
Sklansky
KoggeStone
BrentKung
Commercial
PrefixRL

(a) 32b Adder Synthesis. Commercial tool, 8nm.

50 60 70 80 90
Area (m2)

0.3

0.4

0.5

0.6

0.7

D
el

ay
 (

ns
)

Sklansky
KoggeStone
BrentKung
Commercial
PrefixRL

(b) 64b Adder Synthesis. Commercial tool, 8nm.
Fig. 5: Area-delay Pareto curves for 32b and 64b adders synthesized us-
ing a Commercial Synthesis Tool. Despite having been trained only with
OpenPhySyn, PrefixRL-generated adders still Pareto-dominate existing base-
lines at all but the lowest delay target. (Sklansky [3], KoggeStone [4],
BrentKung [5])

observe large gains over the baselines in the knee of the curve. This
illustrates the power of an RL approach as it can successfully scale
to larger problem sizes in ways that other unrestricted search space
algorithms like SA cannot. In this region, PrefixRL consistently yields
area savings of 12 to 20 percentage points. At lower targets, PrefixRL
does even better, achieving a maximum improvement of 30.2% at
delay target 0.347 ns.

B. Generalization to Industrial Settings

To study the generalization of prefix circuit optimizations across
cell libraries, we picked 7 Pareto-optimal PrefixRL adders and
synthesized them at an 8nm industrial cell library with a commercial
physical synthesis tool from a leading EDA vendor. In this setting, the
adder is instantiated with inputs arriving from, and outputs feeding
to flip-flops to ensure input uniform arrival and output departure
times. We also allow the INV, XOR, XNOR cells in the adder netlist
to undergo logic synthesis and technology mapping. We limit our
comparison to regular adders and the library of adders instantiated
by the tool (Commercial) and synthesize all the adders at the same
12 delay targets. We measure the cell area of just the adder in
our results. (Fig. 5a) shows that Prefix-RL adders circuits Pareto-
dominate the Kogge-Stone and Brent-Kung adders, while achieving
lower area and delay than the Commercial and Sklansky adders in
all the instances except the lowest delay target. This indicates that
prefix circuit optimizations can generalize across cell libraries to a
certain extent. We note that while training PrefixRL directly with
the industrial cell library and synthesis tool may improve results
further, there are possible design scenarios where PrefixRL adders
may already yield better results than Commercial adders.

C. Scaling

As discussed in Section IV-D, PrefixRL requires considerable
engineering optimization in order to be a tractable solution. We can

quantify this improvement by considering that 64b results were ob-
tained after 5.0× 105 environment steps which took approximatedly
5 days of training on our parallelized infrastructure. To obtain this
with a single-threaded version of PrefixRL would take over 8 times
longer or about 44 days of training.

TABLE I: Comparison of 16b, 32b and 64b PrefixRL adder design

Statistic 16b 32b 64b
|A| 105 465 1953

Synthesis time 11.39s 16.85s 35.56s
Train iteration time 0.45s 1.61s 3.15s
of residual blocks 16 32 32
per-GPU batch size 96 96 6

of data-parallel GPUs 1 1 14

Synthesis times are for Sklansky adders evaluated at 4 timing constraints.
The problem space grows quickly with the number of bits and impacts other
details of training.

Even with these large efficiency gains, we still had to make
concessions when scaling PrefixRL to the 64b setting. The larger
state representation prevents us from further expanding our 64b model
capacity, so we kept it equal to that of the 32b model, while we
leverage data parallelism across multiple GPUs to fit training batches
in GPU memory (Table I). Training also takes roughly twice as many
environment steps as needed as our 32b models to produce the results
in Fig. 4a and 5a. Other common RL workloads, however, regularly
reach the 106 to 107 environment step range, and in that context our
solution is relatively data efficient while producing state-of-the-art
results.

D. Importance of Synthesis-In-The-Loop

While we primarily focus on the physical synthesis metrics since
they correspond closely to real-world performance, adder prefix graph
structures are also commonly evaluated with analytical metrics. We
use the analytical evaluation to assess the advantage RL provides
over existing approaches as well as to examine how well performance
transfers between the analytical and physical synthesis settings.

60 70 80 90 100
Area (m2)

14.0

16.0

18.0

20.0

22.0

D
el

ay
 (

ns
)

SA
PS
Analytical-
PrefixRL

(a) Analytical Metrics.

2000 2500 3000 3500 4000 4500
Area (m2)

0.30

0.35

0.40

0.45

0.50

D
el

ay
 (

ns
)

SA
PS
Analytical-
PrefixRL
PrefixRL

(b) Synthesized Metrics.

Fig. 6: 32b Analytical-PrefixRL adders outperform SA [14] and PS [15] adders
when trained and compared with analytical metrics from [14]. However,
timing-driven synthesis optimizations in OpenPhySyn optimize the PS adders
better than the Analytical-PrefixRL and SA adders in synthesized circuits.
PrefixRL adders trained with OpenPhySyn synthesis in-the-loop have the best
performing synthesized circuits.

In Fig. 6a, we directly compare PrefixRL against a simulated
annealing (SA) [14] approach that also operates on the unrestricted
design space of all prefix graphs. We trained multiple PrefixRL agents
with various area-delay scalarization weights w and the same analyt-
ical models of node area (1.0) and delay (1.0+0.5 ·fanout) provided
by [14]. The trained Analytical-PrefixRL agents learn to produce
32b prefix graphs that Pareto-dominate (Fig. 6a) all the published

857

Authorized licensed use limited to: The University of Utah. Downloaded on November 24,2021 at 17:20:46 UTC from IEEE Xplore. Restrictions apply.

solutions from [14] with 11.7% lower area at the lowest delay point,
showing that RL itself can out-compete existing approaches in a
setting that does not require expensive physical synthesis feedback.

In order to compare the analytical metrics of prefix graphs against
real circuit properties, we generated prefix adder circuits from the
graphs and applied timing-driven synthesis optimizations at 40 target
delays with OpenPhySyn and Nangate45. (Fig. 6b) shows that even
though the Analytical-PrefixRL and SA designs Pareto-dominate the
regular prefix graphs [3]–[5] and pruned search (PS) designs [15] at
analytical metrics, they do not yield well to synthesis optimizations.
The PS and Sklansky adders can achieve lower delay while maintain-
ing lower area than the Analytical-PrefixRL and SA adders. These
results highlight the importance of training directly with synthesized
circuit area and delay objectives.

VI. CONCLUSION

In this paper, we have presented PrefixRL: a new deep reinforce-
ment learning based solution for optimizing prefix circuits for syn-
thesized area and delay. PrefixRL does not use heuristics to evaluate
solutions in a pruned design space, but rather uses a deep neural
network model that learns strategies purely through exploration of
the unrestricted design space and feedback from synthesis tools. We
apply PrefixRL to the task of designing area-delay optimized 32b and
64b prefix adders and demonstrate that it finds a frontier of designs
across various area-delay trade-offs that significantly outperform
previous methods. We observe that agents trained with open-source
synthesis tools and cell library can design adder circuits that achieve
lower area and delay than commercial tool adders in an industrial cell
library. This result further suggests that using target cell libraries or
commercial synthesis tools during training is a promising direction
for further improvement. PrefixRL demonstrates the potential for
deep reinforcement learning as an effective optimization algorithm
for prefix circuits. In the future, we hope to extend the framework to
other datapath circuits, consider nonuniform timing constraints and
power objectives.

Fig. 7: 64b PrefixRL Solutions

REFERENCES

[1] M. Lin, Introduction to VLSI Systems: A Logic, Circuit, and System
Perspective. CRC Press, 2011.

[2] A. K. Verma and P. Ienne, “Towards the automatic exploration of
arithmetic-circuit architectures,” in Proceedings of the 43rd annual
Design Automation Conference on, 2006, pp. 445–450.

[3] J. Sklansky, “Conditional-sum addition logic,” Ire Transactions on
Electronic Computers, vol. 9, no. 2, pp. 226–231, 1960.

[4] P. M. Kogge and H. S. Stone, “A parallel algorithm for the efficient
solution of a general class of recurrence equations,” IEEE Transactions
on Computers, vol. 22, no. 8, pp. 786–793, 1973.

[5] Brent and Kung, “A regular layout for parallel adders,” IEEE Transac-
tions on Computers, vol. 31, no. 3, pp. 260–264, 1982.

[6] T. Matsunaga and Y. Matsunaga, “Area minimization algorithm for
parallel prefix adders under bitwise delay constraints,” in Proceedings
of the 17th ACM Great Lakes symposium on VLSI, 2007, pp. 435–440.

[7] J. Liu, S. Zhou, H. Zhu, and C.-K. Cheng, “An algorithmic approach
for generic parallel adders,” in ICCAD-2003. International Conference
on Computer Aided Design (IEEE Cat. No.03CH37486), 2003, pp. 734–
740.

[8] J. P. Fishburn, “A depth-decreasing heuristic for combinational logic;
or how to convert a ripple-carry adder into a carry-lookahead adder or
anything in-between,” in Proceedings of the 27th ACM/IEEE Design
Automation Conference on, 1990, pp. 361–364.

[9] R. Zimmermann, “Non-heuristic optimization and synthesis of parallel-
prefix adders,” in proc. of IFIP workshop. Citeseer, 1996.

[10] Y. Ma, S. Roy, J. Miao, J. Chen, and B. Yu, “Cross-layer optimization
for high speed adders: A pareto driven machine learning approach,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 38, no. 12, pp. 2298–2311, 2019.

[11] R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning,
1st ed. Cambridge, MA, USA: MIT Press, 1998.

[12] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez,
M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, T. Lillicrap, K. Simonyan,
and D. Hassabis, “A general reinforcement learning algorithm that
masters chess, shogi, and go through self-play,” Science, vol. 362, no.
6419, pp. 1140–1144, 2018.

[13] A. Mirhoseini, A. Goldie, M. Yazgan, J. Jiang, E. Songhori, S. Wang,
Y.-J. Lee, E. Johnson, O. Pathak, S. Bae, A. Nazi, J. Pak, A. Tong,
K. Srinivasa, W. Hang, E. Tuncer, A. Babu, Q. V. Le, J. Laudon, R. Ho,
R. Carpenter, and J. Dean, “Chip placement with deep reinforcement
learning,” 2020.

[14] T. Moto and M. Kaneko, “Prefix sequence: Optimization of parallel
prefix adders using simulated annealing,” in 2018 IEEE International
Symposium on Circuits and Systems (ISCAS), 2018, pp. 1–5.

[15] S. Roy, M. R. Choudhury, R. Puri, and D. Z. Pan, “Towards optimal
performance-area trade-off in adders by synthesis of parallel prefix
structures,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 33, no. 10, pp. 1517–1530, 2014.

[16] A. Agiza and S. Reda, “Openphysyn: An open-source physical synthesis
optimization toolkit,” in 2020 Workshop on Open-Source EDA Technol-
ogy (WOSET), 2020.

[17] Silvaco, “Nangate freepdk45 generic open cell library.” [Online].
Available: https://si2.org/open-cell-library/

[18] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by
simulated annealing,” science, vol. 220, no. 4598, pp. 671–680, 1983.

[19] G. E. Blelloch, “Prefix sums and their applications,” 1990.
[20] R. E. Ladner and M. J. Fischer, “Parallel prefix computation,” Journal

of the ACM, vol. 27, no. 4, pp. 831–838, 1980.
[21] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no.

3-4, pp. 279–292, 1992.
[22] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.

Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through
deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533,
2015.

[23] H. van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double q-learning,” in AAAI’16 Proceedings of the Thirtieth AAAI
Conference on Artificial Intelligence, 2016, pp. 2094–2100.

[24] H. Mossalam, Y. M. Assael, D. M. Roijers, and S. White-
son, “Multi-objective deep reinforcement learning.” arXiv preprint
arXiv:1610.02707, 2016.

[25] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifica-
tion with deep convolutional neural networks,” in Advances in Neural
Information Processing Systems 25, 2012, pp. 1097–1105.

[26] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 770–778.

[27] R. Zimmermann, Binary adder architectures for cell-based VLSI and
their synthesis. Citeseer, 1997.

858

Authorized licensed use limited to: The University of Utah. Downloaded on November 24,2021 at 17:20:46 UTC from IEEE Xplore. Restrictions apply.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32

 D:20170330081459
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 3.6000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Up
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryList_V1
 qi2base

