
Evaluation of In-Situ Analysis Strategies at Scale
for Power Efficiency and Scalability

Ivan Rodero, Manish Parashar
Rutgers Discovery Informatics Institute,

Rutgers University

New Brunswick, NJ, USA

{irodero, parashar}@rutgers.edu

Aaditya G. Landge, Sidharth Kumar,
Valerio Pascucci

SCI Institute, University of Utah

Salt Lake City, UT, USA

{aaditya, sidharth, pascucci}@sci.utah.edu

Peer-Timo Bremer
Lawrence Livermore National

Laboratory

Livemore, CA, USA

bremer5@llnl.gov

Abstract—The increasing gap between available compute
power and I/O capabilities is resulting in simulation pipelines
running on leadership computing facilities being reformulated.
In particular, in-situ processing is complementing conventional
post-process analysis; however, it can be performed by using the
same compute resources as the simulation or using secondary
dedicated resources.

In this paper, we focus on three different in-situ analysis
strategies, which use the same compute resources as the ongoing
simulation but different data movement strategies. We evaluate
the costs incurred by these strategies in terms of run time,
scalability and power/energy consumption. Furthermore, we
extrapolate power behavior to peta-scale and investigate different
design choices through projections. Experimental evaluation at
full machine scale on Titan supports that using fewer cores
per node for in-situ analysis is the optimum choice in terms
of scalability. Hence, further research effort should be devoted
towards developing in-situ analysis techniques following this
strategy in future high-end systems.

I. INTRODUCTION

Large scale scientific simulations using high performance

computing resources are instrumental in understanding com-

plex scientific phenomenon. Over the years, the available

compute power for performing these simulations has been

increasing enabling simulations of higher spatial and temporal

resolutions thereby generating enormous amounts of data.

Unfortunately, the I/O capabilities are not increasing at a

similar rate becoming a bottleneck in current simulations.

As a result, storing data at an effective temporal frequency

for post process analysis is becoming increasingly infeasible.

To overcome these challenges, in-situ analysis is becoming a

favorable solution, where the analysis is performed concur-

rently with the simulation and only the analysis results are

stored to disk. Since the analysis results are typically orders

of magnitude smaller than the entire data, the I/O overhead is

significantly reduced, allowing the analysis to be performed at

a much higher temporal frequency. With the advent of exascale

systems, these techniques are expected to be an integral part

of the simulation pipeline [9].

Recent work has addressed in-situ analysis in various ways.

Most of the efforts have been targeted towards visualization

techniques [3], [24], [29], [30] but other types of analysis

have been also carried out in-situ [6], [12], [19], [20]. These

techniques follow a co-processing model where the analysis

is performed using all the compute resources allocated to

the simulation. Several frameworks [1], [2], [10], [25], [31]

have been developed, where the data is transferred to a subset

of the compute resources or to dedicated secondary compute

resources over the network for analysis purposes before being

stored to disk. The combination of the above two approaches

has also been already explored [4].

As several approaches for performing in-situ analysis are

available, it is important to make a careful evaluation of these

approaches. In this work, we focus on three strategies in which

the analysis can be performed on the same compute resources

with the simulation. First, we use all of the compute resources

of the simulation for the in-situ analysis [6], [12], [20]. As the

data is already present in memory there is no data movement

involved in this approach. The second strategy is to use a

fewer number of cores from every node for performing in-

situ analysis. The data from all the cores of the nodes could

be moved to these cores by a shared memory or on-node
data transfer. Lastly, a fewer subset of nodes from the entire

machine could be used for analysis by moving the data over

the network from the rest of the nodes i.e., off-node data

transfer [5], [32].

Given the above strategies, making an optimum choice is

non-trivial as each strategy has different behaviors in terms

of performance and scalability. Furthermore, the choice of

the strategy has a direct impact on the energy and power

consumption as each strategy has different compute and data

transfer characteristics. As we move towards exascale and

tighter power budgets, it is crucial to understand and take

into account the power behavior of these strategies and the

trade-offs with performance and scalability.

In this paper, we evaluate the costs incurred by the three

different in-situ analysis strategies mentioned above in terms

of execution time, scalability and power/energy consumption.

We make use of the parallel merge-tree computation [20] as

a representative case for a general class of global feature

detection approaches such as identifying connected compo-

nents, vortex detection, clustering, etc. This computation has

the typical characteristic of a global reduction common in

most analysis algorithms that try to identify global features

and hence becomes a suitable choice for this evaluation. We

present the scalability and execution time behavior of this com-

2016 16th IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing

978-1-5090-2453-7/16 $31.00 © 2016 IEEE

DOI 10.1109/CCGrid.2016.95

156



putation by performing in-situ analysis on Titan, a leadership

class supercomputer at Oak Ridge National Laboratory, at full

machine scale under the following scenarios:

• Using all the compute cores of the simulation.

• Using a fewer number of cores per node and on-node

data movement.

• Using a subset of the nodes and off-node data movement.

As opposed to existing work that addresses energy efficiency

and co-design issues at extreme scale by comparing different

architectural alternatives [11], [18], we explore power-related

issues of in-situ analytics at peta-scale (i.e., on Titan) in the

above mentioned scenarios by conducting equivalent empirical

experiments on CAPER, an instrumented platform for energy

efficiency research. Fine-grained power measurements allow

us to capture the behavior of in-situ analytics and extrapolate

its power requirements at peta-scale and explore the design

space by making projections.

Our evaluation and findings provide a baseline for making

optimum choices for the in-situ analysis strategies in terms of

performance, scalability and power efficiency.

II. METHODS AND STRATEGIES

To perform the evaluation of the various in-situ scenarios

we make use of the following methodology. First, we need to

select an in-situ analysis technique that can serve as a good

representative for a broader class of techniques. As feature

detection is crucial in gaining scientific insights, we focus on

one of the in-situ feature detection techniques. The following

provides a description of each of the in-situ strategies along

with on overview of how it can be evaluated.

A. Feature Detection Algorithms

In order to gain insight from scientific simulations, scientists

are particularly interested in features of interest. These could

be burning cells in turbulent combustions [7], [21], eddies in

the ocean [28], halos in cosmology [27], etc. Conventionally,

feature extraction has been carried out in post-process by

analyzing the simulation dumps, but as we move towards

exascale, feature detection is moving to in-situ to overcome the

I/O bottlenecks as well as to capture features at a high temporal

frequency. In this regard, many of the feature detection algo-

rithms have been parallelized [14], [15], [22], [26] and some of

them have also been deployed in-situ [20]. All these techniques

exhibit a common pattern in terms of design. Typically, a set

of local computations is performed on the distributed data set

followed by an exchange of data along the boundaries of a

block decomposition. Another set of computations then takes

into account this neighborhood information. Multiple iterations

of these steps are performed until a solution is obtained.

Conceptually, this results in a reduction-like pattern, which

can also be a limiting factor in scaling such analysis, as the

later stages of the reduction typically causes load imbalance

problems.

In this paper, we make use of the distributed merge tree

computation [20], [22] as a representative for the feature

detection algorithms. The merge tree encodes the evolution

of connected components of the super-level sets of a given

scalar function defined on the given domain, where the super-

level set is the region of the domain above a certain function

value. The geometric descriptions of the super-level sets are

often needed for analysis, for example, to track features, to

determine their volumes and shapes, and for visualization,

which have been found to be useful in a number of scientific

applications [21], [28]. An in-situ implementation of the

computation of merge trees on tens of thousand of cores was

provided in [20]. Due to its diverse applications, large scale in-

situ capability, and characteristic reduction-based framework

of the merge tree computation makes it a suitable choice for

our evaluation. In this work, we make use of an updated

version of the implementation presented in [20]. The next

section gives a brief overview of this algorithm in terms of

both the computation and the communication pattern involved

in the computation.

1) In-situ Merge Tree Computation: The distributed merge

tree computation involves three stages. The first stage involves

computing the merge trees for the individual blocks of data

that are distributed across the compute cores by the on-going

simulation. We refer to these individual trees as local trees.

The second stage then joins subsets of these individual local

trees to form the merge trees of the joined blocks. This resul-

tant tree is then given to the participating local trees in the third

stage, so that they can correct themselves based on the new

information received after joining with the neighboring blocks.

The second and third stages are successively performed, every

time adding information of the increasing boundary, until

the entire domain is covered. This resembles a global merge

pattern as shown in Figure 1. The join can be performed with

a k-way fan-in that gives rise to an interesting communication

pattern where data is not only sent down the join hierarchy but

also upwards to the leaves of the hierarchy after every join to

the correction phase. The algorithm is implemented using C++

and MPI. We refer the reader to [20] for a detailed description

of this algorithm.

In this work, we use an updated implementation of the same

algorithm but with a few changes. The earlier implementation

computed the merge tree for data points lying within a given

function range (thresholds) of the domain. Instead, in this work

we perform the computation of the merge tree for the full

range of function values and all data points in the domain.

Although, since thresholds are data dependent, we decided to

not use them in this context as we are using this algorithm as

a proxy for a broader class of algorithms. Also, computing the

tree for the entire domain is more computationally involved

and hence is a good candidate for evaluating the scalability in

the various scenarios.

2) Data Sets: We demonstrate our results using two

datasets generated by S3D [8], a large-scale direct numerical

simulation code that models turbulent combustions. The HCCI

data set is a 560 × 560 × 560 simulation of a homogeneous

charge compression ignition process in which a lean, premixed

fuel-air mixture is compressed until it ignites spontaneously

in many separate locations. The HCCI data was generated

157



������
���	
���


����

Correction Stage I�
Join Stage II�
Correction Stage II�

������������������


����


����

������������������������
���	
���

������
���	
���

������
���	
���

�����
��������

�����
��������

�����
��������

�����
��������

Join Stage I�

Fig. 1: Dataflow diagram for the binary reduction type merge tree computation. The arrows depict the communication involved.

on Titan at the Oak Ridge Leadership Computing Facility

(OLCF). To conduct a scaling study and simulate the exascale

work flow, we constructed a larger version by repeating the

periodic HCCI data eight times to form a 1120×1120×1120
volume. The second dataset is the Lifted Flame dataset which

is a 1600 × 400 × 2025 volume used to investigate turbulent

lifted flames with the goal of better understanding direct injec-

tion stratified spark ignition engines for commercial boilers,

as well as fundamental combustion phenomena. The Lifted

Flame data was also generated on Titan. We doubled the size

of this data set along its periodic boundary to create a volume

of 1600× 800× 2025 for the scaling study.

These two datasets are different in terms of the feature

distribution and hence make a good choice for this study to

understand the behavior of the analysis under different types

of workloads. The HCCI dataset has features distributed in

the entire volume, whereas the Lifted Flame has two jets of

a flame entering the domain from one side and spanning the

center of the domain. All the features are concentrated in the

central part of the domain.

B. In-situ Strategies

As mentioned in Section I, various strategies can be adopted

for in-situ analysis. Here, we elaborate on those strategies and

how they were evaluated.

1) No Data Movement: In this strategy, the in-situ analysis

is performed by all the compute cores of the simulation. As the

simulation already has the data in memory, this strategy does

not involve any data movement. Since there is no a priori data

movement cost, ideally, this strategy should give best perfor-

mance, but in practice, there are several factors that make this

strategy difficult to implement. Firstly, the analysis algorithms

have to work within constraints of the simulation in terms of

its domain decomposition, core counts, node mappings, etc.

These may not always be suitable to the analysis algorithms,

thus hindering its performance and scalability. For example

at very high core counts, the analysis may not strong scale

losing scaling efficiency and sometimes even taking longer

than smaller core counts. For our evaluation, we make use of

DIY [23] to decompose the datasets and distribute them to the

MPI processes. This acts as a scenario where the simulation

data is already in memory. The merge tree computation is

then performed on this data decomposition using all the

MPI processes. Since DIY is used only for loading the data

into memory, we do not measure its performance or power

consumption.

2) On-Node Data Movement: To mitigate the drawbacks

of the above strategy, data movement strategies within the

node are employed. In this strategy, we explore the option

of using only few cores from each compute node for the

analysis. This requires moving or aggregating the data from

all the cores of the node to a fewer cores on the node, which

would participate in the analysis. In [17], it is shown that on-

node data transfer between MPI ranks can be done efficiently

using shared memory in a fast manner. So in our scalability

experiments on Titan, we consider the data movement to have

negligible execution time. Instead of performing the on-node

data movement, we decompose the data into parallelepipeds

using DIY [23], in a fashion that already represents the

aggregated data within the node. We then allocate only 1,

2, 4 or 8 MPI processes per node on Titan while doing the

scaling studies. For the power analysis, the data movement cost

cannot be ignored. So, a prototype data movement scheme was

implemented on CAPER to get accurate power behavior.

3) Off-Node Data Movement: In this strategy, the data is

moved to a subset of nodes in the system. All the cores from

these nodes are then used to perform the analysis. The draw-

back of this approach is that it requires the data to be moved

from all of the compute nodes to the selected set of nodes

over the system interconnect. This adds a significant overhead

both in terms of time as well as energy spent in moving the

data. Although, there are disadvantages, this technique works

well when integrated with the I/O frameworks [25] and if

the data movement is done in an asynchronous fashion [1],

[2], [5], [10], [31], [32]. However, this inhibits the analysis

frequency as data is moved to the staging area less frequently

due to the significant data movement costs. Also, even though

successful deployments of such strategies have been done, they

do not take into account the power impact of this strategy. In

our evaluation, we make use of our prototype data movement

implementation on CAPER, to move the data to a subset of

nodes for the power study. For the large scale runs on Titan,

we expect the analysis to perform in the same fashion as

158



��� ��� ��� ���� ���� �		� �
			� �
			� �
			� �
			� ��
			�
	����

	���

��

��

��

��

���

���

���

����

����

����

�	���

�	���

��
�
��
��
�	

�

���
������������

����������������������������������
���� !��	"�� !�#��$���%��� ��	����	�� ���&��� �����

���
��������
���

���
���������
���

���
���������
���

���
���������
���

����
���������
���

(a)

�
			� �
			� �
			� ��
			�

�����

�����

	�		�

�����


����

	����

��	�

�����

	����

�����

�����
�����

�����

��	��

�����

�����

��
��

�����

��
	� ���	�

����

��

	�

��

��

��
�
��
��
�	

�

���
������������

����������������������������������
���� !��	"�� !�#��$���%��� ��	����	�� ���&��� �����

��
�������������

	�
��������������

��
��������������

��
��������������

���
��������������

(b)

Fig. 2: Time taken by the analysis on Titan for (a) the HCCI data set on various node counts by utilizing 1, 2, 3, 4, 8 or 16

cores per node. (b) A zoomed in view with only the higher range of node counts. We see that using fewer cores per node

gives better performance.

the strategy discussed in Section II-B1 with an extra cost in

terms of data movement. We assume that such a transfer can

be performed with any of the existing infrastructures in an

asynchronous fashion. Upon completion of the data transfer,

the situation is same as in Section II-B1 of running the analysis

using all the cores on the node, but only this time on a

smaller number of nodes. As a result, there is no need to

perform separate set of experiments to understand the scaling

and performance of this strategy as it would be the same as

in the case of Section II-B1.

III. EXPERIMENTAL EVALUATION

A. Performance and Scalability Analysis

1) Hardware Setup: For our evaluation, we performed the

scalability and performance experiments on Titan by strong

scaling both the HCCI and Lifted Flame datasets. Titan is a

peta-flop Cray XK7 system with 18,688 nodes each with a 16-

core AMD Opteron 2.2 GHz processor for a total of 299,008

compute cores.

HCCI dataset. Figure 2 shows the execution time and

scaling behavior for this dataset using varying number of cores

per node. At the lower node counts the per process block

decomposition size is large and the computation is dominated

by the compute intensive, yet data parallel, local computation

phase. As a result, having more cores involved in the analysis

at overall lower core counts gives best performance. In fact, at

the lowest node count using all the cores is almost 15× faster

than using only a single core. We see that more number of

cores per node gives the best performance up to 4,000 nodes

at which point the local block size has become 14× 28× 56,

while using all the cores on the node. As the work load per

process has reduced, the scaling efficiency of using all the

cores in the node decreases significantly after this point and

the execution time is dominated by the communication costs.

In fact, the execution time for using all the cores increases

from 1.07s at 4,000 nodes to 1.42s at 16,000 nodes. By doing

on-node data aggregation and using fewer cores, we increase

the work per process and hence achieve better performance.

In Figure 2b, we see that after 4,000 nodes its beneficial to

use fewer cores per node. The best performance after 4,000

nodes is achieved by using 4 cores per node, computing the

tree in 0.85s at 8000 nodes, but even this has poor scaling

behavior and the execution time tends to rise at 16,000 nodes

to 0.86s. In general, we see a trend that using lower number

of cores per node after 4,000 nodes gives better performance,

but at the same time loses scaling efficiency quite fast when

the node count is further increased as seen in the case for 8

cores per node and 4 cores per node.

Lifted Flame dataset. As shown in Figure 3 we see similar

behavior as in the HCCI dataset but in this case the scaling

efficiency drops rapidly past 720 nodes when using all the

cores on the node. The execution time reduces by just 11%
going from 6.49s at 720 nodes(11,520 cores) to 5.78s at 1,440

nodes (23,040 cores). As this dataset has a concentration of

features at the center of the domain, there is an inherent

load imbalance and hence we experience poor scalability as

compared HCCI. As seen in Figure 3b, the execution time

while using all the cores in the nodes reduces marginally after

1, 875 from 5.73s to 5.34s at 3,750 nodes, but slowly tends

to rise again and eventually matches the execution time of a

single core run at machine scale. In this dataset we observe

that using 4 cores per node also loses scaling efficiency and

the best performance at scale is achieved by using 2 cores per

node computing the tree in 4.47s.

Discussion. Based on the performance and scalability be-

havior, we see that using all cores of a node results in

good performance initially but we reach a point where the

performance for this strategy starts to dip after which, using

159



��
�

��
�

��
��

��
��

��
��

���
��
�
��	
�

�

���

�
�

��

��
�

�

���
����

��

	�

���

���

���

��	�

�
��


���

�����

���	�

�����

��
�
��
��
��

�

����������������

��	���
�$��� ������
��$�������
�'(�����)�����*�*+��
���� !������ !�#��$������� ���������� ���&��� �����

��
�������������

��
��������������

��
��������������

	�
��������������

���
��������������

(a)

	�����

�	����

�����

�����

�	��	�

�����

���	�

�����

�����

�����

����� �����

����

�����

��	�
�����

���
� ��
��

�����

������ 
����� ������ �������
��

��

���


	�

��
�
��
��
��

�

����������������

��	���
�$��� ������
��$�������
�'(�����)�����*�*+��
���� !������ !�#��$������� ���������� ���&��� �����

��
�������������

	�
��������������

��
��������������

��
��������������

���
��������������

(b)

Fig. 3: Time taken by the analysis on Titan for (a) the lifted data set on various node counts by utilizing 1, 2, 3, 4, 8 or 16

cores per node. (b) A zoomed in view with only the higher range of node counts. We see that using fewer cores per node

gives better performance.

fewer cores per node and on-node data movement provides

better performance. Extrapolating this plot, for higher node

counts, one would use fewer and fewer cores per node until

even using only a single core would exhibit poor scalability.

At this point one would have to use off-node data movement

to further reduce the core count by aggregating the data onto

a smaller subset of nodes. However future high-end systems

are expected to have a constant or even decreasing number

of nodes compared to existing systems with respect to the

core count [9]. As a result it seems unlikely that in the

future an off-node data transfer would outperform intra-node

aggregation. This is especially true as off-node communication

would further increase the power consumption as well as the

software complexity when compared to the shared memory

exchanges within a node.

B. Power Analysis and Study of Trade-offs

1) Hardware Setup: The power-centric evaluation has been

conducted on the NSF-funded research instrument “Compu-

tational and dAta Platform for Energy efficiency Research”

(CAPER). This is an eight-node cluster based on SuperMicro

SYS-4027GR-TRT system, which is capable of housing con-

currently, in one node up to eight general-purpose graphical

processing units (GPGPU), or eight Intel many-integrated-core

(MIC) coprocessors – or any eight-card combination of the

two; and up to 48 hard disk drives (HDD), or solid-state drives

(SSD). However, the configuration used in this experimental

evaluation features servers with two Intel Xeon Ivy Bridge E5-

2650v2 (16 cores/node), 128GB of DRAM, and Infiniband

FDR network connectivity. Accelerators were not deployed.

This platform also mirrors key architectural characteristics of

high-end system, which allow us to extrapolate our models

to larger systems and make projections towards exascale

co-design. Furthermore, CAPER is instrumented with both

coarse- and fine-grained power metering at server level – an

instrumented Raritan PDU provides power measurements at

1Hz, and a Yokogawa DL850E ScopeCorder data acquisi-

tion recorder provides power measurements from current and

voltage modules. Our experimental evaluation was conducted

using the fine-grained instrumentation system at server level

with power readings at 50Hz. Power readings were obtained

integrating current and voltage readings at 500KHz, which

allowed a high accuracy level. The fine-grained metering

capability is essential in this work because the execution time

of the studied data analysis is very short and power/energy can-

not be measured appropriately with typical PDU-level power

metering capability. Network power measurements were based

on server-level power measurements as the infiniband FDR

switch didn’t show power variability (i.e., can be considered

static power) as existing studies [16] already pointed out.

2) “Power-friendly” Problem Implementation: In our ex-

periments we used an appropriately downscaled version of

the problem to understand its power behavior. We also had

to take into account power considerations to let us capture the

power behavior associated to the data restructuring and in-situ

merge-tree computation.

Figure 4 shows the system power dissipation over time for

two implementations of the downscaled version of the problem

with HCCI data set, and using 128 MPI processes and 1 core

per node. As detailed in the right of Figure 4, we introduced

a one-second sleep call before and after the data restructuring

to better differentiate the different phases of the program. The

sleep call is performed by the master MPI rank and the rest

of MPI processes are on a barrier.

While the figure in the left uses traditional synchronous MPI

collective operations, the figure in the right uses asynchronous

MPI collective operations available in MPI 3.0. The figure in

the left illustrates how power dissipation is maximized not only

160



Initialization Finalize 

sleep (1s) 

data load merge-tree restructuring 

Fig. 4: System power dissipation over time for HCCI using 128 MPI processes and 1 core per node. Note that Y axes of the

figures are in different scales. The figure in the left is obtained with the original implementation with synchronous MPI collective

operations. The figure in the right is obtained with the energy friendly implementation, which shows that asynchronous MPI

collective operations (e.g., during 1 second sleeps) require lower power.

during data load, data restructuring and merge-tree phases but

also during the sleep periods. This is explained due to the

fact that synchronous collective operations are designed for

performance (i.e., using a busy waiting mechanism) therefore

require a significant amount of power. However, the figure in

the right shows that using asynchronous MPI collectives the

power is significantly reduced during idle periods (i.e., sleep

calls).

Our implementation based on asynchronous MPI collectives

uses MPI Ibarrier, MPI Iallgather and MPI Iallreduce oper-

ations and (nano) sleep periods of 500ns in a MPI Test loop.

There is no significant performance impact as these collective

operations are not used intensively; however, it significantly

impacts energy consumption, but more importantly, power

dissipation which is a critical concern in current and next-

generation high-end systems.

This observation clearly supports that “power-friendly” im-

plementations of both MPI codes and runtimes need to be

considered at scale.

3) Power Behavior Analysis: In order to understand the

power behavior of the in-situ analysis at scale, we simulated

an equivalent workload on CAPER as Titan by providing each

MPI process the same amount of data as it would be allocated

at large scale on Titan.

Figures 5 and 6 display the execution time required for

the data restructuring and in-situ merge-tree computation, the

system energy consumption (i.e., the energy consumed by

all CAPER nodes) and average active power (also known

as dynamic power). Active power does not consider the idle

power, which is the nominal power dissipation when the

system is idle. We use active power to isolate the power

requirements of the in-situ analysis and let us make projections

to larger scale. The figures present the results for different

configurations and both HCCI and Lifted Flame data sets.

The “Base” configuration represents in-situ analysis using 16

cores per node. The “1 node (8 core/node)” and “2 nodes (4

cores/node)” configurations use a reduced number of nodes

(one and two, respectively) with higher core counts. The

variability in the measurements was not significant as most

of the metrics are based on averages and/or numerous data

points.
In general, the results show that larger core counts per

node reduces the execution time and energy consumption, as

energy is correlated with execution time; however, the power

dissipation is higher. Since future-generation systems are ex-

pected to be constrained by power, configurations with highest

power requirements might not be able to be run together with

simulation codes at scale. As a result, in-situ analysis may

have to tolerate some level of performance degradation and

therefore higher energy consumption to maintain simulation-

analysis workflows running in leadership-class supercomputers

within their power budgets. Both “1 node (8 core/node)” and

“2 nodes (4 cores/node)” configurations consider the static

energy consumption of all nodes in the system. This is based

on the assumption that in-situ analysis will run across the

platform together with the simulation. Further, while it signif-

icantly impacts energy consumption, average active power is

comparable (or lower) to the other configurations. The figures

also show that “1 node (8 core/node)” and “1 core/node”

(using 8 nodes) configurations present similar results. These

two observations present opportunities for exploiting available

cores when the cost of data movement is not in the critical

path or the available resources have advanced capabilities (e.g.,

closer to fast data storage such as flash-based burst buffers).

Figures 2 and 3 showed that, at scale, the on-node gathering

might not only be fastest; however, Figures 5 and 6 support

that it is always more power efficient. Furthermore, the off-

node aggregation is at best equal in power to on-node and

that is without considering the power for data transfer, which

supports our argument that off-node is not a viable solution.

161



������

������

������

������

��	���
����
�

��


���

	���

����

����

�����

���
�
�
���
��

��

���
��
��
��


�

���
��
��
��

	�

���
��
��
��

���
��
���
��

���
��
��
���


��
��
���
�	�

�
���
��
��
��

�����������	
���
����
���	��������



����

�
���� �
���� ������ �
��
� �
����

��

���

����

����


���


���

���
�
�
���
��

��

���
��
��
��


�

���
��
��
��

	�

���
��
��
��

���
��
���
��

���
��
��
���


��
��
���
�	�

�
���
��
��
��

���������������	�����

�����

�����

��
��

�����

�����
��	
�

�����

�����

��
��

�����

��	��

�����

���
�
�
���
��

��

���
��
��
��


�

���
��
��
��

	�

���
��
��
��

���
��
���
��

���
��
��
���


��
��
���
�	�

�
���
��
��
��

��������������

�
����

��
��
�

�������

	�����

��
��	�
��
����

��

	���

����

�
���

�����


����


	���

���
�
�
���
��

��

���
��
��
��


�

���
��
��
��

	�

���
��
��
��

���
��
���
��

���
��
��
���


��
��
���
�	�

�
���
��
��
��

�����������	
���
����
�������	
���


	����

�
���� �
���� ������ �
���� �
����

��

���

����

����


���


���

����

���
�
�
���
��

��

���
��
��
��


�

���
��
��
��

	�

���
��
��
��

���
��
���
��

���
��
��
���


��
��
���
�	�

�
���
��
��
��

�
������
�������	����

�����

���
�

��	��

��

�

�����

�����

��

��
�

��	�

����

����

��

���
�
�
���
��

��

���
��
��
��


�

���
��
��
��

	�

���
��
��
��

���
��
���
��

���
��
��
���


��
��
���
�	�

�
���
��
��
��

���������	���

Fig. 5: Execution time, energy consumption and active power dissipation on CAPER for the HCCI data set and the data

configurations associated to the two different Titan sizes.

�
����

��
	���

������

������

��
���� ��
����

��

	���

����

�
���

�����


����


	���

���
�
�
���
��

��

���
��
��
��


�

���
��
��
��

	�

���
��
��
��

���
��
���
��

���
��
��
���


��
��
���
�	�

�
���
��
��
��

��������"���	�
���
���������

��
�����
��


�����

�
	��� �
���� ������ �
���� �
����

��

���

����

����


���


���

����

���
�
�
���
��

��

���
��
��
��


�

���
��
��
��

	�

���
��
��
��

���
��
���
��

���
��
��
���


��
��
���
�	�

�
���
��
��
��

���������������
���
��

�����

�����

�����

��
�

�����

�����

��

��
�

��	�

����

����

��

���
�
�
���
��

��

���
��
��
��


�

���
��
��
��

	�

���
��
��
��

���
��
���
��

���
��
��
���


��
��
���
�	�

�
���
��
��
��


����������
��

�	��	�

�
�����

��
��	�

����	�

	
�	���
�������

��
����

�
���
�����

	���
�����
�����
	
���
	����

���
�
�
���
��

��

���
��
��
��


�

���
��
��
��

	�

���
��
��
��

���
��
���
��

���
��
��
���


��
��
���
�	�

�
���
��
��
��

��������"���	�
���
��������

��
�����
�


���	�

�
���� �
���� ����	� �
���� �
	���

��

���

����

����


���


���

����

���
�
�
���
��

��

���
��
��
��


�

���
��
��
��

	�

���
��
��
��

���
��
���
��

���
��
��
���


��
��
���
�	�

�
���
��
��
��

���������������
��
��

��
��

�����

����

�����


����
�����

��

��	�

����

��
�

����


�


�	�

���
�
�
���
��

��

���
��
��
��


�

���
��
��
��

	�

���
��
��
��

���
��
���
��

���
��
��
���


��
��
���
�	�

�
���
��
��
��


����������
��

Fig. 6: Execution time, energy consumption and active power dissipation on CAPER for the Lifted flame data set and the data

configurations associated to the two different Titan sizes.

162



4) Extrapolation to Titan Scale: We extrapolate the mea-

surements obtained with CAPER to Titan based on its known

power requirements and hardware vendor specifications. More

specifically, we estimate the static system power from the

power model used in [13], which is based on the following

reasoning. Titan drains 8,209KW at full capacity, which results

439W per node (from a total of 18,668 nodes). Considering

that both dynamic and static power for the processor, memory

and GPU are well known, we estimate that Titan nodes’

static power is ∼61W. The active power is scaled from

CAPER to Titan based on the processors and memory vendor

specifications.

Figure 7 illustrates the estimated power dissipation of Titan

at full-system scale for the Lifted Flame data set. Note

that power dissipation in this case is based on maximum

power dissipation from experiments in CAPER because we

are interested in the peak power and not in the nominal power.

The plot shows the estimation and also projections using 16

cores per node and 1 core per node as they represent the upper

and lower bounds. The figure shows a difference of 50KW

between the two configurations; the rest of configurations are

comprised between these two. Taking into account that the

data analysis will run in-situ with CPU-intensive computations

(i.e., simulation codes) we might not be able to use larger core

counts due to the power constraints.

Figure 7 also illustrates different projections with the as-

sumption that future systems will be more energy efficient and

therefore their static power will be reduced. Figure 7 displays

projections assuming systems with 2-10% lower static power

dissipation than Titan. The figure shows that 4% more energy

efficient hardware would allow using 16 cores at the same

power budget that 1 core/node in the current Titan architecture.

This observation give us a baseline to understand what level of

energy efficiency improvement is required to execute the in-

situ analysis without performance degradation and how much

degradation has to be tolerated given specific design choices.

���������

���������

���������

���������

���������

���������

�	
���� �	
���
���
�
����

�	
���
���
�
����

�	
���
���
�
����

�	
���
 ��
�
����

�	
���
����
�
����

��
�
��
���

	�

������������

�������������

Fig. 7: Power extrapolation to Titan-scale based on execu-

tions in CAPER and power projections for different energy

efficiency system design choices (i.e., reduced static power

dissipation in 2-10%).

IV. CONCLUSION

This paper evaluated three in-situ analysis strategies depend-

ing on the way the compute resources are used for the analysis:

i) using all the compute cores for the analysis without any a

priori data movement, ii) on-node data movement and using

fewer cores from each of the compute nodes, and iii) off-

node data movement and using a subset of the compute nodes

for performing the analysis. We evaluated the costs incurred

by each of the above strategies in terms of performance,

scalability and power. For our experimental evaluation, we

deployed the merge-tree computation in-situ using the above

mentioned strategies at full machine scale (16,000 nodes)

on Titan supercomputer for the performance and scalability

analysis. We also performed scaled but equivalent experiments

on CAPER with fine-grained power metering to understand the

power behavior of these strategies. Using the obtained power

behavior, we extrapolated the power requirements in Titan and

made projections based on energy efficiency design choices.

Based on our analysis, we conclude that up to a certain

number of nodes using all the cores for analysis gives best

performance and consumes lower energy; however, it requires

significantly higher power. Furthermore, we observed that

using all cores per node at full machine scale is not scalable

hence we use fewer cores with on-node data movement which

gives better performance, scalability and power efficiency.

Based also on our findings and extrapolating our results to

even larger node counts than the available in Titan, we expect

this strategy to also stop scaling. In this case, making use of

a subset of the compute resources would be a viable choice.

However, future high-end systems are expected to have nodes

with larger core counts and fewer nodes with respect to the

core count. In this case, using fewer cores per node for analysis

purposes is expected to be an optimum choice and more

research effort should be devoted towards developing in-situ

analysis techniques following this strategy.

Our ongoing work also includes the study of deep memory

hierarchies using different memory devices (e.g., NVRAM) as

the analysis is expected to be co-located with simulation codes

on the same physical resources thus main memory capacity

and bandwidth may be very limited.

ACKNOWLEDGMENTS

The research presented in this work is supported in part

by National Science Foundation (NSF) via grants numbers

ACI-1339036, ACI-1310283, ACI-1464317, CNS-1305375,

and DMS-1228203, by the Director, Office of Advanced

Scientific Computing Research, Office of Science, of the US

Department of Energy Scientific Discovery through Advanced

Computing (SciDAC) Institute of Scalable Data Management,

Analysis and Visualization (SDAV) under ward number DE-

SC0007455, the Advanced Scientific Computing Research and

Fusion Energy Sciences Partnership for Edge Physics Simula-

tions (EPSI) under award number DE-FG02-06ER54857, the

ExaCT Combustion Co-Design Center via subcontract number

4000110839 from UT Battelle, and by an IBM Faculty Award.

163



The research at Rutgers was conducted as part of the Rutgers

Discovery Informatics Institute (RDI2).

REFERENCES

[1] H. Abbasi, G. Eisenhauer, M. Wolf, K. Schwan, and S. Klasky. Just
In Time: Adding Value to The IO Pipelines of High Performance
Applications with JITStaging. In Proc. of 20th International Symposium
on High Performance Distributed Computing (HPDC’11), June 2011.

[2] H. Abbasi, M. Wolf, G. Eisenhauer, S. Klasky, K. Schwan, and F. Zheng.
Datastager: scalable data staging services for petascale applications. In
Proc. of 18th International Symposium on High Performance Distributed
Computing (HPDC’09), 2009.

[3] J. Ahrens, S. Jourdain, P. O’Leary, J. Patchett, D. H. Rogers, and M. Pe-
tersen. An image-based approach to extreme scale in situ visualization
and analysis. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, SC ’14,
pages 424–434, Piscataway, NJ, USA, 2014. IEEE Press.

[4] J. Bennett, H. Abbasi, P.-T. Bremer, R. Grout, A. Gyulassy, T. Jin,
S. Klasky, H. Kolla, M. Parashar, V. Pascucci, P. Pebay, D. Thompson,
H. Yu, F. Zhang, and J. Chen. Combining in-situ and in-transit pro-
cessing to enable extreme-scale scientific analysis. In Proc. ACM/IEEE
Conference on Supercomputing (SC12), 2012.

[5] J. Biddiscombe, J. Soumagne, G. Oger, D. Guibert, and J.-G. Piccinali.
Parallel computational steering and analysis for hpc applications using
a paraview interface and the hdf5 dsm virtual file driver. In Proceed-
ings of the 11th Eurographics Conference on Parallel Graphics and
Visualization, EGPGV ’11, pages 91–100, Aire-la-Ville, Switzerland,
Switzerland, 2011. Eurographics Association.

[6] J.-M. F. Brad Whitlock and J. S. Meredith. Parallel In Situ Coupling
of Simulation with a Fully Featured Visualization System. In Proc. of
11th Eurographics Symposium on Parallel Graphics and Visualization
(EGPGV’11), April 2011.

[7] P.-T. Bremer, G. Weber, J. Tierny, V. Pascucci, M. Day, and J. B. Bell.
Interactive exploration and analysis of large scale simulations using
topology-based data segmentation. IEEE Trans. on Visualization and
Computer Graphics, 17(99), 2010.

[8] J. H. Chen, A. Choudhary, B. de Supinski, M. DeVries, E. R. Hawkes,
S. Klasky, W. K. Liao, K. L. Ma, J. Mellor-Crummey, N. Podhorski,
R. Sankaran, S. Shende, and C. S. Yoo. Terascale direct numerical
simulations of turbulent combustion using s3d. Computational Science
and Discovery, 2:1–31, 2009.

[9] A. Choudhary, T. Critchlow, S. Klasky, K.-L. Ma, and V. Pascucci.
Scientific discovery at exascale: Report from the doe ascr 2011 workshop
on exascale data management, analysis, and visualization. 2011.

[10] C. Docan, M. Parashar, and S. Klasky. DataSpaces: An Interaction and
Coordination Framework for Coupled Simulation Workflows. In Proc.
of 19th International Symposium on High Performance and Distributed
Computing (HPDC’10), June 2010.

[11] D. Donofrio, L. Oliker, J. Shalf, M. F. Wehner, C. Rowen, J. Krueger,
S. Kamil, and M. Mohiyuddin. Energy-efficient computing for extreme-
scale science. Computer, 42(11):62–71, Nov. 2009.

[12] N. Fabian, K. Moreland, D. Thompson, A. Bauer, P. Marion, B. Gevecik,
M. Rasquin, and K. Jansen. The paraview coprocessing library: A
scalable, general purpose in situ visualization library. In Proc. of IEEE
Symposium on Large Data Analysis and Visualization (LDAV), pages 89
–96, October 2011.

[13] M. Gamell, I. Rodero, M. Parashar, J. Bennett, H. Kolla, J. Chen,
P.-T. Bremer, A. Landge, A. Gyulassy, P. McCormick, S. Pakin, and
V. Pascucci. Exploring power behaviors and trade-offs of in-situ data
analytics. In Proc. ACM/IEEE Conference on Supercomputing (SC13),
2013.

[14] A. Gyulassy, T. Peterka, R. Ross, and V. Pascucci. The parallel
computation of Morse-Smale complexes. IEEE International Parallel
and Distributed Processing Symposium, to appear, 2012.

[15] W. Hendrix, D. Palsetia, M. Patwary, A. Agrawal, W.-K. Liao, and
A. Choudhary. A scalable algorithm for single-linkage hierarchical
clustering on distributed memory architectures. In Proceedings of
3rd IEEE Symposium on Large-Scale Data Analysis and Visualization
(LDAV), 2013.

[16] T. Hoefler. Software and hardware techniques for power-efficient hpc
networking. Computing in Science Engineering, 12(6):30–37, Nov 2010.

[17] T. Hoefler, J. Dinan, D. Buntinas, P. Balaji, B. Barrett, R. Brightwell,
W. Gropp, V. Kale, and R. Thakur. Mpi+ mpi: a new hybrid approach
to parallel programming with mpi plus shared memory. Computing,
95(12):1121–1136, 2013.

[18] J. Krueger, D. Donofrio, J. Shalf, M. Mohiyuddin, S. Williams, L. Oliker,
and F.-J. Pfreund. Hardware/software co-design for energy-efficient
seismic modeling. In Proc. of 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis (SC’11),
pages 73:1–73:12, 2011.

[19] S. Lakshminarasimhan, J. Jenkins, I. Arkatkar, Z. Gong, H. Kolla, S.-
H. Ku, S. Ethier, J. Chen, C. Chang, S. Klasky, R. Latham, R. Ross,
and N. Samatova. Isabela-qa: Query-driven analytics with isabela-
compressed extreme-scale scientific data. In Proc. of the ACM/IEEE
International Conference for High Performance Computing, Networking,
Storage and Analysis (SC), pages 1 –11, November 2011.

[20] A. G. Landge, V. Pascucci, A. Gyulassy, J. C. Bennett, H. Kolla, J. Chen,
and P.-T. Bremer. In-situ feature extraction of large scale combustion
simulations using segmented merge trees. In Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, SC ’14, pages 1020–1031, Piscataway, NJ, USA,
2014. IEEE Press.

[21] A. Mascarenhas, R. W. Grout, P.-T. Bremer, E. R. Hawkes, V. Pascucci,
and J. H. Chen. Topological feature extraction for comparison of
terascale combustion simulation data. In V. Pascucci, X. Tricoche,
H. Hagen, and J. Tierny, editors, Topological Methods in Data Anal-
ysis and Visualization, Mathematics and Visualization, pages 229–240.
Springer Berlin Heidelberg, 2011.

[22] D. Morozov and G. H. Weber. Distributed merge trees. In A. Nicolau,
X. Shen, S. P. Amarasinghe, and R. Vuduc, editors, ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPoPP
’13, Shenzhen, China, February 23-27, 2013, pages 93–102. ACM, 2013.

[23] T. Peterka, R. Ross, W. Kendall, A. Gyulassy, V. Pascucci, H.-W. Shen,
T.-Y. Lee, and A. Chaudhuri. Scalable parallel building blocks for
custom data analysis. In Proceedings of Large Data Analysis and
Visualization Symposium LDAV’11, Providence, RI, 2011.

[24] T. Tu, H. Yu, L. Ramirez-Guzmanz, J. Bielak, O. Ghattas, K.-L. Ma, and
D. R. O’Hallaron. From Mesh Generation to Scientific Visualization:
An End-to-End Approach to Parallel Supercomputing. In Proceedings
of ACM/IEEE Supercomputing Conference, 2006.

[25] V. Vishwanath, M. Hereld, and M. Papka. Toward simulation-time data
analysis and i/o acceleration on leadership-class systems. In Proc. of
IEEE Symposium on Large Data Analysis and Visualization (LDAV),
October 2011.

[26] B. Welton, E. Samanas, and B. Miller. Mr. scan: Extreme scale density-
based clustering using a tree-based network of gpgpu nodes. In High
Performance Computing, Networking, Storage and Analysis (SC), 2013
International Conference for, pages 1–11, Nov 2013.

[27] W. Widanagamaachchi, P.-T. Bremer, C. Sewell, L.-T. Lo, J. Ahrens, and
V. Pascucci. Data-parallel halo finding with variable linking lengths.
In Large Data Analysis and Visualization (LDAV), 2014 IEEE 4th
Symposium on, pages 27–34. IEEE, 2014.

[28] S. Williams, M. Petersen, P.-T. Bremer, M. Hecht, V. Pascucci, J. Ahrens,
M. Hlawitschka, and B. Hamann. Adaptive extraction and quantification
of atmospheric and oceanic vortices. IEEE Trans. Vis. Comp. Graph.,
17(12):2088–2095, 2011.

[29] H. Yu, T. Tu, J. Bielak, O. Ghattas, J. C. López, K.-L. Ma, D. R.
O’Hallaron, L. Ramirez-Guzmanz, N. Stone, R. Taborda-Rios, and
J. Urbanic. Remote Runtime Steering of Integrated Terascale Simulation
and Visualization. In ACM/IEEE Supercomputing Conference HPC
Analytics Challenge, 2006.

[30] H. Yu, C. Wang, R. Grout, J. Chen, and K.-L. Ma. In Situ Visualization
for Large-Scale Combustion Simulations. IEEE Computer Graphics and
Applications, 30(3):45–57, 2010.

[31] F. Zheng, H. Abbasi, C. Docan, J. Lofstead, S. Klasky, Q. Liu,
M. Parashar, N. Podhorszki, K. Schwan, and M. Wolf. PreDatA -
preparatory data analytics on peta-scale machines. In Proc. of 24th
IEEE International Parallel and Distributed Processing Symposium
(IPDPS’10), April 2010.

[32] F. Zheng, H. Zou, G. Eisenhauer, K. Schwan, M. Wolf, J. Dayal, T.-A.
Nguyen, J. Cao, H. Abbasi, S. Klasky, N. Podhorszki, and H. Yu. Flexio:
I/o middleware for location-flexible scientific data analytics. Parallel and
Distributed Processing Symposium, International, 0:320–331, 2013.

164


