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While many microscale systems are subject to both rarefaction and fluid-structure-interaction (FSI)
effects, most commercial algorithms cannot model both, if either, of these for general applications. This
study modifies the momentum and thermal energy exchange models of an existing, continuum based,
multifield, compressible, unsteady, Eulerian-Lagrangian FSI algorithm, such that the equivalent of first-
order slip velocity and temperature jump boundary conditions are achieved at fluid-solid surfaces,
which may move with time. Following the development and implementation of the slip flowmomentum
and energy exchange models, several basic configurations are considered and compared to established
data to verify the resulting algorithm’s capabilities.

� 2012 Elsevier Masson SAS. All rights reserved.
1. Introduction

Both rarefaction and fluid-structure-interaction (FSI) effects are
significant for many microscale systems. Examples include micro
valves, pumps, actuators, particulate flows, porous flows, two-
phase flows, micro-air-vehicles, combustion, and heat exchangers.
Rarefaction, typically quantified by the Knudsen number, Kn, which
is the ratio of the fluid’s mean free path to the characteristic length
of the system, becomes significant for gaseous systems at the
microscale. Rarefaction results in discontinuities of the velocity and
temperature at fluid-solid boundaries, which, for the slip flow
regime, 0.01 � Kn � 0.1, are typically modeled with first-order slip
velocity [1] and temperature jump [2] boundary conditions applied
to the continuum based conservation of momentum and energy
equations, respectively. FSI effects are significant for any system in
which the thermal-fluid and structural dynamics are coupled, and
consequently cannot be considered independently. As listed
previously, there are already many microsystems that operate with
FSI effects; and, as many microfabrication technologies evolve
toward the use of more flexible materials than those historically
used in the microelectronics industry, such as with printing and
molding [3,4], FSI effects may become an even more significant
microsystem design consideration. However, while there are many
microscale systems that are subject to both rarefaction and FSI
effects, currently available computational algorithms do not, typi-
cally, have the ability or versatility required to accurately model
: þ1 801 585 9826.
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these effects for a generic microsystem, and as a result, there are
few studies which have considered FSI for microsystems [5e20],
and no widely available studies that have numerically considered
both FSI and rarefaction in a microsystem.

The primary objective of this study is to modify the momentum
and energy exchange models of an existing FSI algorithm, such that
the equivalent of first-order slip velocity and temperature jump
boundary conditions are achieved at fluid-solid boundaries, which
may move and deform arbitrarily with time. The FSI algorithm that
is utilized is a three-dimensional, unsteady, continuum based
Eulerian-Lagrangian methodology in which fluids, modeled using
ICE (implicit, continuous fluid, Eulerian) and solid materials,
modeled with MPM (the material-point-method), may be modeled
either independently or simultaneously. ICE is a finite volume, cell-
centered, multimaterial, compressible, computational fluid
dynamics (CFD) algorithm that originated at Los Alamos National
Laboratory [21,22]. And, MPM is a particle based method for solid
mechanics simulations [23,24]. The development and documenta-
tion of the MPM-ICE implementation currently utilized is given in
[25e28]. The MPM-ICE FSI algorithm utilizes a statistically aver-
aged, or ‘multifield,’ approach, where, eachmaterial is continuously
defined (r, u, e, T, y, q, s, P), with some probability, over the entire
computational domain. This approach differs from the perhaps
more common, separate domain methodology, in which fluid and
solid materials are defined separately, with only one material at
each point, and interaction only occurring at material boundaries.
The multifield approach is advantageous for the current applica-
tion, because it tightly couples fluid-structure-interactions through
the conservation equations, rather than explicitly though specified
boundary conditions, which allows arbitrary distortion of material
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Nomenclature

A cell fluid-solid surface area
Ac fin cross sectional area
BiD Biot number, hD=ks
C Stokes drag coefficient, CDRe=2
c speed-of-sound
CD drag coefficient, FD=ð1=2ÞrNu2NDL
cfl CouranteFriedrichseLewy number
cp specific heat at constant pressure
cy specific heat at constant volume
D diameter or characteristic length
e internal energy per unit mass
E Young’s modulus of elasticity, 9GK=ðGþ 3KÞ
f force per unit volume
FD drag force
Fo Fourier number, at=D2

G shear modulus of elasticity
Hrs thermal energy exchange coefficient
Hslip
rs slip flow thermal energy exchange coefficient

h heat transfer coefficient or channel height
I moment of inertia
K bulk modulus of elasticity
Krs momentum exchange coefficient
Kslip
rs slip flow momentum exchange coefficient

k thermal conductivity
Kn Knudsen number, l=D
L length
L2 norm, kxk2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1x

2
i

q
Ma Mach number, ReKn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðpgÞp

N number of materials
Nu Nusselt number, hD=k
P pressure
p order-of-accuracy,

logððF2Dx � F4DxÞ=ðFDx � F2DxÞÞ=logð2Þ
Pr Prandtl number, cpm=k
Q rotation matrix
q thermal energy exchange rate per unit volume
q’’ heat flux
R gas constant
Re Reynolds number, ruD=m
RMS root-mean-square, xrms ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=nÞPn

i¼1x
2
i

q
T temperature

t time
Tb fin base temperature
u velocity vector
V cell volume
x, y, z Cartesian coordinate directions
x’, y’, z’ surface coordinate directions

Greek symbols
a thermal diffusivity, k=rcp
bt first-order temperature jump coefficient,

½ð2� stÞ=st�½2g=ð1þ gÞ�½k=ðcpmÞ�
bn first-order velocity slip coefficient, ð2� snÞ=sn
g ratio of specific heats, cp=cy
d fin deflection
q volume fraction
Q nondimensional temperature, ðT � TNÞ=ðTb � TNÞ
l mean free path, m=r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2RT=p

p
m dynamic viscosity
n kinematic viscosity, m=r
r density
s stress
st thermal accommodation coefficient
sn momentum accommodation coefficient
s shear stress
y specific volume
f rotation angle about the z-axis
F numerical result
j rotation angle about the y-axis

Subscripts
N freestream value
i inlet value
m mean value
o outlet value
r material index
s material index
w wall value
x, y, z Cartesian coordinate directions

Superscripts
- before exchange contribution
þ after exchange contribution
0 initial value

J. van Rij et al. / International Journal of Thermal Sciences 58 (2012) 9e1910
and material surfaces without explicit surface tracking, passing of
boundary conditions, and excessive stability and convergence
issues. Use of the MPM-ICE algorithm to evaluate rarefaction with
FSI is further merited, as rarefaction effects have already been
successfullymodeled utilizing the independent CFD (ICE) portion of
the algorithm, with slip boundary conditions implemented at the
computational domain boundaries [29e31].

The multimaterial governing conservation equations
employed by the MPM-ICE algorithm, without effects that are not
considered in the present research (chemical reactions, turbu-
lence, multiphase Reynolds stress, gravity, etc.), are given in Eqs.
(1)e(3) [28].

vrr
vt

þ V$ðruÞr ¼ 0 (1)

vðruÞr
vt

þ V$ðruuÞr ¼ �qrVP þ V$ðqsÞr þ
XN

s¼1
f rs (2)
vðreÞr
vt

þ V$ðreuÞr ¼ � Pqr
y

dyr
dt

þ ðqsÞr: Vur þ V$ðqkVTÞr

r

þ
XN

s¼1
qrs

(3)

Equations (1)e(3) are the ensemble average, r-material,
conservation of mass, momentum, and energy equations respec-
tively, where there are N materials, qr is the r-material volume
fraction, and

PN
s¼1f rs and

PN
s¼1qrs are models for the momentum

and energy exchange between materials. Eqs. (1)e(3), along with
individual material constitutive or equation-of-state models, and
models for

PN
s¼1f rs and

PN
s¼1qrs, form a complete system of equa-

tions. The detailed numerical solution strategy utilized by theMPM-
ICE algorithm to solve this system of equations is presented in [28],
and consequently will not be duplicated here. However, in a few
words, the numerical approach involves operator splitting. For each
timestep, the quantities on the right-hand-side of Eqs. (1)e(3) are
computed first - this is the Lagrangian phase of the timestep. The
conserved quantities, that is, mass, momentum, and energy, for
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fluid materials are accounted for at the cell centers; while, the
conserved quantities for solid materials are accounted for at the
material particles. Consequently, during the Lagrangian phase,
which is executed primarily within the cell-centered ICE frame-
work, the solid materials are dually represented, both, at the
particles, and at the cell centers, where the solid material conser-
vation quantities are interpolated. In the second phase of the
timestep, the Eulerianphase, the contribution due to advection, that
is, the second term on the left of Eqs. (1)e(3), is added to the
Lagrangian phase values, where the advected contributions are
computed for fluidmaterials by ICE, and for solidmaterials byMPM.
As such, during the Lagrangian phase, models for both the
momentum and energy exchange between materials,

PN
s¼1f rs andPN

s¼1qrs, respectively, are utilized, while during the Eulerian phase,
only the momentum exchange model is utilized to determine the
advecting velocity.

The momentum and energy exchange models currently
employed by the MPM-ICE algorithm to model FSI for standard
continuum conditions (Kn z 0), are given in Eqs. (4) and (5).XN

s¼1
f rs ¼

XN

s¼1
Krsqrqsðus � urÞ (4)

XN

s¼1
qrs ¼

XN

s¼1
HrsqrqsðTs � TrÞ (5)

Eq. (4) models frs, the force per unit volume on material r, due to
interaction with material s, as a function of the scalar momentum
exchange coefficient, Krs, the material volume fractions, and the
relative velocity between the two materials. Similarly, Eq. (5)
models qrs, the thermal energy exchange rate per unit volume for
material r, due to interaction with material s, as a function of the
scalar energy exchange coefficient, Hrs, the material volume frac-
tions, and the temperature difference between the two materials.
To avoid stability and convergence restrictions, the momentum and
thermal energy exchange between materials is calculated within
each cell implicitly, for each timestep, as shown in Eqs. (6) and (7).

rru
þ
r ¼ rru

�
r þ Dt

XN

s¼1
Krsqrqsðuþ

s � uþ
r Þ (6)

rrcy;rT
þ
r ¼ rrcy;rT

�
r þ Dt

XN

s¼1
Hrsqrqs

�
Tþs � Tþ

r

�
(7)

The ‘�’ and ‘þ’ superscripts in Eqs. (6) and (7) indicate values
before and after the momentum and thermal energy exchange
betweenmaterials, respectively, at the point in the timestep that the
exchange contributions are calculated. It is assumed with the
calculation of Eqs. (6) and (7) that the material masses, volume
fractions, and specific heats are notmodified by themomentumand
energy exchange between materials. (The exchange of mass,
momentum, and energy due to a chemical reaction, although not
consider in this study, would be modeled with additional terms in
the governing equations, not Eqs. (4) and (5), as discussed in [28].) It
is also necessary with the implementation of Eqs. (6) and (7) to
specifymomentumand energyexchange coefficients for all possible
material pairs. However, Krs must equal Ksr, and Hrs must equal Hsr,
since the force, and heat transferred, frommaterial r due tomaterial
s is equal and opposite the force, and heat transferred, frommaterial
sdue tomaterial r. And,Krr¼Hrr¼ 0, because the stress andheatflux
within the samematerial are alreadyaccounted forwith other terms
of the momentum and energy conservation equations. A very large
momentum transfer rate between materials r and s, specified by
a large Krs value, forces the relative velocity of the two materials to
zero, consistent with a no-slip velocity boundary condition. Simi-
larly, a large Hrs value produces a large thermal energy transfer rate
between materials r and s, resulting in the equivalent of a thermal
equilibrium boundary condition. In the current algorithm, Krs and
Hrs values are typically specified as arbitrarily large, constant, scalar
quantities (w1� 1015), which result in momentum and thermal
energy transfer rates that are not directional relative to the fluid-
solid surface, but produce the intended effect of conventional no-
slip velocity and thermal equilibrium boundary conditions.

The objective of this study, as stated previously, is to modify the
momentum and energy exchange models of the FSI algorithm
described, such that both rarefaction and FSI effects are accurately
represented for a generic microsystem operating in the slip flow
regime. Following the development and implementation of the slip
flow momentum and energy exchange models, several basic config-
urations are considered and compared to establisheddata to verify the
resulting algorithm’s capabilities. These verifications include: 1)
velocity profiles of a rarefied gas between parallel plates; 2) temper-
ature profiles of a rarefied gas between parallel plates; 3) drag coeffi-
cients, CD, andNusselt numbers,Nu, for lowReynolds number rarefied
flow around an infinite cylinder; and, 4) the transient, thermal/struc-
tural response of a damped-oscillatory three-dimensional finite
cylinder subject to an impulsively started uniform, rarefied flow.

2. Slip flow modifications

Several modifications to the momentum and energy exchange
models in the MPM-ICE FSI algorithm must be implemented to
correctly model the momentum and energy exchange between
a rarefied gas and a moving, deforming solid surface. First, slip flow
momentum and energy exchange coefficients, Kslip

rs and Hslip
rs ,

respectively, must be derived as a function of the level of rarefac-
tion. Then, the slip flow momentum and thermal energy exchange
models, with a tensor momentum exchange coefficient, must be
applied at fluid-solid surfaces.

2.1. Slip flow momentum and energy exchange coefficients

The tangential momentum exchange between a rarefied gas,
denoted asmaterial r, and a solidmaterial, material s, is described by
the first-order slip velocity boundary condition, Eq. (8) [1]. To obtain
the force per unit volume on the rarefied gas due to interactionwith
the solid, frs, the shear stress on the gas, -s from Eq. (8), is multiplied
by the fluid-solid surface area in the cell, A, as well as the gas volume
fraction, qr, and thendividedby thecell volume,V, as shown inEq. (9).
For frs in Eq. (9) to be equivalent to the momentum exchange model
utilized by the algorithm, Eq. (4), the slipflow tangentialmomentum
exchange coefficient, Kslip

rs , must be that given by Eq. (10).

ur � us ¼ bvlr
mr

s (8)

f rs ¼ �qrs

�
A
V

�
¼

�
qrmr
bnlr

��
A
V

�
ðus � urÞ (9)

Kslip
rs ¼

�
mr
bnlr

��
A
V

��
1
qs

�
(10)

In a similar fashion, using the first-order temperature jump
boundary condition, Eq. (11) [2], and the energy exchange model,
Eq. (5), the slip flow energy exchange coefficient is obtained in Eqs.
(12)and(13).

Tr � Ts ¼ �btlr
kr

q} (11)

qrs ¼ qrq}
�
A
V

�
¼

�
qrkr
btlr

��
A
V

�
ðTs � TrÞ (12)



Fig. 1. Global and surface coordinate systems.
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Hslip
rs ¼

�
kr
btlr

��
A
V

��
1
qs

�
(13)

Kslip
rs , Eq. (10), and Hslip

rs , Eq. (13), are functions of the rarefied gas
viscosity, mr, thermal conductivity, kr, and mean free path, lr; the
solid material volume fraction, qs; the first-order slip velocity and
temperature jump coefficients, bn and bt, respectively; and, the
computational cell fluid-solid surface area, A, and volume, V. The
cell fluid-solid surface area, A, is approximated according to Eq.
(14), as suggested in [32], where Dx, Dy, and Dz are the cell
dimensions in each coordinate direction, and y’x, y’y, and y’z are
components of the solid surface unit density gradient vector, as will
be discussed in 2.2. Eq. (14) is not exact, but results in good esti-
mates globally, as well as locally if the surface is approximately
parallel to any of the coordinate directions.

A ¼ DxDyDz
y0xDxþ y0yDyþ y0zDz

(14)

Values for mr, kr, qs, and V are available within the unmodified
algorithm, and values for bn, bt, and lr are calculated according to
Eqs. (15)e(17), respectively [1,2].

bn ¼ 2� sn
sn

(15)

bt ¼
�
2� st
st

��
2gr

1þ gr

��
kr

cp;rmr

�
(16)

lr ¼ mr
rr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2cy;rðgr � 1ÞTr=p

p (17)

The momentum accommodation coefficient, sn in Eq. (15), and
the thermal accommodation coefficient, st in Eq. (16), must be
measuredexperimentally. Values forsn andst range fromzero to one,
where sn ¼ 0 represents completely specular reflection, sn ¼ 1
represents completely diffuse reflection, and st ¼ 1 corresponds to
a perfect energy exchange. Experimentally measured values for sn
and st are, however, typically near unity, and consequently, are
approximated as such for all calculationspresentedwithin this study.
For example, with sn ¼ st ¼ 1, and using typical properties for air,
g ¼ 1.4 and Pr ¼ 0.7, by and bt would then be 1.0 and 1.667 respec-
tively. The rarefied gas mean free path, lr, Eq. (17), is calculated for
each cell of the computational domain, at the beginning of each
timestep, as a function of mr, rr, cy,r, gr, and Tr. In the following studies,
constant values are utilized for mr, cy,r and gr, while Tr and rr vary
spatially and temporally since ICE is compressible flow algorithm. It
should alsobenoted that, thermal creepflowhasnot been accounted
for in this derivation of Kslip

rs . Thermal creep flow may be significant
in the slip flow regime, and consequently, may be considered in
subsequent studies; the present study however, will focus on veri-
fying the first-order slip velocity and temperature jump boundary
conditions before considering such second-order effects.

2.2. Slip flow momentum and thermal energy exchange between
materials

The original slip velocity and temperature jump boundary
conditions given in Eqs. (8) and (11) [1,2], were derived with the
assumption that a rarefied gas flowwithin the slip flow regimemay
be accurately approximated as a continuum everywhere except at
the fluid-solid boundaries. To accurately model a flow within the
slip flow regime the numerical algorithm must, likewise, produce
continuous velocity and temperature fields everywhere except at
the fluid-solid boundaries. Because each material is continuously
defined in the MPM-ICE algorithm, this means that approximately
equivalent temperatures for each material within the same cell
must be obtained, and approximately equivalent velocities for each
material within the same cell must be obtained everywhere, except
at the fluid-solid boundaries where discontinuities in the velocity
and temperature between the fluid and solid materials may occur.
Therefore, the unmodified Krs and Hrs, i.e. the arbitrary large,
constant, scalar values that result in negligible velocity and
temperature differences between materials within the same cell,
are applied in the usual manner everywhere except at the fluid-
solid surface. At the fluid-solid surface, slip flow momentum and
energy exchange coefficients, Kslip

rs and Hslip
rs , respectively, must be

applied e once the fluid-solid surface is identified. In the MPM
algorithm, solid materials are modeled with material particles,
typically eight particles per cell. As such, a surface is identified as
a cell that has material particles of the specified solid material, but
with less than eight particles. Because the surface may be in
motion, and surfaces are not explicitly tracked, it is necessary with
this approach to test each cell of the computational domain, with
each timestep, to determine if it is a surface cell. If a surface cell is
identified, Kslip

rs and Hslip
rs , as defined in Eqs. (10) and (13), are then

calculated for that cell.
Temperature is a scalar quantity, and consequently, once

a surface cell is identified, and Hslip
rs is calculated, calculation of the

thermal energy exchange between materials in that cell may
precede using the usual algorithm, that is, the numerical imple-
mentation of Eq. (7), with Hslip

rs rather than H. Velocity, however, is
a vector quantity, and the momentum exchanged between mate-
rials must take place with respect to the coordinate system in
which the velocity components are defined. In the unmodified
algorithm, Krs does not change with direction, and so, the exchange
of momentum between materials may be executed in the arbitrary
global Cartesian coordinate system, ðx; y; zÞ, in which, the velocities
are originally defined. However, because Kslip

rs is only applicable in
the fluid-solid surface tangential direction, while the standard no-
slip Krs must be applied in the fluid-solid surface normal direction,
the momentum exchange between materials for slip flow must be
executed in a coordinate system defined by the fluid-solid surface.
The surface coordinate system ðx’; y’; z’Þ, as illustrated by a hypo-
thetical surface in Fig. 1, is defined by rotating ðx; y; zÞ by f about z,
and then j about y, such that y’ is the outward unit normal direc-
tion of the solid surface. Where y’ is calculated using the density
gradient of the solid material particles within the surface cell, as
shown in Eq. (18).

y’ ¼ �Vrs=jVrsj (18)
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The material velocities in terms of ðx’; y’; z’Þ are obtained by
applying the rotation matrix Q, given in Eq. (19), to u as shown in
Eq. (20). By definition, Q is a real, orthogonal, special matrix
(QT ¼ Q�1, det(Q) ¼ 1), in which the rows represent the ðx’; y’; z’Þ
unit vectors as defined in the original ðx; y; zÞ system. Once the
velocities are defined in terms of the ðx’; y’; z’Þ coordinates, the
momentum exchange between materials is calculated for each
surface coordinate direction, utilizing the numerical implementa-
tion of Eq. (6), with Kslip

rs in the x’ and z’ directions, and the no-slip
Hslip
rs in the y’ direction. Following the exchange of momentum

between materials in the ðx’; y’; z’Þ system, the material velocities
are then returned to the ðx; y; zÞ description utilizing QT as shown in
Eq. (21). Numerically, if y’y ¼�1�0.001 then the surface normal is
assumed to be already aligned with the global coordinate system
and consequently no rotation is required; Q is then set equal to the
identity matrix, rather than divide by zero as indicated in Eq. (19).

Q ¼

2
64
x0x x0y x0z
y0x y0y y0z
z0x z0y z0z

3
75 ¼

2
64
cos fcos j �sin f cos fsin j

sin fcos j cos f sin fsin j

�sin j 0 cos j

3
75

/

2
66666664

y0yy0xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y02y

q �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y02y

q y0yy0zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y02y

q
y0x y0y y0z
�y0zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y02y

q 0
y0xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� y02y
q

3
77777775

(19)

XN

s¼1
u0�s ¼

XN

s¼1
Qu�

s (20)

X X
N

s¼1
uþ
s ¼ N

s¼1
QTu0þs (21)

As described previously, themodels formomentum and thermal
energy exchange betweenmaterials, and consequently the slip flow
modifications made to thesemodels, are implemented in theMPM-
ICE algorithm to calculate both the momentum and thermal energy
change during the Lagrangian phase of the timestep, as well as the
fluid advection velocity during Eulerian phase of the timestep.

3. Numerical results

To verify the methodology and implementation of the modifi-
cations described for the slip flow momentum and energy
exchange models, several basic configurations, as outlined previ-
ously, are numerically evaluated. For each configuration, the
numerical results are substantiated with grid convergence and
order-of-accuracy studies, as well as comparison to previously
established data. TheMPM-ICE algorithm, and therefore each of the
following studies, is explicit with time. Consequently, the
maximum stable timestep for each simulation is limited by either
diffusion (Dt � 0.5 $ Dx2/n, Dt � 0.5 $ Dx2/a) or the speed-of-sound
(Dt � cfl $ Dx/(juj þ c)) for each material [33]. The cfl utilized for all
of the following studies is w0.1. (Although, the ability to implicitly
evaluate pressure exists in ICE, this does not increase the maximum
timestep based on the speed-of-sound within the explicit MPM
algorithm, and consequently, has not been utilized.) To obtain slow
transient and steady state data, this explicit timestep is very
limiting, particularly for refined grid resolutions, and as a result, the
relatively simple configurations evaluated, require significant
computing resources, which are only feasible due to MPM-ICE’s
parallel computing infrastructure [34]. The first two studies, which
are the evaluation of velocity and temperature profiles of a rarefied
gas between parallel plates, utilized 1 CPU for approximately
0.07e24 h, depending on the grid resolution. The third study,
rarefied flow around a two-dimensional cylinder, utilizes 32 CPUs
for approximately 78e900 h, depending on the grid resolution.
And, the final study, the three-dimensional, flexible cylinder,
utilizes 128 CPUs for about 32e600 h, again, depending on the grid
resolution. The MPM-ICE algorithm is nondimensional, and so to
reduce some of the numerical round-off error incurred with the
long computation times, each of the microscale problems are
evaluated in terms of mm, ms, fg, and K. It should be noted that this is
not ‘scaling’ the problem in an attempt to reduce the number of
required timesteps. If the problem were scaled, all of the nondi-
mensional variables that describe the physical process, such as Re,
Ma, Pr, etc., must remain constant, and therefore the corresponding
nondimensional timeframe required for the physical process to
occur, such as the Fourier number, Fo, will also remain constant.
Thus, unless the problem of interest is changed, i.e. changing Re,
Ma, Pr, etc., scaling Dx may increase Dt, but will also proportionally
increase the total time required to reach a specified point in the
physical process, such as steady state, and the total number of
explicit timesteps will remain the same.
3.1. Pressure driven flow between parallel plates

A pressure driven, fully developed, steady state, Newtonian,
rarefied ideal gas flow between parallel plates with constant
properties and negligible inertial forces, as specified in Fig. 2(a), is
modeled to verify the accuracy and implementation of the slip flow
momentum exchange modifications in the MPM-ICE algorithm.
The analytic velocity solution used to verify the numerical data, Eq.
(22), is obtained by integrating the momentum equation,
mðv2u=vy2Þ ¼ dP=dx, twice, and applying the slip velocity
boundary condition at the wall, ujy¼0 ¼ bvlðvu=vyÞy¼0, and
symmetry at themidplane, ðvu=vyÞy¼h=2 ¼ 0, and then normalizing
by the resulting mean velocity, um.

uðy=hÞ
um

¼ 6
�
y=h� y2=h2 þ 2bnKn

�
1þ 12bnKn

(22)

Eq (22), as well as the Boltzmann equation solution presented by
[35] for comparable conditions (hard sphere molecules, diffuse
reflection, uniform pressure gradient, negligible inertial forces), are
compared to the numerical data at steady state in Fig. 2(b) nad (c) for
the parameters specified. The criterion used to establish that the flow
is steady state is junþ1 � un=unþ1j � 10�10 for each control volume,
where n is the number of timesteps. The time required to reach
steady state varies with the grid resolution and Kn, however the
longest time required to reach steady state for the evaluations pre-
sented in Table 1 is 0.065 ms. Consequently, all data are presented at
0.1mswhen each evaluationhas unquestionably reached steadystate.

Grid convergence, order-of-accuracy, and conservation of
momentum exchange data for this configuration, as well as the total
number of timesteps required to reach t ¼ 0.1 ms, are reported in
Table 1. The data in Table 1 for no-slip flow, Knm ¼ 0, are produced
using the original algorithm, while the data reported for
Knm ¼ 0.0564 and 0.1128 are obtained using the algorithmwith the
slip flow momentum exchange model. The L2 norm error in Table 1
refers to the difference between the normalized numerical and
analytical velocity profiles. The order-of-accuracy [33], p, computed
with the L2 norm errors, indicate that both the original andmodified
algorithmconvergewith increasing grid resolutionwith anorder-of-
accuracy of approximately 1.0, as expected based on the second-
order spatial discretization utilized in the algorithm. Although not
explicitly stated previously, the momentum exchange model must



Table 1
Grid resolution, order-of-accuracy, and conservation of momentum exchange for
steady state (t ¼ 0.1 ms) pressure driven flow between parallel plates.

Knm Dy
(¼Dx)

L2
u(y/h)/um

p timesteps RMS (exchange error/total)

x-momentum y-momentum

0.0000 h/10 0.39 1.02 15,117 1.88 � 10�10 1.61 � 10�1

h/20 0.22 60,403 7.45 � 10�12 2.41 � 10�3

h/40 0.13 241,554 4.34 � 10�13 4.76 � 10�4

0.0564 h/10 0.15 0.96 15,117 2.26 � 10�10 4.47 � 10�8

h/20 0.09 60,403 3.77 � 10�12 1.70 � 10�6

h/40 0.05 241,553 1.13 � 10�13 1.25 � 10�7

0.1128 h/10 0.09 1.10 30,212 1.27 � 10�10 2.37 � 10�7

h/20 0.05 120,787 2.98 � 10�12 6.20 � 10�6

h/40 0.03 483,448 8.30 � 10�14 1.20 � 10�6
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Fig. 2. Steady state (t ¼ 0.1 ms) pressure driven flow between parallel plates: (a)
problem specification, (b) Velocity profile, Knm ¼ 0.0564, (c) Velocity profile,
Knm ¼ 0.1128.
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conserve momentum - meaning that, while, momentum is
exchanged between materials, the net momentum of all the mate-
rials must be the same before and after the momentum exchange
model is applied. The root-mean-square (RMS) x- and y-momentum
exchange error reported in Table 1 is the RMS of the ratio of the net
momentum exchange error to the net momentum for all timesteps.
(The RMS y-momentum exchange error is larger than the RMS
x-momentum exchange error because the net y-momentum is
nearly zero.) The data in Fig. 2 and Table 1 indicate that themodified
slip flow momentum exchange model accurately represents slip
velocity boundary conditions compared to first-order boundary
conditions, converges with the same order-of-accuracy as the orig-
inal algorithm, and conserves the exchanged momentum.

3.2. Thermal conduction between parallel plates

The steady state thermal conduction of a stationary, constant
property, rarefied ideal gas between two parallel plates of different
temperatures, as specified in Fig. 3(a), is modeled with the MPM-
ICE algorithm to verify the accuracy and implementation of the
slip flow thermal energy exchange modifications. The analytic
temperature profile used to verify the numerical data, Eq. (23), is
derived by integrating the energy equation, v2T=vy2 ¼ 0, twice,
and applying temperature jump boundary conditions at each
wall, T jy¼0 ¼ Tw � DT þ btlðvT=vyÞy¼0 and T jy¼h ¼ Tw þ DT�
btlðvT=vyÞy¼h.

Tðy=hÞ � Tw
DT

¼ �1þ 2ðy=hÞ
1þ 4btKn

(23)

Equation (23) is compared to the steady state numerical data in
Fig. 3(b) for the parameters specified. The criterion used to estab-
lish that the flow is steady state is jTnþ1 � Tn=Tnþ1j � 10�10 for each
control volume. Again, the time required to reach steady state
varies with the grid resolution and Kn, however the longest time
required to reach steady state for the evaluations presented in
Table 2 is 0.060 ms. Consequently, all data are presented 0.1 ms when
each evaluation has unmistakably reached steady state.

Grid convergence, order-of-accuracy, and conservation of energy
exchange data for this configuration, as well as the total number of
timesteps required to reach t ¼ 0.1 ms, are reported in Table 2. Once
again, the data in Table 2 for continuum flow, Knm¼ 0, are produced
using the original algorithm, while the data reported for
Knm ¼ 0.0564 and 0.1128 are obtained utilizing the slip flow energy
exchangemodel. The L2normerror inTable 2 refers to the difference
between the normalized numerical and analytical temperature
profiles. The order-of-accuracy, computed with the L2 norm errors,
indicate that both the original and modified algorithm converge
with increasing grid resolution with an order-of-accuracy of
approximately 0.82. To ensure that the modified energy exchange
model conserves energy, the RMS of the ratio of the net energy
exchange error to the net energy for all timesteps is reported in
Table 2. The data in Fig. 3 and Table 2 indicate that the modified slip
flow energy exchange model accurately represents temperature
jump when compared to first-order temperature jump boundary
conditions, converges with the same order-of-accuracy as the
original algorithm, and conserves the exchanged energy.

3.3. Low Reynolds number, infinite cylinder CD and Nu

To verify that the MPM-ICE algorithm, with the slip flow
momentum and energy exchange modifications, accurately repre-
sents a rarefied gas flow for a more complex geometry than those
evaluated in 3.1 and 3.2, flow around an infinite circular cylinder is
evaluated. The flow behavior, drag coefficient, CD, and Nusselt
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Fig. 3. Steady state (t ¼ 0.1 ms) thermal conduction between parallel plates: (a)
problem specification, (b) Temperature profiles, Knm ¼ 0.0000, Knm ¼ 0.0564,
Knm ¼ 0.1128.
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number, Nu, for flow around an infinite cylinder are well known for
continuum conditions. At very low Reynolds numbers, Re z 0e5,
viscous forces dominate and the flow is attached, steady, and
symmetric. As Re increases, Re z 5e47, the boundary layer sepa-
rates and forms a pair of steady, symmetric, counter-rotating
vortices in the cylinder wake. As Re increases further, the vortices
grow and are alternately shed from either side of the cylinder,
resulting in asymmetries and unsteady flow [36]. CD and Nu are
evaluated at very low Re in this study for several reasons. Most
significantly, typical microfluidic system Re are very small, due to
the small length scales. Additionally, the symmetry present at low
Table 2
Grid resolution, order-of-accuracy, and conservation of energy exchange for steady
state (t ¼ 0.1 ms) thermal conduction between parallel plates.

Knm Dy (¼Dx) L2
(T(y/h)-Tw)/DT

p timesteps RMS (exchange
error/total) thermal
energy

0.0000 h/10 0.18 0.79 20,148 8.02 � 10�13

h/20 0.11 80,531 2.02 � 10�12

h/40 0.07 322,064 3.91 � 10�12

0.0564 h/10 0.09 0.82 15,117 2.87 � 10�13

h/20 0.06 60,403 7.52 � 10�13

h/40 0.04 241,553 1.30 � 10�12

0.1128 h/10 0.05 0.84 30,212 5.88 � 10�13

h/20 0.03 120,786 1.55 � 10�12

h/40 0.02 483,088 2.47 � 10�12
Re may be utilized to reduce the computational problem size. Also,
without flow separation, effects due to rarefaction only should be
more evident. And, furthermore, some slip flow CD and Nu data are
available for comparison to numerical results at low Re, while none
exists at higher Re. These data include an analytic CD solution for
creeping slip flow around a sphere [37], for which the rarefaction
effects are expected to be comparable in magnitude to creeping slip
flow around a cylinder; and, experimentally determined Nu for low
Re slip flow around a cylinder [38].

The numerical problem specification and flow parameters
utilized to model flow around an infinite cylinder are presented in
Fig. 4(a) and Table 3. Six data points are examined; three at
Re ¼ 0.01, such that the results can be compared to the solution for
creeping slip flow around a sphere [37]; and, three at Re of roughly
Fig. 4. Steady state (t ¼ 180 ms) low Reynolds number, infinite cylinder CD and Nu: (a)
problem specification, (b) CD, (c) Nu.
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1.0, such that the results can be compared to the experimental
results reported in [38], where the experimental Nu results were
obtained at a constantMa rather than a constant Re. To numerically
approximate an unconfined cylinder at very low Re a large
computational domain size and locally one-dimensional inviscid
(LODI) boundary conditions, as described in [42], as indicated in
Fig. 4(a), are used. To reduce the size of the resulting computational
problem a multilevel grid is used. The grid size reported in Fig. 4
and Table 3 is the grid size immediately surrounding the
cylinder; from 2.5D to 5D away from the cylinder center, the grid
size is double the specified value; and, from 5D away from the
cylinder center to the edge of the computational domain, the grid
size is quadruple the specified value. The numerical CD per unit
length are obtained utilizing the standard definition,
CD ¼ FD=ð1=2ÞrNu2ND, where (1/2) FD is first computed via an
integral x-momentum analysis around the symmetric cylinder.
Similarly, the numerical Nu are calculated with the usual definition,
Nu ¼ q}cylD=krðTs � TNÞ, where q}cylðpD=2Þ, one-half of the thermal
energy exchange rate per unit length due to the cylinder, is first
obtained via an integral thermal energy analysis around the
symmetric cylinder. The resulting, steady state (based on the steady
state criteria previously specified in sections 3.1 and 3.2, all data are
presented at t ¼ 180 ms) CD and Nu for each of the three gird
resolutions examined, are presented in Table 3, and the highest grid
resolution CD and Nu are also plotted and compared to reference
values in Fig. 4(b) and (c), respectively. The calculated order-of-
accuracy for these six data points varies between 0.08 and 2.26
for CD and �0.13 and 1.13 for Nu, however the average grid reso-
lution order-of-accuracy is w1.0 for CD and w0.5 for Nu.

The numerically determined infinite cylinder CD reported in
Table 3 and Fig. 4(b), for continuum flow, Kn ¼ 0.0, is within 4.0% of
the reference value [39] at Re ¼ 1.37 (Dx ¼ Dy ¼ D/16), and within
w18% of the reference values [39,40] at Re ¼ 0.1. The larger differ-
ence at Re ¼ 0.1, is because the reference CD values are for an
unconfined cylinder, which cannot be accurately numerically
simulated, particular at low Re, where viscous effects are dominant,
but can only be approximated at the computational boundaries. The
effect of rarefaction, quantified by Kn, on the numerically deter-
mined cylinder CD is comparable to, although less than, the
analytically predicted effect of Kn on sphere CD. The sphere CD is
reduced 6.71% for Kn ¼ 0.042, and 10.44% for Kn ¼ 0.076, for bn ¼ 1
and all Re [37]. The numerically determined cylinder CD is approx-
imately 1e2% less for Kn ¼ 0.042, and 2e3% less for Kn ¼ 0.076. For
the Re z 1.0 data, the reduction in CD with Kn is calculated relative
to the continuum flow data [39], since the CD data are not calculated
Table 3
Grid resolution, order-of-accuracy, and comparison to reference values for steady state (

Kn Re Dy (¼Dx) CD p CD [39] (Kn ¼ 0) C

0.000 0.10 D/4 76.43 0.84 54.42 5
D/8 70.35
D/16 66.95

0.042 0.10 D/4 71.98 2.26 54.42 5
D/8 67.14
D/16 66.14

0.076 0.10 D/4 70.62 0.08 54.42 5
D/8 67.90
D/16 65.32

0.000 1.37 D/4 10.68 0.88 9.62 1
D/8 9.75
D/16 9.25

0.042 1.77 D/4 8.71 0.87 8.41
D/8 8.04
D/16 7.67

0.076 0.98 D/4 12.52 0.85 11.63 1
D/8 11.70
D/16 11.24
at exactly the same Re. The agreement between the numerical CD
data and the reference values at Kn ¼ 0.0, and the reduction in CD
due to rarefaction, indicate that the algorithm is able to model
a rarefied flow around an infinite circular cylinder.

The numerically determined infinite cylinderNudata reported in
Table 3 and Fig. 4(c) are in reasonable agreement with both the
continuumcorrelation [41] and the experimental slipflowdata [38].
For the highest grid resolution, the numerical Nu for continuum
flow, Kn ¼ 0.0, are on average within 5% of the correlation values.
The effect of rarefaction on the numerically determined Nu at Rew
0.1, is roughly a 4% decrease at Kn ¼ 0.042, and a 6% decrease at
Kn ¼ 0.076, which is somewhat less than expected based on the
experimental values, inwhich there is a 14% decrease at Kn¼ 0.042,
and a 19% decrease at Kn ¼ 0.076. The numerical slip flow Nu at
Rez 1 are likely higher than the experimental slip flow Nu, due, in
part, to the approximation of the numerical thermal accommoda-
tion coefficient, st ¼ 1. Experimentally measured st are often near
unity, but may be any value between zero and one. A value of st less
than one will result in an increase in the temperature jump at the
surface, which will then produce a decrease in Nu. Overall, the
agreement between the numericalNu data, the correlation data [41]
and the experimental data [38], indicates that the MPM-ICE algo-
rithm, with the slip flow momentum and energy exchange modi-
fications, successfully represents the thermal/hydrodynamic flow
behavior of a rarefied gas around an infinite circular cylinder. Future
studies, with a broader range of Kn and Re values, may be useful to
further verify the results presented in this study.

3.4. Unsteady slip flow fluid-structure-interaction

To verify that the algorithm is capable of accurately predicting
unsteadyfluid-structure-interactionwith a rarefied flow, the thermal/
structural response of a damped-oscillatory three-dimensional cylin-
drical fin, subject to uniform, rarefied flow, as illustrated in Fig. 5(a), is
evaluated. This particular configuration is evaluated because there are
several similar microscale applications, including, atomic force
microscope measurements [7,9,18], heat exchangers [5], and bio-
sensors and actuators [13,14,17]. In this evaluation, the fin initially
has zero displacement, dðy;0Þ ¼ 0, zero velocity, vdðy;0Þ=vt ¼ 0, and
a uniform temperature equal to the constant fin base temperature,
Tðy;0Þ ¼ Tð0; tÞ ¼ Tb. The rarefied gas initially has a uniform
velocity, uN, and a uniform temperature, TN, which is less than the fin
base temperature.As the systemis set inmotion, the suddenfluid force
on the fin results in its displacement and subsequent damped oscil-
lation while it simultaneously transfers heat to the fluid.
t ¼ 180 ms) low Reynolds number, infinite cylinder CD and Nu.

D [40] (Kn ¼ 0) Nu p Nu [41] (Kn ¼ 0) Nu [38]

8.39 0.493 0.63 0.453 e

0.475
0.464

8.39 0.470 1.13 0.453 e

0.458
0.453

8.39 0.458 �0.13 0.453 e

0.453
0.447

0.87 1.012 0.34 0.866 e

0.966
0.930

9.93 1.045 0.35 0.942 0.81 � 0.04
1.002
0.968

2.71 0.841 0.49 0.777 0.63 � 0.07
0.813
0.793
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Fig. 5. Unsteady slip flow fluid-structure-interaction: (a) problem specification, (b)
d(y,t)/D, (c) Q(y,t).
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To verify the numerical simulation of this system, comparisons
to analytic solutions are necessary. The governing equation for
beam vibration, the EulereBernoulli equation [43], may be solved
with the force of the fluid modeled as a Stokes drag force, FD(y,t)/
L ¼ Cm(uN - vd(y,t)/vt), which is accurate for very low Re flow. The
Stokes drag coefficient, C, is related to the typical drag coefficient as
CD ¼ 2C/Re. The EulereBernoulli equation, boundary conditions,
initial conditions, and resulting analytic fin displacement solution,
d(y,t), as obtain by the standard solution methods of separation-of-
variables and orthogonality, are summarized in Table 4. The gov-
erning energy equation for the fin, boundary conditions (with
a convective tip condition), initial conditions, and resulting analytic
transient temperature distribution, obtained by the standard
solution methods of separation-of-variables and orthogonality, are
summarized in Table 5. To derive the unsteady, normalized, analytic
temperature distribution, Q(y,t), it is assumed that the transient fin
temperature varies only axially and that the convective heat
transfer coefficient, h, is uniform and constant. In reality, however, h
varies both spatially and temporally, and the fin cross sectional
temperature will also vary slightly (BiD z 0.1). Consequently, the
analytic Q(y,t) solution presented in Table 5, is only expected to
provide an approximate comparison to the numerical data.

The problem specification and flow parameters utilized to
model the transient fin displacement and temperature are given in
Fig. 5(a) and Table 6. As specified in Table 6, both continuum flow,
Kn ¼ 0, and rarefied flow, Kn ¼ 0.042, are evaluated for both
a flexible (E ¼ 5 � 106 Pa) and a rigid fin. The transient numerical
solution is obtained for 0 � t � 180 ms, with data recorded every
1.0 ms. For each timestep recorded, the fin cross sectional average of
the material particle displacement and temperature are obtained at
20 equally spaced axial intervals (for all grid resolutions evaluated).

The normalized numerical fin displacements, d(y,t)/D, for the
flexible cases at the highest grid resolution (Dx ¼ Dy ¼ D/4), are
presented and compared to the analytic solution in Fig. 5(b), at
several axial locations, y/L ¼ 0.325, 0.625, and 0.925. All of the
parameters required to calculate the analytic fin displacement
(Table 4), are specified in Fig. 5(a), except the Stokes drag coeffi-
cient, C ¼ ReCD/2, which is unknown. Therefore, for cases 1 and 2,
which are the flexible fins, the CD that results in the smallest L2
norm error between the analytic and numeric d(y,t)/D data is
utilized to obtain the analytic solution. The resulting CD values and
L2 norm errors, for cases 1 and 2, are reported in Table 6, for each
grid resolution evaluated. Because CD is calculated from the fin
deflection, no CD or L2 norm error is reported for the rigid cases, 3
and 4. The expected CD for an unconfined, infinite cylinder, at
Re ¼ 0.1 is 58.39 [40]. The numerical finite, cylindrical fin CD
reported in Table 6 for cases 1 and 2, are larger than 58.39, due to
the course grid resolution utilized, the effects of flow around the tip
of the fin [36], and the proximity of the computational boundaries
to the fin, as discussed previously in 3.3. CD for Kn ¼ 0.042 are
approximately 1e2% less than CD for Kn ¼ 0.0. Correspondingly, the
amplitude of the fin’s displacement is slightly lower for Kn¼ 0.042,
compared to Kn¼ 0.0, and the time required to reach steady state is
slightly longer for Kn ¼ 0.042 compared to Kn ¼ 0.0. Although this
reduction in CD due to rarefaction is slight, it is consistent in
magnitude with the reduction in CD due to rarefaction for the
infinite cylinder, as presented previously in Fig. 4(b).

All of the parameters required to calculate the analytic transient
temperature distribution (Table 5), are specified in Fig. 5(a), except
the heat transfer coefficient, h ¼ Nukr/D, which is unknown.
Consequently, the Nu that results in the minimum L2 norm error
between the analytic and numeric normalized temperature distri-
bution, Q(y,t), is utilized to obtain the analytic solution. The
resulting Nu and L2 norm errors for each case and grid resolution
are reported in Table 6. The numeric and analytic Q(y,t), for case 4
are compared at several axial locations, y/L ¼ 0.125, 0.275, 0.925, in
Fig. 5(c), for the higher grid resolution (Dx ¼ Dy ¼ D/4). Only data
for case 4 are presented in Fig. 5(c), since the data for each of the
other three cases are very similar. As expected, the numeric and
analytic Q(y,t) in Fig. 5(c) are comparable, but not identical, since h
in the simulation is not uniform or constant, as assumed in the
analytic solution. For the four cases considered, rarefaction effects
decrease Nu by w1e2%, and the effect of the flexible fin’s motion
increases Nu by w2%. The expected steady state Nu for an uncon-
fined, infinite cylinder, at Re ¼ 0.1 is 0.453 [41]. Although, the
transient numerical Nu data are obtained with a very course grid
resolution, and the fin is finite in length and confined by compu-
tational boundaries, the Nu reported in Table 6, are still comparable



Table 4
Analytic solution for transient fin displacement.

Governing equation

v2dðy; tÞ=vt2 þ ðCm=rsAcÞvdðy; tÞ=vt þ ðEI=rsAcÞv4dðy; tÞ=vy4 ¼ CmuN=rsAc

Boundary Conditions Initial Conditions
dð0; tÞ ¼ 0 dðy; 0Þ ¼ 0
vdð0; tÞ=vy ¼ 0 vdðy;0Þ=vt ¼ 0
v2dðL; tÞ=vy2 ¼ 0
v3dðL; tÞ=vy3 ¼ 0

Solution

dðy; tÞ ¼ dpðyÞ þ
PN

n¼1 YnðyÞAnexpð�2nuntÞ½cosðud;ntÞ þ ð2nun=ud;nÞsinðud;ntÞ�

dpðyÞ ¼ ðCmuNy2=24EIÞð6L2 � 4Lyþ y2Þ

YnðyÞ ¼ coshðbnyÞ � cosðbnyÞ � snsinhðbnyÞ þ snsinðbnyÞ
sn ¼ ½sinhðbnLÞ � sinðbnLÞ�=½coshðbnLÞ þ cosðbnLÞ�
coshðbnLÞcosðbnLÞ ¼ �1

An ¼ � R L
0 dpðyÞYnðyÞdy=

R L
0 Y2

n ðyÞdy
un ¼ b2n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=rsAc

p
2n ¼ ðCm=2rsAcb

2
nÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rsAc=EI

p
ud;n ¼ un

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 22n

q

n bnL An=ðCmuNL4=24EIÞ
1 1.8751 �1.5201 � 100

2 4.6941 �2.1450 � 10�2

3 7.8548 �1.6041 � 10�3

4 10.9955 �2.9866 � 10�4

5 14.1372 �8.5002 � 10�5

Table 5
Analytic solution for transient fin temperature distribution.

Governing equation

v2Tðy; tÞ=vy2 �m2½Tðy; tÞ � TN� ¼ ðrscy;s=ksÞvTðy; tÞ=vt
m2 ¼ 4h=Dks

Boundary Conditions Initial Conditions
Tð0; tÞ ¼ Tb Tðy;0Þ ¼ Tb
TðL; tÞ � TN ¼ �ðk=hÞvTðL; tÞ=vyjy¼L

Solution

ðTðy; tÞ � TNÞ=ðTb � TNÞ ¼ Qðy; tÞ ¼ QpðyÞ þ
PN

n¼1Cnexp½�ðkst=rscy;sÞðm2 þ L2
nÞsinðLnyÞ�

QpðyÞ ¼ ðcosh½mðL� yÞ� þ ðh=mksÞsinh½mðL� yÞ�Þ=ðcoshðmLÞ þ ðh=mksÞsinhðmLÞÞ
tanðLnLÞ ¼ �ðks=hLÞðLnLÞ

Cn ¼
�

4Ln

2LnL� sinð2LnLÞ
�	

1� cosðLnLÞ
Ln

� Ln � ½LncosðLnLÞ þ ðh=ksÞsinðLnLÞ�=½coshðmLÞ þ ðh=mksÞsinhðmLÞ�
m2 þ L2

n

)
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in magnitude. The data presented in Fig. 5 and Table 6 indicate that
the MPM-ICE algorithm, with the slip flow momentum and energy
exchange modifications, converges with approximately first-order
numerical accuracy. And, that the algorithm is capable of qualita-
tively predicting the unsteady fluid-structure-interaction of
a damped-oscillatory three-dimensional cylindrical fin, subject to
Table 6
Problem specification, error evaluation, and CD and Nu results for the transient,
flexible fin displacement and temperature response.

Case Kn Re E (Pa) Dy
(¼Dx)

CD L2
d(y,t)/D

Nu L2
Q(y,t)

1 0.000 0.10 5.0 � 106 D/1 129.31 2.11 0.616 4.37
D/2 105.26 1.37 0.535 4.29
D/4 97.04 1.10 0.526 3.63

2 0.042 0.10 5.0 � 106 D/1 130.99 2.02 0.564 4.91
D/2 101.90 1.40 0.538 4.10
D/4 95.21 1.10 0.525 3.47

3 0.000 0.10 rigid D/1 e e 0.561 5.00
D/2 e e 0.534 4.23
D/4 e e 0.525 3.59

4 0.042 0.10 rigid D/1 e e 0.561 4.97
D/2 e e 0.534 3.92
D/4 e e 0.521 3.31
an impulsively started uniform, rarefied flow, as compared to the
analytically predicted displacement and temperature solutions.
4. Summary

This study modifies the momentum and thermal energy
exchange models of an existing, continuum based, multifield,
compressible, unsteady, Eulerian-Lagrangian FSI algorithm, such
that, for a rarefied gas in the slip flow regime, the equivalent of first-
order slip velocity and temperature jump boundary conditions are
achieved at fluid-solid surfaces, which may move and deform with
time. The momentum and thermal energy exchange models are
modified by utilizing slip flow momentum and energy exchange
coefficients that are derived as a function of the level of rarefaction
from the original first-order slip velocity and temperature jump
boundary conditions. Themomentum and energy exchangemodels
with the slip flowmomentum and energy exchange coefficients are
then applied at fluid-solid surfaces such that momentum is
exchanged between the rarefied gas and the solid material in the
fluid-solid surface normal and tangential coordinate directions,
rather than arbitrary global coordinates, and slip flow in the surface
tangential direction is realized.

Following the development and implementation of the slip flow
momentum and energy exchange modifications, several basic
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configurations are considered to verify the resulting algorithm’s
capabilities. The configurations include the velocity profiles of
a rarefied gas between parallel plates, temperature profiles of
a rarefied gas between parallel plates, drag coefficients, CD, and
Nusselt numbers,Nu, for low Reynolds number rarefied flowaround
an infinite cylinder, and the transient, thermal/structural response of
a damped-oscillatory three-dimensional finite cylinder subject to an
impulsively started uniform, rarefied flow. For each configuration,
the numerical results are evaluated with grid convergence and
order-of-accuracy studies, as well as comparison to reference data.
Results of these evaluations indicate 1) that the slipflowmomentum
and energy exchange models conserve exchanged momentum and
energy, respectively, and 2) that with these models, the algorithm is
capable ofmodeling steadyandunsteadyfluid-structure-interaction
with rarefaction effects with accuracy approximately equivalent to
the first-order slip velocity and temperature jump boundary
conditions. There are many microscale systems for which both
rarefaction and fluid-structure-interaction effects are significant.
Based on themodifications and verifications presented in this study,
it is expected that the MPM-ICE algorithm, with the slip flow
momentum and energy exchange modifications, has the unique
ability to accurately model and evaluate these systems.
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