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The frictional and convective heat transfer characteristics of rarified flows in rectangular microchannels,
with either isoflux or isothermal boundary conditions, are evaluated subject to second-order slip bound-
ary conditions, creep flow, viscous dissipation, and axial conduction effects. Numerical results are
obtained using a continuum based, three-dimensional, compressible, unsteady computational fluid
dynamics algorithm with first- and second-order slip velocity and temperature jump boundary condi-
tions applied to the momentum and energy equations, respectively. The results, reported in the form
of Poiseuille and Nusselt numbers, are found to be significant functions of aspect ratio, Knudsen number,
slip model parameters, Brinkman number, and Peclet number.
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1. Introduction

The heat transfer and friction losses of steady state gaseous
flows in microchannels are important due to their applications in
microscale heat exchangers, sensors, reactors, power systems,
etc. For this reason, there have been numerous studies on slip flow
frictional losses and convective heat transfer for constant wall tem-
perature and constant wall heat flux boundary conditions within
parallel plate, cylindrical, rectangular, and trapezoidal microchan-
nels. Because conventional micro fabrication methods often pro-
duce planar and rectangular channel geometries, an accurate
evaluation and understanding of the flow and heat transfer charac-
teristics for rectangular microchannels is particularly important.
The majority of previous studies have been analytical, although
there are also several numerical studies based on either statistical
or continuum methods. Nearly all theoretical studies have as-
sumed first-order accurate slip velocity and temperature jump
boundary conditions, laminar, steady state, hydrodynamically fully
developed, constant property flow with negligible creep flow, vis-
cous dissipation, and axial conduction effects. However, the accu-
racy of these simplifications, and consequently the results of
these studies, have not yet been verified numerically or
experimentally.

There are several factors that cause microscale fluid systems to
behave differently than standard macroscale fluid systems. For mi-
cro systems with gaseous flows, rarefaction effects may be consid-
erable. Rarefaction takes place as either the size or the pressure of a
fluid system decreases, resulting in a mean free path of the fluid
ll rights reserved.

: +1 801 585 9826.
molecules that is comparable to the characteristic length of the
system itself. When this occurs, discontinuities between the fluid
and the solid surface, as well as other noncontinuum behaviors be-
gin to develop. Typically, the Knudsen number, Kn, is used to rep-
resent the degree of rarefaction, or noncontinuum effects present.
The Knudsen number is defined as the ratio of the fluid’s molecular
mean free path to the characteristic length of the flow. Empirically,
the Knudsen number has been used to classify flows into four dif-
ferent regimes [1]. While in the continuum flow regime
(Kn 6 0.01), conventional continuum conservation of momentum
and energy methods, such as the Navier–Stokes equations, may
be used. For the free molecular flow regime (Kn P 10), free molec-
ular models such as the Boltzmann equation must be solved. In the
transition flow regime (0.1 6 Kn 6 10), either numerical solutions
of the Boltzmann equation or direct-simulation-Monte-Carlo
(DSMC) methods are commonly used. For the slip flow regime
(0.01 6 Kn 6 0.1), it has been determined experimentally that the
deviation of molecular motion from the continuum distribution
is small enough that models based on the continuum equations
may be used, but with ‘slip velocity’ and ‘temperature jump’
boundary conditions that take into account the incomplete
momentum and energy exchange between the fluid molecules
and the solid surface.

The original slip velocity boundary condition, given in Eq. (1),
and temperature jump boundary condition, given in Eq. (2), were
derived by Maxwell [2] and Smoluchowski [3], respectively.
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Nomenclature

AR aspect ratio, b/h
b one-half the channel width
Br Brinkman number, BrH2 ¼ lu2

m=ðqwDhÞ;
BrT ¼ lu2

m=ðkðTi � TwÞÞ
cp specific heat at constant pressure
cm specific heat at constant volume
Dh hydraulic diameter, 4hb/(h + b)
f friction factor, 8sw;m=ðqu2

mÞ
h one-half the channel height
k thermal conductivity
Kn Knudsen number, k/Dh

L channel length
Ma Mach number, ðPeKn=PrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðpcÞ

p
Nu Nusselt number, qw,mDh/(k(Tw � Tm))
Pe Peclet number, Pr Re
Po Poiseuille number, f Re
Pr Prandtl number, cpl/k
q heat flux
R gas constant
Re Reynolds number, qumDh/l
T temperature
u streamwise velocity
uc creep velocity, (3/4)(lR/P)(@T/@x)|y=0

x, y, z Cartesian coordinates

Greek symbols
b gas–wall interaction parameter, bt1/bv1

bt1 first-order temperature jump coefficient,
((2 � rt)/rt)(2c/(1 + c))(1/Pr)

bt2 second-order temperature jump coefficient
bv1 first-order velocity slip coefficient, (2 � rv)/rv

bv2 second-order velocity slip coefficient
bm1Kn rarefaction parameter
e relative error
c ratio of specific heat capacities, cp/cm
k molecular mean free path, l=ðq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2RT=p

p
Þ

l dynamic viscosity
q density
rt thermal accommodation coefficient
rm momentum accommodation coefficient
s shear stress

Subscripts
H2 constant wall heat flux condition
i inlet value
m mean value
o nominal continuum value
T constant wall temperature condition
w wall value

J. van Rij et al. / International Journal of Heat and Mass Transfer 52 (2009) 2792–2801 2793
Eqs. (1) and (2), as well as subsequent equations, are presented in a
format assuming a Cartesian coordinate system, a wall normal
direction (y), and a streamwise direction (x). The first term in Eq.
(1) is the slip velocity due to the shear stress at the wall, and the
second term is the thermal creep velocity, uc, due to a temperature
gradient tangential to the wall. Values for the momentum accom-
modation coefficient, rm, and the thermal accommodation coeffi-
cient, rt, range from zero to one, where rm = 0 represents
completely specular reflection, rm = 1, represents completely diffuse
reflection, and rt = 1 corresponds to a perfect energy exchange.

Eqs. (1) and (2) are a result of a first-order expansion, in Kn, of
the Boltzmann equation, and understood to be applicable only in
the slip flow regime. However, in an effort to extend the range of
applicability of slip flow boundary conditions to higher Knudsen
number flows, specifically the transition regime, many ‘second-or-
der’ modifications and methods have been proposed [1,4–9]. The
boundary conditions derived by Deissler [4], given in Eqs. (3) and
(4), and the boundary conditions suggested by Karniadakis and
Beskok [1], given in Eqs. (5) and (6), are two of the more commonly
applied second-order slip boundary condition models, as well as
the only prevalent second-order models that provide temperature
as well as velocity boundary conditions.
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Although many second-order models have been proposed, and
some have proven useful in increasing the range and accuracy of
the slip boundary condition representation of rarefaction, either
experimentally [10,11], or numerically [1], there is currently insuf-
ficient experimental data to validate the use of any particular sec-
ond-order model over another. Nonetheless, as additional
experimental and theoretical results become available, convective
heat transfer solutions with second-order terms may prove useful.
Presently, however, there are few analytical or numerical convec-
tive heat transfer solutions based on second-order slip boundary
condition models [1,4,12–17], and these are often presented for
limited values of Knudsen number, momentum and thermal accom-
modation coefficients, geometry, etc., and consequently have lim-
ited applicability.

In addition to rarefaction effects, there are other effects that are
often a result of ‘scaling.’ Scaling effects are not unique to micro
flows, but where in a macro system they are typically negligible,
in a micro system they become more prominent and may even
dominate the flow characteristics. Many of the scaling effects in
micro fluidic systems are a consequence of the increased surface
area to volume ratio. This results in increased surface forces, which
may produce large pressure drops, compressibility effects, and vis-
cous dissipation; decreased inertial forces, which allows diffusion
and conduction processes to become relatively more significant;
and increased heat transfer, which may lead to variable fluid prop-
erties and creep flow.

While creep flow is typically negligible for large scale flows and
fully developed, constant wall temperature flows, creep flow ef-
fects may become significant for constant wall heat flux flows
within the slip regime. The effect of creep flow has been shown
to significantly alter the pressure losses and convective heat trans-
fer rates from that predicted when creep flow is neglected for sev-
eral geometries [13,16,17]. However, the effect of creep flow on
fully developed, constant wall heat flux, rectangular microchannel
pressure losses and convective heat transfer rates, calculated in
conjunction with slip velocity and temperature jump boundary
conditions, has not yet been examined.
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Fig. 1. Rectangular channel configuration.
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In macroscale systems, viscous dissipation effects are only sig-
nificant for high velocity or highly viscous flows. However, in
microscale systems large channel length to hydraulic diameter ra-
tios result in large velocity and pressure gradients, and conse-
quently thermal energy generation due to viscous dissipation. A
slight increase in fluid temperature may be significant relative to
the small temperature gradients typically present in microchan-
nels, and as a result alter the convective heat transfer rate and
any temperature dependant fluid properties, particularly viscosity,
which further changes the convective heat transfer rate, as well as
the frictional losses. Because the function of many micro fluidic
systems is cooling, viscous dissipation becomes a limiting factor
that must be accurately represented. Effects of viscous dissipation
are characterized by the Brinkman number, Br, where Br � 0 indi-
cates that viscous dissipation effects are negligible. Recently, sev-
eral studies have focused specifically on viscous dissipation
effects for slip flow convective heat transfer [18–26]. However,
most of these studies evaluated the effect of viscous dissipation
without also evaluating the effects of flow work and shear work,
which for gaseous flows are of the same order of magnitude as vis-
cous dissipation; and, viscous dissipation effects in rectangular
microchannels with constant wall temperature (T) and constant
wall heat flux (H2) thermal boundary conditions have not yet been
evaluated.

The significance of streamwise conduction is generally estab-
lished by the magnitude of the flow Peclet number. The Peclet
number, Pe, represents the ratio of the thermal energy convected
to the fluid, to the thermal energy axially conducted within the
fluid. A low Pe, which is common for micro flows, generally indi-
cates that streamwise conduction effects must be considered. Pre-
vious studies have established correlations for the convective heat
transfer rate for both continuum and slip flows in parallel plate and
circular duct channels with Pe as a parameter [25,27–30]. How-
ever, axial conduction effects have been neglected in studies on
rectangular channel, constant wall temperature flows, and conse-
quently there is an absence of Nu data for fully developed condi-
tions at low Pe in both the continuum and slip flow regimes.

Based on the preceding review, it is evident that theoretical re-
sults for microchannel frictional and convective heat transfer char-
acteristics are generally obtained assuming first-order accurate slip
boundary conditions, while second-order slip boundary conditions,
creep flow, viscous dissipation, and axial conduction are consid-
ered negligible secondary effects. However, the accuracy of these
assumptions, and consequently the results of these studies, have
not yet been verified numerically or experimentally. The intent
of this study is to numerically evaluate the significance of sec-
ond-order slip boundary conditions, creep flow, viscous dissipa-
tion, and axial conduction on the convective heat transfer rate
and frictional losses of steady state, laminar, nearly incompress-
ible, locally fully developed, constant wall temperature (T) and
constant wall heat flux (H2) rectangular microchannel flows in
the slip flow regime.

2. Numerical algorithm

The computational fluid dynamics (CFD) algorithm used for this
study has been described, and verified in previous microchannel
investigations [17,31–33]. The algorithm is based on ICE (Implicit,
Continuous-fluid Eulerian), which is a finite volume, multi-mate-
rial CFD method. The ICE implementation used in this study is well
developed and documented [34–37]. The code is three-dimen-
sional, fully compressible, unsteady, and capable of modeling var-
iable fluid properties, fluid–structure interactions, and chemical
reactions. To accurately model microchannel flows, the algorithm
has been modified to model any of the first- or second-order slip
boundary conditions models presented in Eqs. (1)–(6), creep flow,
and viscous dissipation. Slip velocity, temperature jump, creep
flow, and viscous dissipation effects may be either included or ne-
glected with each computation. The implementation of these mod-
ifications is consistent with the original code in being numerically
second-order accurate both spatially and temporally.

Numerical results are obtained for the three-dimensional, con-
tinuum, momentum and energy equations with both first- and sec-
ond-order slip velocity and temperature jump boundary conditions
for the flow configuration illustrated in Fig. 1. The flow is modeled
assuming laminar flow of a Newtonian, ideal gas, with constant
properties (cp, k, l) of air. To decrease the computational time re-
quired to reach a solution, only one quarter of the symmetric
microchannel is modeled. The resulting velocity field is then eval-
uated to obtain the Poiseuille number, Po, which is an indication of
the pressure drop characteristics and the temperature field is eval-
uated to obtain the Nusselt number, Nu, which represents the con-
vective heat transfer characteristics.

2.1. Solution criteria

For the numerical solutions to be comparable to previous first-
order analytic solutions, the flow must be nearly incompressible.
To achieve this criterion, a low Mach number, Ma ¼ ðPeKn=PrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2=ðpcÞ
p

, is maintained, generally 0.05 or less. For these low Pe
flows, a channel length of 12h is found to be sufficient for Po and
Nu values to become locally fully developed while avoiding signif-
icant compressibility effects due to a longer channel. For all cases, a
uniform inlet velocity and temperature are specified while the
outlet temperature and velocity profiles are allowed to evolve to
their locally fully developed profiles. The inlet velocity, inlet
temperature, outlet pressure, and wall temperature or wall heat
flux are specified to obtain the intended flow Pe, uc/um, BrH2 or
BrT, and Kn.

Because the algorithm is unsteady, all of the flow properties
must evolve from a set of initial values to steady state conditions
subject to the boundary conditions. The initial velocity field is zero
and the initial temperature field is equal to the inlet temperature.
The convergence criterion for each time step is a mass flux residual
less than 10�9 for each control volume. The criterion used to estab-
lish that the flow is steady state is |(un+1 � un)/un+1| 6 10�10 and
|(Tn+1 � Tn)/Tn+1| 6 10�10, for each control volume, where n is the
number of the time step. The magnitude and number of time steps
required to reach steady state are dependent on the grid resolution,
bm1Kn, and Pe.

2.2. Grid convergence and code verification

To assure that each numerical result is sufficiently accurate and
converges to a grid independent solution, grid resolution studies
have been completed for each Po and Nu reported. Table 1 presents
the grid resolution studies for NuH2 with bm1Kn = 0, and AR = 1, 2,
and 5. For each aspect ratio, the relative change in NuH2 is less than
0.5% between the two highest grid resolutions. These data indicate
that the numerical algorithm converges with approximately sec-
ond-order numerical accuracy, and that the highest grid resolution



Table 1
Grid resolution effects on rectangular channel, continuum flow NuH2, with compar-
ison to analytic solutions.

AR Grid NuH2,
present

NuH2

[19]
NuH2

[27]
NuH2

[29]
NuH2

[38]

1 10 � 10 � 120 3.175 3.10 3.09 3.135 3.091
20 � 20 � 240 3.108
40 � 40 � 480 3.092

2 10 � 20 � 120 3.070 3.03 3.02 3.065 3.022
20 � 40 � 240 3.031
40 � 80 � 480 3.022

5 10 � 50 � 120 2.964 2.90 2.93 2.961 2.922
20 � 100 � 240 2.936
40 � 200 � 480 2.929
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Fig. 2. Comparison of numerically and analytically computed: (a) Po, (b) NuH2.

J. van Rij et al. / International Journal of Heat and Mass Transfer 52 (2009) 2792–2801 2795
tested for each AR, is sufficiently accurate when compared to the
analytic solutions of [19,27,29,38]. Based on these data, all of the
following results are obtained using the finest grid resolution given
in Table 1.

The algorithm’s ability to model first- and second-order velocity
slip and temperature jump boundary conditions, as well as creep
flow and viscous dissipation has been verified previously for
two-dimensional flows with both constant wall heat flux and con-
stant wall temperature boundary conditions [17,31]. Prior to con-
ducting the current study, it must also be verified that the
algorithm is capable of accurately modeling axial conduction ef-
fects, and three-dimensional, rectangular microchannel pressure
losses and convective heat transfer with first-order slip boundary
conditions. To establish that the algorithm is accurate in modeling
axial conduction effects, numerical and analytical NuT [29], as a
function of Pe, for parallel plate continuum flow are compared in
Table 2. These data indicate that the code accurately models axial
conduction effects, with an average difference between numeri-
cally and analytically computed NuT of 0.10%, and a maximum dif-
ference of 0.35%.

To verify that the algorithm accurately models first-order slip
flow pressure losses in rectangular microchannels, numerically
computed Po, for the parameters given in Fig. 2(a), are compared
to the analytically computed values of [39]. The analytical and
numerical Po in this comparison do not differ by more than
0.14% and, on average, by only 0.04%, thereby verifying that the
algorithm is capable of modeling first-order slip flow pressure
losses. To verify that the algorithm accurately models first-order
convective heat transfer in rectangular microchannels, numerically
computed NuH2, for the parameters given in Fig. 2(b), are compared
to the analytically computed values of [19,29]. This comparison
demonstrates that the numerically computed NuH2 values closely
agree with the analytically computed values of [29], but the ana-
lytic values are an average of 1.26% higher. Although this discrep-
ancy is minor, it may be noted that the values of [29], presented in
Table 2 for continuum flow, are also slightly higher, 1.39% on aver-
age, than all other references [19,27,38]. The analytically computed
values of [19] for AR = 1 are all within 0.5% of the present numer-
ical data. At AR = 5, there are more significant differences, nearly
Table 2
Comparison of numerically and analytically computed NuT for parallel plate,
continuum flow with axial conduction.

Pe NuT, present NuT [29] e (%)

0.005 8.117 8.119 �0.02
0.05 8.111 8.111 0.00
0.5 8.050 8.058 �0.10
5.0 7.720 7.747 �0.35

50 7.563 7.562 0.01
10% in some cases, however, the predicted tends due to rarefaction,
remain comparable. The excellent agreement of the present NuH2

data and the analytic data of [29], as well as the general agreement
in trends of [19], indicates that the code is capable of accurately
modeling first-order slip flow convective heat transfer rates for
rectangular microchannels.

3. Results and discussion

An evaluation and summary of the effects of first- and second-
order slip boundary condition models, creep flow, viscous dissipa-
tion, and axial conduction on rectangular microchannel pressure
drop and convective heat transfer characteristics are presented in
Figs. 3–8. All Po and Nu are normalized by nominal continuum val-
ues without creep flow, or viscous dissipation effects, Poo and Nuo,
respectively. All numerically computed values are specified by
symbols, with the connecting lines representing the data trend.
All other relevant flow parameters are indicated in the Figures.

3.1. Second-order slip boundary condition effects

Fully developed Po/Poo, for the different slip flow boundary con-
dition models, are presented in Fig. 3 for AR = 1, 2, 5, and 1. The
boundary conditions are first-order slip, Eqs. (1) and (2), second-
order Deissler slip, Eqs. (3) and (4), and second-order Karniadakis
and Beskok slip, Eqs. (5) and (6). For these data Pe = 0.5, Br = 0,
and uc/um = 0. The data in Fig. 3 indicate that Po/Poo decreases with
bm1Kn for all AR, and that the effect of AR on Po is significant in both
the continuum and slip flow regimes. Within the continuum flow
regime, Poo decreases from 96, for AR =1, to 56.9, for AR = 1, due
to the reduced average wall shear stress caused by the proximity
of the corners. Within the slip flow regime, increasing rarefaction,
bm1Kn, increases the slip velocity at the walls, which results in a
flatter velocity profile with reduced wall velocity gradients and
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consequently reduces Po/Poo for all AR. Although Po/Poo decreases
with bm1Kn for all AR, the slip velocity is a function of both bm1Kn
and the average wall velocity gradients, which are larger for higher
AR flow, and as a result Po/Poo decreases more significantly for
higher AR flows.

The data in Fig. 3 also illustrate that second-order slip terms be-
come more significant as bm1Kn increases. However, the two sec-
ond-order models have opposite effects when compared to the
first-order boundary condition data. This result is expected, due
to the opposite signs of the second-order coefficients, given in
Eqs. (3) and (5). As compared to the first-order boundary condition
data, the second-order Deissler boundary conditions result in an
increase in the slip velocity and consequently reduces Po/Poo with
bm1Kn, while the second-order Karniadakis and Beskok boundary
conditions result in a decrease in the slip velocity and conse-
quently increases Po/Poo with bm1Kn. Second-order effects are more
significant for larger AR due, again, to the larger average wall veloc-
ity gradients.

Fully developed NuH2 and NuT are presented in Fig. 4 for the
same slip flow boundary condition models, Pe, Br, uc/um, and AR
values as the Po/Poo data in Fig. 3. The data in Fig. 4 indicate that
both NuT and NuH2 may increase or decrease with bm1Kn, depending
on b, for all AR investigated, and that the effect of AR on NuT is more
significant in both the continuum and the slip flow regimes than it
is for NuH2. Within the continuum flow regime, NuT increases sig-
nificantly from 3.36, at AR = 1, to 8.06, at AR =1 (Pe = 0.5). This is
due to the varying wall heat flux, which is maximum at the mid-
point of the longest side and zero at the corners, resulting in a low-
er average wall heat flux at lower AR. NuH2, however, is nearly
constant with respect to AR – it decreases approximately 6% from
3.09, at AR = 1, to 2.91, at AR = 10, and does not approach the
AR =1 value of NuH2 = 8.235 [27]. This behavior is due to the H2
boundary condition, for which the heat flux is constant both axially
and peripherally (the nondimensional wall temperature is maxi-
mum at the corners and minimum at the midpoint of the long
side), and as such the heat flux on the two side walls will always
have an effect, even at large AR.

The data trends in Fig. 4 for the slip flow regime are related
to the fact that as rarefaction, bm1Kn, increases, both the slip
velocity and the temperature jump at the wall increase, for
b – 0. An increase in the slip velocity enhances the energy ex-
change near the wall, which tends to increase both NuT and
NuH2, as displayed when b = 0. However, for b – 0, increasing
bm1Kn also increases the temperature jump, which reduces the
energy exchange, increases the difference between the mixed
mean fluid temperature and the wall temperature, and tends
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to decrease both NuT and NuH2. While the wall heat flux is inde-
pendent of AR and bm1Kn for the H2 boundary condition, the
average wall heat flux for the constant wall temperature bound-
ary condition is reduced for both decreasing AR, and increasing
bm1Kn. These effects result in a less significant increase in NuT

due to slip, when b = 0, and a more significant decrease in NuT

with bm1Kn, when b – 0, compared to NuH2.
The results in Fig. 4 also indicate that second-order tempera-

ture jump terms become more significant as bm1Kn increases. For
the constant wall temperature boundary condition the average
wall normal first-order and second-order temperature gradients
are of opposite sign for all AR, b, and bm1Kn evaluated. When
b – 0, this causes the second-order Deissler boundary conditions
to predict an increase in the temperature jump (decrease in NuT),
compared to the first-order boundary condition data; while the
second-order Karniadakis and Beskok boundary conditions pre-
dict a decrease in the temperature jump (increase in NuT), com-
pared to the first-order boundary conditions. For the constant
wall heat flux boundary condition, the average wall normal
first-order and second-order temperature gradients are of the
same sign for lower AR and bm1Kn values, and of opposite sign
for increasing AR and bm1Kn values. This causes the second-order
Deissler boundary conditions to predict a decrease in tempera-
ture jump (increase in NuH2) for lower AR and bm1Kn, and an in-
crease in temperature jump (decrease in NuH2) for higher AR and
bm1Kn, compared to first-order boundary condition data, when
b – 0; while the second-order Karniadakis and Beskok boundary
conditions predict an increase in temperature jump (decrease in
NuH2) for lower AR and bm1Kn, and a decrease in temperature
jump (increase in NuH2) at higher AR and bm1Kn, compared to
first-order boundary condition data, when b – 0.

3.2. Creep flow effects

The effect of creep flow on fully developed Po/Poo and Nu/Nuo is
presented in Figs. 5 and 6, respectively, for creep velocity to mean
velocity ratios, uc/um, of �0.25, 0.00, and 0.25, and for AR = 1, 2, 5,
and1. For these data first-order slip boundary conditions are used,
Pe = 0.5, and viscous dissipation effects are neglected. NuT data are
not presented, as creep flow is negligible for thermally fully devel-
oped constant wall temperature boundary conditions. Also, be-
cause creep flow is zero at Kn = 0.00, creep flow effects on Po/Poo

and Nu/Nuo are not presented for bm1Kn less than 0.01. Positive
uc/um, creep flow in the same direction as the mean flow, is the re-
sult of heating; while negative uc/um, creep flow in the opposite
direction of the mean flow, is the result of cooling.
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Fig. 7. Effect of viscous dissipation on fully developed Nu/Nuo: (a) AR = 1, (b) AR = 2,
(c) AR = 5, (d) AR =1.
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The data in Fig. 5 demonstrate that in addition to the AR and
bm1Kn effects previously discussed, positive uc/um, heating, de-
creases Po/Poo for all AR, while negative uc/um, cooling, increases
Po/Poo for all AR. Positive uc/um increases the total slip velocity,
which decreases the average wall shear stress and reduces Po/
Poo. Conversely, negative uc/um decreases the total slip velocity at
the wall which increases the average wall shear stress, thereby
increasing Po/Poo. Also, because positive uc/um reduces the average
wall shear stress there is less of a decrease in Po/Poo with bm1Kn,
and because negative uc/um increases the average wall shear stress
there is more of a decrease in Po/Poo with bm1Kn.

There are several factors that contribute to the creep flow ef-
fect on NuH2, as presented in Fig. 6. Creep flow in the same
direction as the mean flow, heating, increases the total slip
velocity, which increases the energy exchange near the wall
and tends to increase NuH2. Creep flow in the opposite direction
of the mean flow, cooling, decreases the total slip velocity, which
decreases the energy exchange near the wall and tends to de-
crease NuH2. However, as rarefaction increases, the effect of the
increasing temperature jump at the wall, for b – 0, and decreas-
ing velocity gradients decrease the energy exchange, which in-
creases the mean temperature difference (Tw � Tm) and reduces
NuH2, as well as the effect of uc/um on NuH2. Although NuH2 for
AR =1 follows the same general trends as NuH2 for AR = 1, 2,
and 5 the effects of creep flow are reduced without the heat flux
and creep flow contribution from the two side walls.

3.3. Viscous dissipation effects

The effect of viscous dissipation, and the related effects of flow
work and shear work, on fully developed NuH2 and NuT are given in
Fig. 7 for AR = 1, 2, 5, and1. For these data, first-order slip bound-
ary conditions are used, Pe = 0.5, and uc/um = 0. Because l is as-
sumed to be constant, viscous dissipation has no additional effect
on Po/Poo. The Po/Poo data corresponding to the data in Fig. 7 are
the same as that given in Fig. 3 for first-order slip boundary condi-
tions. The NuH2 and NuT data presented in Fig. 7 are a result of the
combined effects of rarefaction (bm1Kn), the gas–wall interactions
(b), and viscous dissipation, flow work, and shear work (Br). Vis-
cous dissipation acts as a distributed heat source, with the majority
of the thermal energy generated near the wall, due to the larger
velocity gradients. Flow work acts as a distributed heat sink, with
the majority of the thermal energy absorbed near the center of the
flow, due to the larger velocity magnitudes. And, shear work, uos/
oy|y=0, acts as a heat source at the wall, due to the thermal energy
generated by the slipping flow.

The NuH2 data in Fig. 7 demonstrate that in addition to the AR
and bm1Kn effects discussed previously, positive BrH2, heating, de-
creases NuH2, and negative BrH2, cooling, increases NuH2. This is
because viscous dissipation results in an increase in the fluid
temperature at the wall, which for heating, increases the differ-
ence between the mixed mean fluid temperature and the aver-
age wall temperature, thereby reducing NuH2; while for cooling,
this decreases the difference between the mixed mean fluid tem-
perature and the average wall temperature, thereby increasing
NuH2. For the constant wall heat flux boundary condition, flow
work decreases the wall temperature and the mixed mean fluid
temperature by equal amounts, and consequently NuH2 is unaf-
fected by the flow work contribution [40]. The data in Fig. 7 also
indicate that the effect of viscous dissipation is reduced for
increasing rarefaction. The reduced effect of BrH2 on NuH2 with
increasing bm1Kn is due to the reduced velocity gradients caused
by increasing slip at the wall. Although trends in NuH2 due to
viscous dissipation and rarefaction are the same for all AR inves-
tigated, these effects are more significant for AR =1 than for
AR = 1, 2, and 5. This is because the parallel plate channel has
larger velocity gradients, resulting in increased viscous dissipa-
tion, and with no side wall heat flux contribution the thermal
energy generated by viscous dissipation is relatively more
significant.

The NuT data presented in Fig. 7 with viscous dissipation ef-
fects, BrT – 0 were obtained for Pe = 0.5 and BrT = �0.2. However,
as will be explained, for a given bm1Kn, b, AR, and slip boundary
condition model, all flows with viscous dissipation and flow
work result in the same fully developed value of NuT, regardless
of the magnitude of Pe or BrT. For fully developed continuum
flow, the thermal energy generated by viscous dissipation, is
equal to the thermal energy absorbed by flow work. This energy
balance results in oTm/ox = 0, a net wall heat flux of zero, and
therefore NuT = 0, as discussed by [40,27]. Within the slip flow
regime, the slip flow at the wall reduces the average cross sec-
tional velocity gradients as well as the maximum core velocity.
Although this results in a decrease in both the thermal energy
generated by viscous dissipation, and the thermal energy ab-
sorbed by flow work, the decrease in viscous dissipation is more
significant. The difference, however, is exactly equal to the ther-
mal energy generated by shear work at the wall by the slipping
flow - meaning that, for a given velocity profile (which depends
on bm1Kn and AR), viscous dissipation, flow work, and shear work
are still balanced energy sources and sinks, i.e. oTm/@x = 0,
regardless of the magnitude of BrT or Pe [20]. However, the shear
work at the wall creates a nonzero wall heat flux and therefore a
nonzero NuT. The shear work, uos/oy|y=0, is a function of both the
slip velocity and the wall normal velocity gradients. As bm1Kn in-
creases, the slip velocity increases, and for the lower slip flow
regime this increases the shear work and therefore increases
NuT. However, as the slip velocity increases the velocity gradi-
ents throughout the flow decrease, and for the upper end of
the slip regime this leads to a decrease in the shear work. These
effects, combined with the effect of AR and temperature jump
(b – 0), which, decreases the energy exchange at the wall with
increasing bm1Kn, result in the NuT trends displayed in Fig. 7.

3.4. Axial conduction effects

Fully developed, slip flow NuT, computed using Pe = 0.05, 0.50,
and 5.0, are presented in Fig. 8 for AR =1, 5, 2, and 1. Using the
present compressible flow algorithm, NuT can not be computed
at large Pe without introducing variation due to compressibility.
For this reason, NuT presented at Pe =1 are the analytic solu-
tions of [29], for which compressibility and axial conduction ef-
fects have been neglected. NuH2 data are not presented, as axial
conduction effects are negligible for thermally fully developed
constant wall heat flux boundary conditions. Again, because l
is assumed to be constant, axial conduction has no additional ef-
fect on Po/Poo. The Po/Poo data corresponding to the data in
Fig. 8 are the same as that given in Fig. 3 for first-order slip
boundary conditions.

For continuum flow, bm1Kn = 0, the trends of the Nu(Pe) data pre-
sented in Fig. 8, for rectangular microchannels, are consistent with
those previously presented for parallel plate channels in Table 2.
These results indicate that axial conduction effects become signif-
icant as Pe decreases, and result in an increase in NuT. For the range
of Pe investigated, the average absolute change in NuT, is 0.53, for
continuum flow. This is equivalent to 7.6% and 15.0% differences,
for parallel plate and square channel flows, respectively. NuT de-
creases considerably, approximately 60% of the overall change,
from Pe = 0.5 to Pe = 5.0. This result is expected, as the thermal en-
ergy exchange transitions from being dominated by axial conduc-
tion, Pe < 1, to convection, Pe > 1.

The numerical data in the slip flow regime, are consistent with
the trends and magnitudes of the data without axial conduction



2800 J. van Rij et al. / International Journal of Heat and Mass Transfer 52 (2009) 2792–2801
NuT increases with AR, and may increase or decrease with bm1Kn
depending on b. The data in Fig. 8 illustrate that for decreasing
Pe, axial conduction effects increase NuT, however this effect is re-
duced as bm1Kn increases. The reduced axial conduction effects cor-
respond to increased convection at the walls caused by the slip
velocity for increasing bm1Kn, and the decrease in the total energy
exchange due to the temperature jump, for b – 0.

4. Summary and conclusions

The Poiseuille and Nusselt numbers for rectangular microchan-
nels with both constant wall heat flux and constant wall tempera-
ture thermal boundary conditions in the slip regime have been
numerically calculated. The resulting Po, NuH2, and NuT include
the effects of second-order velocity slip and temperature jump
boundary conditions, creep flow, and viscous dissipation with flow
work. The numerical results for Po, NuH2, and NuT are presented in
terms of the degree of rarefaction (bm1Kn); the gas–wall interaction
parameter (b); creep flow (uc/um); viscous dissipation (BrH2 or BrT);
and axial conduction (Pe). These results are valid for incompress-
ible or nearly incompressible, locally fully developed, steady state
flows. The numerical solutions for microchannel Po, NuH2, and NuT

have been calculated using a continuum based three-dimensional,
unsteady, compressible, CFD algorithm modified with slip bound-
ary conditions.

The results of this study indicate that the effects of second-
order slip boundary conditions, creep flow, viscous dissipation
with flow work, and axial conduction are all significant within
the slip flow regime for rectangular microchannel pressure losses
and convective heat transfer rates. The significance of each of
these terms depends on the degree of rarefaction, the gas–wall
interactions, and the thermal boundary conditions. Effects of sec-
ond-order boundary conditions increase as rarefaction increases,
with the two models studied having opposite effects when com-
pared to first-order boundary conditions. The accuracy of solu-
tions generated with the second-order boundary conditions
requires comparison with experimental data, which does not
currently exist. Creep flow results in an increase in NuH2 for
heating and decrease in NuH2 for cooling by an amount depen-
dant on uc/um, bm1Kn, b, and AR. The effects of creep flow, for a
given uc/um, are decreased with increasing bm1Kn. Viscous dissi-
pation increases NuH2 for cooling and decreases NuH2 for heating
as a function of BrH2, bm1Kn, b, and AR. The combined effects of
viscous dissipation, flow work, and shear work within the slip
flow regime cause NuT to increase with increasing bm1Kn, by an
amount dependent on AR and b, but independent of BrT and
Pe. Axial conduction effects are significant for flow with low Pec-
let number, and may increase the Nusselt number by up to 15%,
for the aspect ratios studied, compared to NuT without axial con-
duction effects. Effects of axial conduction increase with decreas-
ing Pe, and are decreased with increasing bm1Kn.
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