
Parallel Point Reprojection

Erik Reinhard PeterShirley CharlesHansen

Universityof Utah www.cs.utah.edu

Abstract

Improvementsin hardwarehave recentlymadeinteractive ray trac-
ing practicalfor someapplications.However, whenthescenecom-
plexity or renderingalgorithmcostis high,theframerateis too low
in practice. Researchershave attemptedto solve this problemby
cachingresultsfrom ray tracingandusing theseresultsin multi-
ple framesvia reprojection.However, thereprojectioncanbecome
too slow whenthe numberof samplesthat are reusedis high, so
previoussystemshave beenlimited to small imagesor a sparseset
of computedpixels. To overcomethis problemwe introducetech-
niquesto performthisreprojectionin ascalablefashiononmultiple
processors.

CR Categories: I.3.7 [ComputingMethodologies]: Computer
Graphics—3DGraphics

Keywords: point reprojection,ray tracing

1 Introduction

Interactive Whitted-styleray tracinghasrecentlybecomefeasible
on high-endparallelmachines[5,6]. However, suchsystemsonly
maintaininteractivity for relatively simplescenesor small image
sizes.

By reusingsamplesinsteadof relyingonbruteforceapproaches,
theselimitationscanbeovercome.Thereareseveralwaysto reuse
samples.All of themrequireinterpolatingbetweenexisting sam-
plesasthekey partof theprocess.First, rayscanbestoredalong
with the color seenalongthem. The color of new rayscanbe in-
terpolatedfrom existing rays[1,4]. Alternatively, thepointsin 3D
whereraysstrikesurfacescanbestoredandthenwoventogetheras
displayablesurfaces[7]. Finally, suchpointscanbe directly pro-
jectedto thescreen,andholescanbefilled in usingimageprocess-
ing heuristics[8].

Another methodto increasethe interactivity of ray tracing is
framelessrendering[2, 3,6,9]. Here,a masterprocessorfarmsout
singlepixel tasksto be tracedby the slave processors.The order
in which pixels are selectedis randomor quasi-random.When-
ever a rendererfinishestracing its pixel, it is displayeddirectly.
As pixel updatesare independentof the display, thereis no con-
ceptof frames.During cameramovements,thedisplaywill deteri-
oratesomewhat,which is visuallypreferableto slow frame-ratesin
frame-basedrenderingapproaches.It canthereforehandlescenes
of highercomplexity thanbruteforceray tracing,althoughnosam-
plesarereused.

Themainthrustof thispaperis theuseof parallelismto increase
datareuseandtherebyincreaseallowablescenecomplexity andim-
agesizewithoutaffectingperceivedupdaterates.Weusetherender
cache of Walter et al. [8] andapply to it the conceptof frameless
rendering.By distributing this algorithmover many processorswe
areableto overcomethekey bottleneckin theoriginal rendercache
work. Wedemonstrateoursystemonavarietyof scenesandimage
sizesthathavebeenoutof reachfor previoussystems.

project points�

process image�

cache of
colored 3D

points

request samples

display

front end CPU

many CPUs
for tracing
rays

rays

new points

loop

Figure1: Theserial rendercachealgorithm[8].

2 Background: the render cache

Thebasicideaof therendercacheis to save samplesin a 3D point
cloud, and reprojectthem when viewing parameterschange[8].
New samplesarerequestedall over thescreen,with mostsamples
concentratedneardepthdiscontinuities.As new samplesareadded
old samplesareeliminatedfrom thepoint cloud.

Thebasicprocessis illustratedin Figure1. Thefront-endCPU
handlesall tasksother thantracingrays. Its key datastructureis
thecacheof colored3D points. Thefront endcontinuouslyloops,
first projectingall pointsin thecacheinto screenspace.This will
producean imagewith many holes,andthe imageis processedto
fill theseholesin. This filling-in processusessampledepthsand
heuristicsto make theprocessedimagelook reasonable.Thepro-
cessedimageis thendisplayedon thescreen.Finally, theimageis
examinedto find “good” raysto requestto improve future images.
Thesenew rays are tracedby the many CPUsin the “rendering
farm”. Thecurrentframeis completedafter thefront endreceives
theresultsandinsertstheminto thepoint cloud.

From a parallelprocessingpoint of view, the rendercachehas
thedisadvantageof asingleexpensivedisplayprocessthatneedsto
feedanumberof rendererswith samplerequestsandis alsorespon-
siblefor pointreprojection.Thedisplayprocessneedsto insertnew
resultsinto the point cloud, which meansthat the morerenderers
areused,the heavier the workloadof the displayprocess.Hence,
thedisplayprocessquickly becomesa bottleneck.In addition,the
numberof pointsin the point cloud is linear in imagesize,which
meansthatthereprojectioncostis linearin imagesize.

The rendercachewasshown to work well on 256x256images
using an SGI Origin 2000 with 250MHz R10k processors. At
higherresolutionsthan256x256,the front endhastoo many pix-
elsto reprojectto maintainfluidity.

3 Distributed render cache

Ray tracingis an irregular problem,which meansthat the time to
computearay taskcanvarysubstantiallydependingondepthcom-
plexity. For this reasonit is undesirableto run a parallelray trac-
ing algorithmsynchronously, as this would slow down rendering
of eachframeto be asslow as the processorwhich hasthe most
expensive setof tasks. On the otherhand,synchronousoperation
would allow a parallelimplementationof the rendercacheto pro-
duceexactly the sameartifactsas the original rendercache. We
havechosenresponsivenessandspeedof operationoverminimiza-
tion of artifactsby allowing eachprocessorto updatethe image
asynchronously.

Our approachis to distributetherendercachefunctionalitywith
the key goal of not introducingsynchronization,which is analo-
gousto framelessrendering.In our systemtherewill bea number
of rendererswhich will reprojectpoint cloudsandrendernew pix-
els,therebyremoving thebottleneckfrom theoriginal rendercache
implementation.Scalabilityis thereforeassured.

We parallelizethe rendercacheby subdividing the screeninto
a numberof tiles. A randompermutationof the list of tiles could
bedistributedover theprocessors,with eachrenderermanagingits
setof tiles independentlyfrom all otherrenderers.Alternatively, a
global list of tiles couldbemaintainedwith eachprocessorchoos-
ing thetile with thehighestpriority whenever it needsanew taskto
work on. While thelatteroptionmayprovidebetter(dynamic)load
balancing,we have optedfor the first solution. Load balancingis
achievedstaticallyby ensuringthateachprocessorhasasufficiently
large list of tiles. The reasonfor choosinga static load balancing
schemehasto do with memorymanagementon the SGI Origin
3800,which is explainedin moredetail in Section4.

Eachtile hasassociatedwith it a local point cloudandanimage
planedatastructure. The work associatedwith a tile dependson
whetheror notcameramovementis detected.If thecamerais mov-
ing, the point cloud is projectedonto the tile’s local imageplane
andtheresultsaresentto thedisplaythreadfor immediatedisplay.
No new raysaretraced,asthis would slow down the systemand
theperceivedsmoothnesswould beaffected.This is at thecostof
a degradationin imagequality, which is deemedmoreacceptable
thana lossof interaction.It is alsotheonly modificationwe have
appliedto therendercacheconcept.

If there is no cameramovement,a depthtest is performedto
selectthoserays that would improve imagequality most. Other
heuristicssuchasanagingschemeappliedto thepointsin thepoint
cloudalsoaid in selectingappropriatenew rays.Newly tracedrays
are both addedto the point cloud and displayedon screen. The
point clouditself doesnotneedto bereprojected.

The rendererseachloop over their alottedtiles, executingfor
eachtile in turn thefollowing maincomponents:

1. Clear tile Before points are reprojected, the tile image is
cleared.

2. Add points Pointsthat previously belongedto a neighbouring
tile but have beenprojectedontothecurrenttile areaddedto
thepoint cloud.

3. Project point cloud The point cloud is projectedonto the tile
image. Points that project outsidethe current tile are tem-
porarily bufferedin a datastructurethat is periodicallycom-
municatedto therelevanttiles.

4. Depth test A depthtestis performedon thetile imageto deter-
minedepthdiscontinuities.This is thenusedto selectraysto
trace.

5. Trace rays The rays selectedby the depth test function, are
traced.

cache of
colored 3D

points

tile
loop over local list of tiles

if camera has moved
clear tile
add points
project cloud�

else
add points
depth test
trace rays

display (smoothed) tile

Renderer 3

cache of
colored 3D

points

tile

cache of
colored 3D

points

tile

cache of
colored 3D

points

tile

cache of
colored 3D

points

tile
loop over local list of tiles

if camera has moved
clear tile
add points
project cloud�

else
add points
depth test
trace rays

display (smoothed) tile

Renderer 2

cache of
colored 3D

points

tile

cache of
colored 3D

points

tile

cache of
colored 3D

points

tile

cache of
colored 3D

points

tile
loop over local list of tiles

if camera has moved
clear tile
add points
project cloud�

else
add points
depth test
trace rays

display (smoothed) tile

Renderer 1

cache of
colored 3D

points

tile

cache of
colored 3D

points

tile

cache of
colored 3D

points

tile

display pixels

front end CPU

loop display

Figure2: Theparallel rendercachealgorithm.

6. Display tile The resultingtile is communicatedto the display
thread. This function also performshole-filling to improve
theimage’s visualappearance.

If cameramovementhasoccurredsinceatile waslastvisited,items
1, 2, 3 and6 in this list areexecutedfor that tile. If the camera
wasstationary, items1, 2, 3 and6 areexecuted.Thealgorithmis
graphicallydepictedin Figure2

While tilescanbeprocessedlargely independently, therearecir-
cumstanceswheninteractionbetweentiles is necessary. This oc-
cursfor instancewhena point in onetile’s point cloudprojectsto
a different tile (dueto cameramovement). In that case,the point
is removedfrom thelocal point cloudandis insertedinto thepoint
cloud associatedwith the tile to which it projects. The moretiles
thereare,themoreoften this would occur. This conflictswith the
goalof having many tiles for loadbalancingpurposes.In addition,
having fewer tiles thatarelargercausestile boundariesto bemore
visible.

As eachrendererproducespixelsthatneedto becollatedinto an
imagefor displayon screen,thereis still a displayprocess.This
displaythreadonly displayspixelsandreadsthekeyboardfor user
input. Displayinganimageis achievedby readinganarrayof pix-
els that representsthe entire image,andsendingthis array to the
displayhardwareusingOpenGL.Whenrenderersproducepixels,
they arebufferedin a local datastructure,until a sufficient number
of pixelshasbeenaccumulatedfor a write into theglobalarrayof
pixels. This buffering processensuresthat memorycontentionis
limited for largerimagesizes.

Finally, the algorithm shows similarities with the conceptof
framelessrendering,in the sensethat tiles are updatedindepen-
dentlyfrom thedisplayprocess.If thesizeof thetiles is smallwith
respectto the imagesize,thevisualeffect is like thatof frameless
rendering.Thelargerthetile sizeis chosen,themoretheimageup-
datingprocessstartsto look like a distributedversionof therender
cache.

4 Implementation

The parallel rendercachealgorithmis implementedon a 32 pro-
cessorSGI Origin 3800. While this machinehasa 16 GB shared
addressspace,thememoryis physically distributedover a total of
eight nodes. Eachnodefeaturesfour 400 MHz R12k processors
andone2 GB block of memory. In additioneachprocessorhasan
8 MB secondarycache. Memory accesstimesaredeterminedby
the distancebetweenthe processorandthe memorythat needsto
bereador written. Thelocalcacheis fastest,followedby themem-
ory associatedwith a processor’s node. If a dataitem is located
at a differentnode,fetchingit mayincur a substantialperformance
penalty.

A secondissueto beaddressedis thattheSGI Origin 3800may
relocatea renderingprocesswith a differentprocessoreachtime
a systemcall is performed. Whenever this happens,the datathat
usedto be in the local cacheis no longerlocally available. Cache
performancecanthusbeseverelyreducedby migratingprocesses.

Theseissuescanbeavoidedon theSGI Origin 3800by actively
placingmemoryneartheprocessesanddisallowing processmigra-
tion. This can,for example,be accomplishedusingthe dplaceli-
brary. Associatedwith eachtile in theparallelrendercacheis a lo-
calpointclouddatastructureandanimagedatastructurewhichare
mappedascloseaspossibleto theprocessthatusesit. Suchmem-
ory mappingassuresthat if a cachemissoccursfor any of these
datastructures,theperformancepenaltywill belimited to fetching
a dataitem that is in local memory. As arguedabove, this is much
cheaperthanfetchingdatafrom remotenodes.For this reason,us-
ing a globallist of tiles asmentionedin theprevioussectionis less
efficient thandistributing tiles staticallyover theavailableproces-
sors.

Carefully choreographingthe mappingof processesto proces-
sorsandtheir datastructuresto local memoryenhancesthe algo-
rithm’sperformance.Cacheperformanceis improvedandthenum-
berof datafetchesfrom remotelocationsis minimized.

5 Results

Our implementationusestheoriginal rendercachecodeof Walter
etal [8] . Themainloopof therendererconsistsof anumberof dis-
tinct steps,eachof which aremeasuredseparately. To assessscal-
ability, thetime to executeeachstepis measured,summedover all
invocationsandprocessorsandsubsequentlydivided by the num-
berof invocationsandprocessors.Theresultis expressedin events
per secondper processor, which for a scalablesystemshouldbe
independentof the numberof processorsemployed. In casethis
measurevarieswith processorcount,scalabilityis affected.

If the numberof eventsper secondper processordropswhen
addingprocessors,sublinearscalability is measured,whereasan
increaseindicatessuper-linearspeed-upfor themeasuredfunction.
Also note that the smallerthe number, the more costly the oper-
ation will be. Using this measureprovidesbetterinsight into the
behaviour of thevariouspartsof thealgorithmthanastandardscal-
ability computationwould give, especiallysinceonly a subsetof
the componentsof the rendercachealgorithmis executedduring
eachiteration.

Two testsceneswereused:a teapotwith 32 bezierpatches1 and
onepoint light source,anda room scenewith 846,563geometric
primitives and arealight sourcesapproximatedby 80 point light
sources(Figure3). For theteapotscene,therendereris limited by
thepoint reprojectionalgorithm,while for theroomscene,tracing
new raysis theslowestpartof thealgorithm.Thelattersceneis of

1Thesebezierpatchesarerendereddirectly usingthe intersectionalgo-
rithm from Parkeret. al [6].

Figure3: Testscenes.Theteapot(top)consistsof32bezierpatches,
while the roomsceneconsistsof 846,563primitivesand 80 point
light sources.

typical complexity in architecturalapplicationsandusuallycannot
beinteractively manipulated.

In the following subsection,the different componentsmaking
up the parallel rendercacheare evaluated(Section5.1), the per-
formanceasfunctionof tasksizeis assessed(Section5.2) andthe
parallelrendercacheis comparedwith othermethodsto speedup
interactive ray tracing(Section5.3).

5.1 Parallel render cache evaluation

The resultsof renderingthe teapotandroom modelson different
numbersof processorsata resolutionof �����

�
and ���	��

�
pixelsare

depictedin Figures4 and5.
While mostof the componentsmakingup the algorithmshow

horizontallines in thesegraphs,meaningthat they scalewell, the
“Clear tiles” and “Add point” componentsshow non-linearbe-
haviour. Clearingtiles is a very cheapoperationwhich appearsto
becomecheaperif moreprocessorsareused. Becausemorepro-
cessorsresult in eachprocessorhaving to processfewer tiles, this
super-linear behaviour may be explainedby bettercacheperfor-
mance.This effect is lesspronouncedfor the ���	��

�
pixel render-

ings,which alsopointsto a cacheperformanceissueashereeach
processorhandlesmoredata.

The “Add point” function scalessub-linearlywith the number
of processors.Becausethetotal numberof tiles waskeptconstant
betweenruns,this cannotbe explainedby assumingthat different
numbersof pointsprojectoutsidetheir own tile and thushave to
be addedto neighbouringtiles. However, with more processors
thereis anincreasedprobabilitythata neighbouringtile belongsto

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4

Processors

E
ve

nt
s/

pr
oc

es
so

r/
se

co
nd

Clear tiles
Add points
Project cloud
Depth test
Trace rays
Display tile

Teapot model (512x512 pixels)

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

Processors

E
ve

nt
s/

pr
oc

es
so

r/
se

co
nd

Clear tiles
Add points
Project cloud
Depth test
Trace rays
Display tile

Teapot model (1024x1024 pixels)

Figure4: Scalabilityof therendercachecomponentsfor the teapotscenerenderedat �����
�

pixels(left) and ���	��

�

pixels(right). Negative
slopesindicatesub-linearscalability, whereashorizontallinesshowlinear speed-ups.

0 5 10 15 20 25 30 35
0

1

2

3

4

5

6

7
x 10

4

Processors

E
ve

nt
s/

pr
oc

es
so

r/
se

co
nd

Clear tiles
Add points
Project cloud
Depth test
Trace rays
Display tile

Room model (512x512 pixels)

0 5 10 15 20 25 30 35
0

1

2

3

4

5

6

7

8
x 10

4

Processors

E
ve

nt
s/

pr
oc

es
so

r/
se

co
nd Clear tiles

Add points
Project cloud
Depth test
Trace rays
Display tile

Room model (1024x1024 pixels)

Figure5: Scalabilityfor theroomscene, renderedat �����
�

pixels(left) and ���	��

�

pixels(right). Horizontal linesindicatelinear scalability,
whereasa fall-off meanssub-linearscalability.

a differentprocessorandmaythereforeresidein memorywhich is
locatedelsewherein themachine.Thusprojectinga point outside
the tile that it usedto belongto, may becomemoreexpensive for
largernumbersof processors.This issueis addressedin thefollow-
ing section.

Notealsothatdespitethepoorscalabilityof “Add points”, in ab-
solutetermsits cost is ratherlow, especiallyfor the room model.
Hence,the algorithm is boundedby componentsthat scalewell
(they producemoreor lesshorizontallines in plots) andtherefore
thewholedistributedrendercachealgorithmscaleswell, at leastup
to 31 processors(seealsoSection5.3). In addition,thedisplayof
the resultsis completelydecoupledfrom the rendererswhich pro-
ducenew resultsandthereforethescreenis updatedata ratethatis
significantlyhigherthanrayscanbetracedandis alsomuchhigher
thanpointscanbereprojected.This three-tiersystemof producing
new raysat a low frequency, projectingexisting pointsat an inter-
mediatefrequency anddisplayingthe resultsat a high frequency
(on theOrigin 3800at a rateof around ����� framespersecondfor

�����
�

imagesand �� framespersecondfor ���	��

�

images,regard-
lessof numberof renderersandscenecomplexity) ensuresasmooth
displaywhich is perceivedasinteractive, evenif new raysarepro-
ducedata ratethatwouldnotnormallyallow interactivity.

By abandoningray tracingaltogetherduringcameramovement,
thesystemshows desirablebehavior evenwhenfewer than31 pro-
cessorsareused. For both the room sceneandthe teapotmodel,
the cameracanmove smoothlyif 4 or moreprocessorsareused.
During cameramovement,the scenedeterioratesbecauseno new
raysareproducedandholesin the point cloud may becomevisi-
ble. During rapidcameramovement,tile boundariesmaybecome
temporarilyvisible. After the camerahasstoppedmoving, these
artifactsdisappearat a ratethat is linear in the numberof proces-
sorsemployed. We believe that maintainingfluid motion is more
importantthanthetemporaryintroductionof someartefacts,which
is why thedistributedrendercacheis organisedasdescribedabove.

For thosewho would prefera moreaccuratedisplayat thecost
of a slower systemresponse,it would bepossibleto continuetrac-

32 64 96 128
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

Task size

E
ve

nt
s/

pr
oc

es
so

r/
se

co
nd

Clear tiles
Add points
Project cloud
Depth test
Trace rays
Display tile

Room model (1024 x 1024 pixels)

32 64 96 128
0

1

2

3

4

5

6

7
x 10

4

Task size

E
ve

nt
s/

pr
oc

es
so

r/
se

co
nd

Clear tiles
Add points
Project cloud
Depth test
Trace rays
Display tile

Teapot model (1024 x 1024 pixels)

Figure6: Scalabilityfor theroommodel(left) andteapotscene(right) asfunctionof tile size(���
�
, ��

�
and �����

�
pixelsper tile). Theimage

sizeis ���	��

�

pixelsandfor thesemeasurements31processorswereused.Thesegraphsshouldbeinterpretedthesameasthosein Figures4
and5.

ing raysduringcameramovement.Althoughtherendercachethen
behavesdifferently, the scalabilityof the separatecomponents,as
given in Figures4 and5, would not change.However, thefluidity
of cameramovementis destroyedby anamountdependentonscene
complexity.

5.2 Task size

In section3 it wasarguedthatthetasksize,i.e. thesizeof thetiles,
is animportantparameterwhich definesbothspeedandtheoccur-
renceof visual artefacts. The larger the tasksize, the betterarte-
factsbecomevisible. However, at thesametime, thereprojections
thatcrosstile-boundariesarelesslikely to occur, resultingin higher
performance.In Figure6 thescalabilityof theparallelrendercache
componentsasfunction of tasksizeis depicted.Tasksizesrange
from ���

�
pixels to �����

�
pixelsandthemeasurementswereall ob-

tainedusing31 processorson ���	��

�

images.Larger tile sizesare
thusimpossible,asthetotalnumberof taskswouldbecomesmaller
thanthenumberof processors.Tasksizessmallerthan ���

�
pixels

resultedin unreasonablyslow performanceandwerethereforeleft
outof theassessment.

As in the previous section,the “Add points” and “Clear tile”
componentsshow interestingbehavior. As expected,for larger
tasks,the“Add points” functionbecomescheaper. This is because
the total length of the tile boundariesdiminishesfor larger task
sizes,andso the probability of reprojectionsoccuringaccrostile
boundariesis smaller.

The “Clear tile” componentalso becomesless expensive for
largertiles. Here,wesuspectthatresettingonelargeblockof mem-
ory is lessexpensive thanresettinga numberof smallerblocksof
memory.

AlthoughFigure6 suggeststhatchoosingthelargesttasksizeas
possiblewould be appropriate,the artefactsvisible for large tiles
aremoreunsettlingthanfor smallertasksizes.Hence,for all other
experimentspresentedin thispaper, atasksizeof ���

�
pixelsis used,

which is basedonanassessmentof bothartefactsandperformance.

5.3 Comparison with other speed-up mechanisms

In this section,the parallel rendercacheis comparedwith other
state-of-the-artrenderingtechniques.All make useof the interac-

tive ray tracerof Parker et. al. [6], eitherasa back-endor asthe
mainalgorithm.Thecomparisonincludestheoriginal rendercache
algorithm[8], the parallel rendercachealgorithmasdescribedin
thispaper, theinteractive ray tracer(rtrt) without reprojectiontech-
niquesandthe interactive ray tracerusingthe framelessrendering
concept[6]. In the following we will refer to the original render
cacheas “serial rendercache”to distinguishit from our parallel
rendercacheimplementation.All renderingsweremadeusingthe
teapotandroommodels(Figure3) ata resolutionof ���	��

�
pixels.

Themeasurementspresentedin this sectionconsistof thenum-
ber of new samplesproducedper secondby eachof the systems
andthenumberof pointsreprojectedpersecond(for thetwo render
cachealgorithms).Thesenumbersaresummedover all processors
andshouldthereforescalewith thenumberof processorsemployed.
Theresultsfor theteapotmodelaregivenin Figure7 andtheresults
for theroommodelarepresentedin Figure8.

Thegraphson theleft of thesefiguresshow thenumberof sam-
plesgeneratedpersecond.All thelinesarestraight,indicatingscal-
ablebehaviour. In theseplots,steeperlinesaretheresultof higher
efficiency andtherefore,thereal-timeray tracerwould bemostef-
ficient, followed by the parallel rendercache.The framelessren-
deringconceptloosesefficiency becauserandomisingtheorderin
which pixelsaregenerateddestroys cachecoherence.Theparallel
rendercachedoesnot suffer from this,sincethescreenis tiled and
tasksarebasedon tiles. Theserialrendercacheappearsto perform
well for complex scenesandpoorly for simplescenes.For scenes
that lack complexity, thepoint reprojectionfront-endbecomesthe
bottleneck,especiallysincetheimagesizechosencausesthepoint
cloud to bequite large. Thus,the rendercachefront-endneedsto
reprojecta largenumberof pointsfor eachframeandsoconstitutes
abottleneck.

Although the parallel rendercachedoesnot produceas many
new pixelsasthereal-timeray tracerby itself does,this lossof ef-
ficiency is compensatedby its ability to reprojectlargenumbersof
points,asis shown in theplotson theright of Figures7 and8. The
point reprojectioncomponentof the parallel rendercacheshows
goodscalability, andthereforethe goal of parallelisingthe render
cachealgorithmis reached.Thepoint reprojectionpartof theserial
rendercachedoesnot scalebecauseit is serialin nature.

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5
x 10

6

S
am

pl
es

/s
ec

on
d

Processors

Brute force ray tracing
Frameless rendering
Serial render cache
Parallel render cache

Teapot model (1024x1024 pixels)

0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

7

Processors

R
ep

ro
je

ct
io

ns
/s

ec
on

d

Parallel render cache
Serial render cache

Teapot model (1024x1024 pixels)

Figure7: Samplespersecond(left) andpoint reprojectionspersecond(right) for theteapotmodel.

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

S
am

pl
es

/s
ec

on
d

Processors

Brute force ray tracing
Frameless rendering
Serial render cache
Parallel render cache

Room model (1024x1024 pixels)

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

7

Processors

R
ep

ro
je

ct
io

ns
/s

ec
on

d
Parallel render cache
Serial render cache

Room model (1024x1024 pixels)

Figure8: Samplespersecond(left) andpoint reprojectionspersecond(right) for theroomscene.

6 Discussion

While it is true thatprocessorsgetever fasterandmulti-processor
machinesarenow capableof real-timeray tracing,scenesareget-
ting moreandmorecomplex while atthesametimeframesizesstill
needto increase.Hence,Moore’s law is not likely to allow inter-
active full-screenbrute-forceray tracingof highly complex scenes
anytime soon.

Interactive manipulationof complex modelsis still not possible
without theuseof sophisticatedalgorithmsthatcanefficiently ex-
ploit temporalcoherence.The rendercacheis onesuchalgorithm
that canachieve this. However, for it not to becomea bottleneck
itself, the rendercachefunctionality needsto be distributed over
theprocessorsthatproducenew samples.Theresultingalgorithm,
presentedin thispaper, showssuperiorreprojectioncapabilitiesthat
enablessmoothcameramovement,evenin thecasewheretheavail-
ableprocessingpower is muchlower thanwould be requiredin a
brute force approach.It achieves this for scenecomplexities and
imageresolutionsthatarenot feasibleusingany of theotheralgo-
rithmsmentionedin theprevioussection.

While smoothnessof movementis an importantvisualcue,our

algorithmnecessarilyproducesotherartifactsduring cameramo-
tion. Theseartifactsaredeemedlessdisturbingthanjerky motion
andslow responsetimes. The rendercacheattemptsto fill small
holesafter point reprojection. For larger holes,this may fail and
unfilled pixels may either be paintedin a fixed color, or can be
left unchangedfrom previousreprojections.Eitherapproachcauses
artefactsinherentto thealgorithmandis presentbothin theoriginal
rendercacheandin ourparallelimplementationof it.

Theparallelrendercacheproducesadditionalartefactsdueto the
tiling schemeemployed.Duringcameramovement,tile boundaries
maytemporarilybecomevisible,becausethereis somelatency be-
tweenpointsbeingreprojectedfrom neighbouringtiles andthis re-
projectionbecomingvisible in the currenttile. A further investi-
gationto minimizetheseartifactsis in order, which we reserve for
futurework. Currently, theparallelrendercachealgorithmis well
suitedfor navigationthroughhighly complex scenesto find appro-
priatecamerapositions.

It hasbeenshown thatevenwith a relatively modestnumberof
processors,thedistributedrendercachecanproducesmoothcam-
eramovementat resolutionstypically sixteentimeshigherthanthe

original rendercache.Thesystemaspresentedherescaleswell up
to 31processors.Its linearbehavior suggeststhatimprovedperfor-
manceis likely beyond 31 processors,althoughif this many pro-
cessorsareavailable,it would probablybecomesensibleto devote
the extra processingpower to producemoresamples,ratherthan
increasethespeedof reprojection.

Acknowledgements

The authorsareextremelygrateful to BruceWalter, George Dret-
takisandStevenParker for makingtheir rendercachesourcecode
availableto us. We would alsolike to thankJohnMcCorquodale
for memoryandprocessorplacementdiscussions.This work was
partially supportedby NSFgrants97-96136,97-31859,98-18344,
99-77218,99-78099andby theDOEAVTC/VIEWS.

References

[1] K. BALA , J. DORSEY, AND S. TELLER, Radianceinterpolants
for acceleratedbounded-error ray tracing, ACM Transactions
onGraphics,18 (1999),pp.213–256.

[2] G. BISHOP, H. FUCHS, L . MCM ILLAN, AND E. J. SCHER
ZAGIER, Framelessrendering: Double buffering considered
harmful, in Proceedingsof SIGGRAPH’94 (Orlando,Florida,
July24–29,1994),A. Glassner, ed.,July1994,pp.175–176.

[3] R. A. CROSS, Interactiverealismfor visualizationusingray
tracing, in ProceedingsVisualization’95, 1995,pp.19–25.

[4] G. W. LARSON AND M. SIMMONS, Theholodeck ray cache:
An interactiverenderingsystemfor global illumination in non-
diffuseenvironments, ACM Transactionson Graphics,18 (Oc-
tober1999),pp.361–368.

[5] M. J. MUUSS, Towardsreal-timeray-tracingof combinatorial
solid geometricmodels, in Proceedingsof BRL-CAD Sympo-
sium,June1995.

[6] S. PARKER, W. MARTIN, P.-P. SLOAN, P. SHIRLEY,
B. SMITS, AND C. HANSEN, Interactiveray tracing, in Sym-
posiumon Interactive 3D ComputerGraphics,April 1999.

[7] M. SIMMONS AND C. SÉQUIN, Tapestry: A dynamicmesh-
baseddisplayrepresentationfor interactiverendering, in Pro-
ceedingsof the 11th EurographicsWorkshopon Rendering,
Brno,CzechRepublic,June2000,pp.329–340.

[8] B. WALTER, G. DRETTAKIS, AND S. PARKER, Interactive
renderingusing the render cache, in RenderingTechniques
’99, D. Lischinski and G. W. Larson, eds., Eurographics,
Springer-VerlagWienNew York, 1999,pp.19–30.

[9] E. S. ZAGIER, Defining and refining framelessrendering,
Tech.Rep.TR97-008,UNC-CS,July1997.

