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A B S T R A C T

In this paper we introduce a novel approach for enhancing the sampling convergence for properties predicted by
molecular dynamics. The proposed approach is based upon the construction of a multi-fidelity surrogate model
using computational models with different levels of accuracy. While low fidelity models produce result with a
lower level of accuracy and computational cost, in this framework they can provide the basis for identification of
the optimal sparse sampling pattern for high fidelity models to construct an accurate surrogate model. Such an
approach can provide a significant computational saving for the estimation of the quantities of interest for the
underlying physical/engineering systems. In the present work, this methodology is demonstrated for molecular
dynamics simulations of a Lennard-Jones fluid. Levels of multi-fidelity are defined based upon the integration
time step employed in the simulation. The proposed approach is applied to two different canonical problems
including (i) single component fluid and (ii) binary glass-forming mixture. The results show about 70% com-
putational saving for the estimation of averaged properties of the systems such as total energy, self diffusion
coefficient, radial distribution function and mean squared displacements with a reasonable accuracy.

1. Introduction

Accurate sampling of the evolution of system of interest in mole-
cular dynamics (MD) simulations can be very challenging. Thus, despite
their outstanding predictive power and application in different areas of
science and engineering, MD simulations can be carried out over a
limited timescale. Since there is a demand for running these simulations
for much longer timescales, particularly for studying systems with
rough energy landscape and long relaxation processes, several ap-
proaches have been proposed in the literature to address this problem.

One of the traditional ways of dealing with this issue is to apply
transition-state-theory, compute the rate relevant for infrequent events,
and eventually obtain an estimation of the long-time MD results [1].
However, prior determination of all important reaction paths is very
difficult. Hence, researchers have proposed different modifications of
the potential energy models for MD simulations to overcome the energy
barriers much faster. In these series of approaches, through raising the
potential energy surfaces in the regions of potential minima, in which
standard MD simulations spend a large portion of their computational
time, faster exploration of potential energy landscape becomes possible.
Hence the simulation moves faster over potential barriers and is able to
capture infrequent-event transitions and eventually the equilibrium

status of the system in much less computational time [2,3]. This group
of approaches, which are characterized by interatomic energy manip-
ulation, are known as the accelerated molecular dynamics (AMD)
method. Parallel-replica dynamics method using process paralleliza-
tion, hyperdynamics approach based upon importance sampling, and
temperature-accelerated dynamics by adaptive assignment temperature
to transitions are among the well known AMD approaches developed
[3]. Similar to the hyperdynamics method, other authors have explored
the alteration of potential landscape by proposing a bias potential
function as a means for accelerating the MD simulation [2,4]. However,
implementation of these methods requires an in-depth understanding of
underlying molecular dynamics processes and often performing a series
of rigorous computational procedures.

Recently, application of predictive algorithms in the area of mole-
cular dynamics has proven to achieve accurate and computationally
efficient long timescale analysis. These approaches span from func-
tional uncertainty quantification (UQ) [5] to multi-fidelity machine
learning models [6]. In this context, Reeve and Strachan introduced a
novel technique to apply functional UQ to Lennard-Jones two-body
interaction model for prediction of high order interatomic interactions
[5]. In spite of using a perturbative technique for the numerical eva-
luation of function derivatives, this approach is computationally
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demanding since a sufficiently large number of samples from low-fi-
delity models is required. This is mainly to ensure that the low-fidelity
model explores enough of phase space of the high-fidelity model. Fur-
thermore, this approach works only when the discrepancies between
high-fidelity and low-fidelity potential energy models stay within rea-
sonable bounds.

In another recent research study, multi-fidelity machine learning
regression models have been used for the accurate bandgap prediction
of solid materials [6]. This approach, which is based upon a Gaussian
process (GP) regression framework, involves the application of co-kri-
ging statistical learning on several bandgap predictive models with
different levels of fidelity. This requires having sufficient independent
data for parameter estimation and the assumption that the Gaussian
process properly describes the underlying molecular dynamics. Hence,
any deviation of underlying physics and limited availability of data can
lead to a poor parameter estimation.

In the present paper, considering the challenges in computational
complexity of predictive models and limited availability of even low-
fidelity data in practice, a stochastic collocation methodology with
multi-fidelity [7,8] is applied to MD simulation in order to built accu-
rate surrogate models. This approach does not require any a priori as-
sumption about the probability measure of the underlying physics that
the discrepancies between low-fidelity and high-fidelity model can be
much larger than what can be recovered by standard predictive sur-
rogate modeling tools such as spectral (polynomial based) or Bayesian
surrogates. The examples of such a large discrepancies between the
mathematical models of low- and high-fidelity and the effectiveness of
similar multi-fidelity surrogate model constructions in other areas in-
cluding frequency-modulated trigonometric functions [7], heat driven
cavity flows [9] and irradiated particle-laden turbulence [10] have
been discussed in the literature. This surrogate modeling approach is
also designed to work with a limited number of samples and provide an
optimal sampling strategy for the high-fidelity MD simulations. More-
over, compared with the commonly used approaches for acceleration of
MD simulations, the proposed method works well not only with small
data availability but also with significant difference between high- and
low-fidelity models. As long as the low-fidelity model reflects the im-
pact of the variation of model parameters in parameter space (not so-
lution space), it can be used in this framework. In order to demonstrate
the proposed multi-fidelity predictive method, it is applied to two ca-
nonical problems involving output parameter estimation of MD simu-
lation for (i) one- and (ii) two-component systems. In this study, the
integration time step of the MD simulation defines its level of fidelity.
Here, by using the proposed multi-fidelity surrogate modeling ap-
proach, the goal is to accelerate parameter exploration for a given MD
simulation setup. In this light, the resultant acceleration of the MD si-
mulation does directly benefit situations when the MD simulation has a
longer terminal time and hence provides an effective tool for faster
exploration of time-scales in the defined phase space. As such, this
approach can be considered as an efficient alternative to AMD methods,
particularly when obtaining a series of MD solutions for different sets of
parameters (and not only one) is desirable. The results of our experi-
ments with the application of the proposed approach to both test pro-
blems indicate both accuracy and computational efficiency of con-
structed data driven predictive models. The aforementioned canonical
problems are considered for the sole purpose of proof of concept and
demonstration of the proposed approach, which is used in the area of
molecular dynamics simulations for the first time. In this sense, there is
no limitation to apply this approach to more complex MD problems and
the authors plan to investigate those cases in their future works. It is
also worth noting that the processes of uniform random sampling for
the low-fidelity model and important sampling for the high-fidelity
model in the phase space lend itself nicely to parallel implementation.
By taking advantage of this feature, one can expect some additional
acceleration in computational speed for the construction of this multi-
fidelity predictive model.

The present manuscript is organized as follows. In Section 2, a brief
description of selected model system is provided. This follows by a
detailed theoretical foundation of the proposed multi-fidelity in the
subsequent section. Next, the results and discussion for two canonical
problems are presented in Section 4. Finally, concluding remarks are
provided as the final section of this paper.

2. Theoretical foundation

2.1. Molecular dynamics simulation model

The classical computational algorithm for performing molecular
dynamics simulations has been developed based upon the Lagrangian
methodology of tracking particle dynamics based on Newton’s equa-
tions of motion. Numerical integration of these equations provides an
accurate evaluation of the time evolution of a molecular system and
hence the system’s quantities of interest. While there are many in-
tegration schemes available in the literature, the velocity
Verlet algorithm [11] is used in the present work due to its popularity,
reasonable accuracy and simplicity of implementation. The Lennard-
Jones (LJ) potential [11] was used for simulating the interatomic in-
teractions in the MD system:
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where rij denotes the pairwise distance between particles i and ∊j, is the
potential well depth and σ defines the length scale for this pairwise
interatomic interaction model. For two-species interactions this length
scale becomes =σ σ σ1 2 . Here, in the second test problem, we consider
a two-component MD system with = 0.9σ

σ
1
2

and same potential well
depth.

In the process of molecular dynamic simulation using any intera-
tomic interaction model, when the size of the integration time-step is
large, the major challenge is going to be the stability of the MD in-
tegration scheme. If the time-step is too large, then a one time step
integration may predict significant overlap between molecules/atoms
which will lead to huge (unphysical) repulsive forces and large dis-
placements on the next time step, which in turn will lead to even larger
overlap and more unphysical forces on the next time step. To prevent
such divergence of integration scheme, we capped the magnitude of
repulsive interactions for closely approaching atoms. For the Lennard-
Jones potential, such capping can be implemented straightforwardly by
modifying the potential at short distance. As such, for both test cases in
this work, a potential energy cap is considered when the ratio of σ

rij
exceeds 1.2. For more complex systems which may involve electrostatic
interactions, the capping should include modifications of charge-
charge, charge-induced dipole, and induced dipole-induced dipole in-
teractions. These modifications would require a slightly more coding
and data management, but will be similar to current schemes of ex-
cluding or scaling of intramolecular electrostatic interactions between
atoms connected by bonds, bends, and dihedrals.

2.2. Bi-fidelity model construction

In the context of MD simulations, the size of time-step for the in-
tegration procedure plays a crucial rule in the computational cost of
achieving large time-scale predictions. The drawback of choosing a
large time-step to accelerate the MD computations is the loss of accu-
racy and more often numerical stability of the solution. Here, our goal is
to build a multi-fidelity surrogate model, for which the levels of fidelity
are defined based upon the time-step size of the corresponding MD si-
mulation. The first step in building such a model is to define a region of
parameter space where one needs to estimate state variables with a
reasonable accuracy. Choosing a large-time step and running the low-
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fidelity simulation on randomly selected points of the region of interest
in the parameter space is the next step. Here, we consider temperature
and density of the molecular system as the parameters defining the
phase space. For every sample point, quantities of interest are computed
using the low-fidelity model (here, the MD simulation with a large time-
step). These quantities of interest, which are in the form of either sca-
lars or vectors, are then concatenated as a vector. For instance, when
radial distribution function (RDF), mean squared displacement (MSD),
averaged total energy and self diffusion coefficient are the quantities of
interest, for the ith sample point, we can perform the low- and high-
fidelity simulation and generate a low- and high-fidelity vectors as
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where R M E, , and D denote RDF, MSD, averaged total energy and
diffusion coefficient, respectively. In this bi-fidelity setup, all the high-
fidelity quantities (subscript H) are associated with an MD simulation
using a small time-step, and the low-fidelity quantities (subscript L) are
associated with an MD simulation using a large time-step. The quan-
tities R M E, , , and D are defined as follows and have sizes:
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Here, N denotes the number of elements of corresponding vectorized
variable. Thus, the vectors gi L, and gi H, have dimensions of

∈ = + + +g N N N N N, ,i L
N

L R L M L E L D L, , , , ,L (4)

∈ = + + +g N N N N N, , .i H
N

H R H M H E H D H, , , , ,H (5)

However, in order to have equal impact on the estimation made by the
resultant multi-fidelity model, the contribution of all elements should
be kept equal. For this purpose and with I number of data points, one
can define:
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and hence the corresponding vector for the ith sample point becomes:
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The next step involves the construction of the Gramian matrix using
gi L, . This matrix is defined as the symmetric correlation matrix

∈ ×GL
I I with entries

= 〈 〉 = …G g g i j I( ) , , 1, , ,L i j i L j L, , , (8)

where 〈 〉·,· is the inner product vectors gi L, and gj L, . There are a handful
of procedures that, given this matrix, choose <n I indices from the full
set … I{1, 2, , }. The common point selection procedures are Orthogonal-
triangular (QR) decomposition [7], Cholesky decomposition [8], LU
factorization [12], leverage score sampling methods [13], and group
matching methods [14]. The first two approaches are equivalent weak
greedy procedures for point selection based on linear algebra opera-
tions. In their work, Narayan et al. have shown that greedy procedures
can be effectively used for selecting the candidate interpolation points

[7]. They have also shown that the application of these greedy point
selection algorithms on low-fidelity data produces an error which is
reasonably close to that of optimal projection using high-fidelity data.
These results suggest that greedy procedures are more effective than
random (Monte Carlo) sampling of points in parameter space.

In this research, the authors choose to use QR decomposition for this
purpose firstly because it is more understandable to general engineering
community and also due to its simplicity, speed, effectiveness as well as
the availability of its computationally efficient implementations in most
programming environments. QR decomposition can produce the or-
dering information for the VL matrix, where VL is a matrix where its ith
column is vector gi L, (So that =G V VL L

T
L). This procedure is equivalent

to Cholesky factorization of GL. Hence, if n column indices ( …i i, , n1 ) of
GL are selected based on this ordering, i.e.,

… ⊂ …i i I{ , , } {1, 2, , },n1 (9)

they are algebraically equivalent to as ordered pivots from a Cholesky
factorization of GL.

The multi-fidelity procedure builds the approximation
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where the coefficients c i( )k are learned from the low-fidelity data gi L,
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The solution of Eq. (11) provides the weights for the resultant sur-
rogate predictive model (∼gi H, ; Eq. (10)) and the column index selection
process provides the optimal sampling set of input parameters for
running the high-fidelity simulation with. This bi-fidelity model can be
easily extended to include more levels of fidelity [8], as will be briefly
discussed in the next section. Also, this procedure can be carried out
even with a few number of samples. Moreover, the computational cost
of formation and solution of Eq. (11) is often negligible when compared
to the computational cost of producing even one sample of a low-fi-
delity MD simulation (compare that to the cost of hyperparameter op-
timization for Gaussian process regression or coefficient recovery for
polynomial-based surrogate modeling). More importantly, in order to
use this procedure, one only needs to consider a low-fidelity model that
can capture the variation in the parameter space (which includes a
collection of model snapshots under different sets of parameters), which
indeed is a minimum requirement for a model. The resultant predictive
model might produce inaccurate results provided that there is a drastic
discrepancy between the behaviors of low- and high-fidelity in the
phase (parameter) space. It is also important to emphasize that dis-
crepancies that prove adversarial for the bi-fidelity approach would
need to manifest in parameter space and should not be confused with
the differences in models’ responses such as having different number
and positions of peaks in the solution space (see Refs. [7,10] for ex-
amples of such cases).

2.3. Extension to multi-fidelity model construction

The proposed procedure for the construction of the bi-fidelity ap-
proach can be easily extended to the cases, in which three or more
models exist. In such cases, the process of selection of important points
in the parameter space is performed based on the data obtained from
the model with the lowest accuracy and computational cost in the same
manner as discussed in the previous section. The models, which are
used in this multi-fidelity procedure, should be then organized in a
hierarchical manner from the lowest to the highest fidelity level. Next,
the process of multi-fidelity model construction proceeds by
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computation of the coefficients of the linear combination of the next
higher fidelity level using the samples from the one level lower fidelity
model in the hierarchy. This step by step procedure continues until, the
coefficients for the highest fidelity surrogate model are computed.
Finally, using Eq. (10) the quantities of interest can be estimated at
desired locations in the phase space. In this manuscript, only the cases
with bi-fidelity model construction are considered for the purpose of
demonstration and the proof of concept. The inclusion of more models
with the assumption of the increase in the computational cost with their
fidelity levels, is straightforward and may generate even higher accu-
racy and computational efficiency. A comprehensive and detailed de-
scription of this generalization can be found in the manuscript by Zhu
et al. [8].

3. Results and discussion

In order to demonstrate the proposed application capability to
construct an accurate predictive model for MD simulations, we present
two application examples in this section. These examples have been
selected such that the computational cost associated with the high-fi-
delity model is reasonable. Hence, evaluation of the prediction error
over a substantially large grid of sample points is tractable in these
cases. The error that is shown in the plots in this work is a median over
a size-I ensemble of errors. For example, the energy error is computed
as follows:

=
−∼

= …
E

E E
E

error( ) median
| |

.
i I

i H i H

i H1, ,

, ,

, (12)

While in the following test problems the same number of high- and
low-fidelity simulations have been carried out for the sake of the error

estimation, it should be noted that the proposed procedure is designed
such that one only needs n samples of high-fidelity MD simulations for
the accurate prediction of a size-I data set of quantities of interest
( ≪n I ).

3.1. Test Problem 1: Single-component system

The first benchmark example deals with the MD simulation of a one-
component LJ system. Here, the interatomic interactions between mo-
lecules of one type follows Eq. (1). For this example, we assume σ ε m, ,
or molecular mass to be 3 Å, 1 kcal

mol and 12.01 g
mol

, respectively. Here, the
boundary conditions in all sides of cubic simulation box (with the width
of 27.05 Å) are considered to be periodic. Also, we consider a uniform
grid of temperature and density defined as

× ×T ρ: [500, 1000] K [36.27, 701.29] kg
m3 ( ∗ρ : [0.05, 0.95]) with 114

sample points, where ρ and ∗ρ are density and dimensionless density
equal to Nm

V
and Nσ

V

3
, respectively. Here the mass of each particle (m)

and simulation box size ( =L V
1
3 ) is set to 12.01 g/mol and 27.05 Å,

respectively. Hence based on the aforementioned dimensionless density
range, the number of molecules is ranging from 36 to 696. The low-
fidelity simulations for this example have a temporal increment of 10
and 20 fs. On the other hand, setting the MD simulation time step to 1 fs
results in obtaining high-fidelity simulation data. As shown in Fig. 1,
the results from 10 fs simulations suffer much less from inaccuracy
compared to those of 20 fs simulations. However, as shown in Fig. 2,
after the implementation of the proposed bi-fidelity approach, we could
predict different properties from MD simulation with a very good ac-
curacy (less than 10% error) in spite of considerable low accuracy of the
low-fidelity model (20 fs simulation model). In the construction of these
bi-fidelity surrogate models only a few (25) samples from high-fidelity

Fig. 1. Comparison of properties predicted for single-component system as obtained using high fidelity model (Δt= 1 fs), low fidelity models (Δt= 20 fs and
Δt= 10 fs), and multi-fidelity approach based on low fidelity data and few (25) samples from high-fidelity; Test Problem 1.
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model are needed to obtain this level of accuracy Here, we tested two
equivalent weak greedy procedures for point selection algorithms listed
in Ref. [7] and obtained the very same ordering in a fraction of second.
Moreover, from our results, it appears that compared to the other MD
simulation acceleration approaches, the proposed method works even
with significant difference between high- and low-fidelity models re-
sponses (as shown in Fig. 1), and works well with small data availability
(see Fig. 2). Also, the sharp decline in the error appears to be the results
of redundancy in the data with respect to the corresponding variation in
the energy, diffusion coefficient, radial distribution function and mean

squared displacement of the investigated LJ system.
In comparison to the model constructed only by high-fidelity sam-

ples, the computational saving of using the proposed approach is very
significant. As shown in Fig. 3, this reduction in computational cost is
about 70% for achieving less than 10% prediction error. It is also worth
noting that the cost of this model construction method is insignificant
even compared to the cost of one low-fidelity MD simulation run. As
such, the resultant computational saving highlights not only this out-
standing feature of the proposed methodology but also its potential
capability to extend the application of MD simulation to explore larger

Fig. 3. Resultant computational saving from using the low fidelity model ( =tΔ 20 fs) in the prediction of the quantities of interest for the high fidelity model
( =tΔ 1 fs); Test Problem 1; 114 data points.

Fig. 2. Median error of the multi-fidelity model constructed based upon the results from the low fidelity models (MD simulations with =tΔ 20 and =tΔ 10 fs) in the
prediction of the quantities of interest for the high fidelity model ( =tΔ 1 fs); Test Problem 1; 114 data points.
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time-scales.
The other interesting aspect of using this approach is the physical

intuition that can be obtained by its process of importance sampling
(Gramian matrix column selection). As mentioned in Section 2, here we
assess the importance of samples based on ordered pivots from the
Orthogonal-triangular (QR) decomposition of VL. For this canonical
problem, we notice that, among first 50 sample points, this process
samples more frequently from low density region of the phase space
(see Fig. 4). This is more conspicuous if 10 fs MD simulation is con-
sidered as the low-fidelity model, due to its better accuracy as com-
pared to 20 fs model. Hence, it appears that in order to construct a
surrogate model that can describe the system behavior more accurately,
often more data are needed to capture the parametric variation in this
region.

3.2. Test Problem 2: Two-component system

The second test problem, which is discussed in this paper, involves
the construction of a predictive multi-fidelity model for molecular si-
mulations of a two-component glass-forming system. Here, the length
scale for pairwise interatomic interactions between molecules are
considered to be =σ 3.5 ÅA for interactions between molecules of type
“A”, =σ 3.888 ÅB for interactions between molecules of type “B” and

=σ σ σAB A B for interaction between both types of molecules. For this
experiment, 24 input data points in the density-temperature (para-
meter) space are considered. The number of molecules for each type is
set to be equal to 512. Once again, the boundary conditions are as-
sumed to be periodic for all sides of the simulation box. The tempera-
ture and simulation box length for these sample points vary between

Fig. 5. Comparison of properties predicted for two-component system as obtained using high fidelity model (dt= 1 fs), low fidelity model (dt= 20 fs), and multi-
fidelity approach based on low fidelity data and few (11) samples from high-fidelity; Test Problem 2.

Fig. 4. Importance sampling based on ordered pivots from the Orthogonal-triangular (QR) decomposition of GL; Test Problem 1; 114 data points.
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180 K and 290 K, and 37.62 Å and 38.35 Å, respectively. Unlike the
previous test problem, due to low temperature and slow dynamics at
some of these data points, exploring longer time-scales to estimate the
self diffusion coefficient is necessary. Here, the vector gi L, is comprised
of concatenation of three radial distribution functions involving inter-
actions of molecules of type “A” and “B” (R R,AA AB and RBB) as well as
corresponding diffusion coefficients (DA and DB) and system’s total
energy E. This vector, similar to Eqs. (6) and (7) can be normalized and
then the corresponding Gramian matrix (GL) can be constructed by
computing the inner products of the resultant vectors. As discussed
previously, the ranks of the sampling points is based on their im-
portance and can be produced by the Cholesky factorization or LU
factorization of GL or QR decomposition of VL matrix. All of these
equivalent linear algebra operations produced the very same ranking in
a fraction of second for this case, as we had expected.

In this approach, since samples are drawn from the phase space and
hence predictions are made for a desired set of parameters in this space,

there is absolutely no need for the low-fidelity snapshots to look similar
to the high-fidelity ones at all. This is shown in previous test problem
(see Fig. 1b) and once again, as shown in Fig. 5, the inaccuracy of the
low-fidelity two-component model (MD simulation with =tΔ 20 fs) is
reduced using the proposed procedure. Although only the enhancement
in the accuracy of RAB is shown in this figure, we observe similar
agreement between the bi- and high-fidelity estimation of RAA and RBB.
The extents of this error reduction for different MD simulation variables
are illustrated in Fig. 6. Similar to the previous case, a sharp decline in
the error is observed when the number of high fidelity samples exceeds
half size of the low-fidelity simulation training set. This decline leads to
a significant computational gain. As can be seen in Fig. 7, applying this
approach to reduce the error up to an order of magnitude requires only
25–35% of the computational effort needed for the full high-fidelity
based surrogate model and hence one can construct a surrogate model
that predicts the quantities of interest with a high accuracy (relative
error of less than 0.01) with a significant computational saving.

Fig. 7. Resultant computational saving from using the low fidelity model ( =tΔ 20 fs) in the prediction of the quantities of interest for the high fidelity model
( =tΔ 1 fs); Test Problem 2; 24 data points; averaged RDF: averaged median error for the prediction of R R,A B and RAB; averaged diffusion coefficient: averaged
median error for the prediction of DA and DB.

Fig. 6. Median error of the multi-fidelity model constructed based upon the results from the low fidelity model (MD simulations with =tΔ 20 fs) in the prediction of
the quantities of interest for the high fidelity model ( =tΔ 1 fs); Test Problem 2; 24 data points; averaged RDF: averaged median error for the prediction of R R,A B and
RAB; averaged diffusion coefficient: averaged median error for the prediction of DA and DB.
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Moreover, the application of the bi-fidelity approach to this test pro-
blem produces better accuracy and computational feasibility for pre-
dictive analysis of MD simulation all over the phase space in compar-
ison with standard direct interpolation schemes. Particularly as shown
in Fig. 8, when the results of this bi-fidelity analysis are compared with
the results of Gaussian process regression for fitting a surrogate model
using the high-fidelity MD data, it becomes clear that the proposed
approach often produces more accurate predictions by up to two orders
of magnitude. Here, after centering and normalization of high-fidelity
data, a standard Gaussian process regression algorithm that optimizes
hyperparameters along with the common choice of the squared ex-
ponential kernel function with isotropic distance measure are used. This
algorithm is available in MATLAB® via the GPML® routine [15]. For the
purpose of comparison only, a set of randomly selected high-fidelity
data is used as the training set. Furthermore, in order to evade local
minima for the hyperparameter optimization process, 10 sets of starting
points for both hyperparameters and noise are used. It is also worth
noting that we have found the process of optimization of hyper para-
meters for Gaussian process regression to be computationally more
costly than the proposed multi-fidelity strategy as the computational
speed of Cholesky factorization of the resultant Gramian matrix for the
point selection in parameter space clearly is larger than that of even
most efficient hyperparameter optimization approaches for this non-
convex optimization problem. Hence, it appears that the proposed ap-
proach for the construction of the multi-fidelity surrogate model is
superior to Gaussian process regression both with respect to accuracy
and computational cost for these particular test problems (the authors
observed similar behavior for a comparison on the first test problem;
these results are not included in this manuscript for the sake of its
brevity). One of the main reasons for this difference is that Gaussian
process emulators with optimized hyperparameters are non-adapted

approximations. That is, the predicted surface is constructed from a
dictionary of kernel functions whose variation may not be predictive of
the process being modeled. The bi-fidelity approach prescribed here
ameliorates this by using an approximation scheme in parameter space
that is adapted since it is built from the low-fidelity model. As such, the
bi-fidelity procedure uses the low-fidelity model for two purposes: (1)
to guide point selection, and (2) to build an adaptive approximation
scheme in parameter space. Hence, even if a Gaussian process emulator
uses training data built from intelligent point selection, it cannot boast
adaptive approximation properties.

4. Concluding remarks

In order to accelerate molecular simulation and explore larger time-
scale in a reasonable computational time, one natural approach is to
increase the simulation time-step. However, the penalty for this in-
crease is a significant inaccuracy of solutions. In this manuscript, an
approach is proposed to address this issue directly. The proposed multi-
fidelity predictive modeling method takes advantage of often low
computational costs associated with running an MD simulation with a
large time-step to identify a set of optimal sampling points. Next, by
sampling the solution of MD simulation with a small time-step a
quadrature rule for the accurate prediction of quantities of interest is
obtained. The capabilities of this approach were demonstrated with two
benchmark problems involving the (i) one- and (ii) two-component
Lennard-Jones systems. The results for both cases indicate the con-
sistent performance of the proposed multi-fidelity method in accurate
estimation of high-fidelity MD simulations. As the number of high-fi-
delity samples is small, one can gain a significant saving of computa-
tional time.

In short, this approach can be characterized by (1) short analysis

Fig. 8. Comparison of median error of the multi-fidelity model constructed based upon the results from the low fidelity model (MD simulations with =tΔ 20 fs) and
Gaussian process (GP) regression using high-fidelity data in the prediction of the quantities of interest; Test Problem 2; 24 data points.
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time even compared with computationally cheap low-fidelity simula-
tions, (2) requirement of relatively small number of high-fidelity model
evaluations, (3) effective use of low-fidelity simulation for importance
sampling and (4) the possibility of using any model that captures the
variations in the parameter space. Hence, its application can pave the
way to study more challenging problems in engineering practice, which
often demands exploring large-time scales, with MD simulations.
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