
A Compressed, Divide and Conquer Algorithm for
Scalable Distributed Matrix-Matrix Multiplication

Majid Rasouli
rasouli@cs.utah.edu
School of Computing
University of Utah

Salt Lake City, Utah, USA

Robert M. Kirby
kirby@cs.utah.edu

School of Computing
University of Utah

Salt Lake City, Utah, USA

Hari Sundar
hari@cs.utah.edu

School of Computing
University of Utah

Salt Lake City, Utah, USA

ABSTRACT

Matrix-matrix multiplication (GEMM) is a widely used linear
algebra primitive common in scientific computing and data
sciences. While several highly-tuned libraries and implemen-
tations exist, these typically target either sparse or dense
matrices. The performance of these tuned implementations
on unsupported types can be poor, and this is critical in
cases where the structure of the computations is associated
with varying degrees of sparsity. One such example is Alge-
braic Multigrid (AMG), a popular solver and preconditioner
for large sparse linear systems. In this work, we present a
new divide and conquer sparse GEMM, that is also highly
performant and scalable when the matrix becomes dense,
as in the case of AMG matrix hierarchies. In addition, we
implement a lossless data compression method to reduce
the communication cost. We combine this with an efficient
communication pattern during distributed-memory GEMM
to provide 2.24 times (on average) better performance than
the state-of-the-art library PETSc. Additionally, we show
that the performance and scalability of our method surpass
PETSc even more when the density of the matrix increases.
We demonstrate the efficacy of our methods by comparing
our GEMM with PETSc on a wide range of matrices.

CCS CONCEPTS

•Computingmethodologies→Parallel computingmethod-

ologies; Distributed algorithms; • General and refer-

ence→ Performance; • Mathematics of computing→
Mathematical software performance.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
HPCAsia 2021, January 20–22, 2021, Virtual Event, Republic of Korea
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8842-9/21/01. . . $15.00
https://doi.org/10.1145/3432261.3432271

KEYWORDS

sparse matrix product, dense matrix multiplication, GEMM,
algebraic multigrid, AMG, numerical linear algebra, parallel
computing, matrix compression, Golomb-Rice encoding

ACM Reference Format:

Majid Rasouli, Robert M. Kirby, and Hari Sundar. 2021. A Com-
pressed, Divide and Conquer Algorithm for Scalable Distributed
Matrix-Matrix Multiplication. In The International Conference on
High Performance Computing in Asia-Pacific Region (HPCAsia 2021),
January 20–22, 2021, Virtual Event, Republic of Korea. ACM, New
York, NY, USA, 10 pages. https://doi.org/10.1145/3432261.3432271

1 INTRODUCTION

Matrix-matrix multiplication (GEMM) is a key linear algebra
primitive commonly used by the computational and data sci-
ence communities. Examples include operations used as part
of the setup phase of algebraic multigrid methods (AMG)
[6], an example that we will use in this work to demon-
strate the effectiveness of our methods, as well as large-scale
graph analytics, where a linear algebra formulation is used,
such as triangle counting [1], graph clustering [15], breadth
first search [7], amongst others [9]. While there are several
highly-tuned distributed-memory matrix libraries available,
they usually target either sparse [2, 4] or dense [10] matri-
ces. Unfortunately, the performance and scalability of these
libraries is sub-optimal for matrices that are unsupported.
For the case of AMG and for graph algorithms where the lin-
ear algebra formulation necessitates a GEMM, the resulting
matrices can lose sparsity and become potential bottleneck
for performance and scalability if the underlying GEMM im-
plementation is unable to handle the loss of sparsity. The
main contribution of this work is the development of a scal-
able distributed-memory GEMM algorithm that is able to be
performant for varying levels of sparsity. We achieve this
by developing a new divide-and-conquer GEMM that recur-
sively divides the matrices vertically and horizontally. The
splitting and merging of the matrices are done efficiently
leveraging the sparse structure of the graphs, and aim to
identify and expose dense blocks in the resulting product,
for which we have implemented efficient data-structures.

https://doi.org/10.1145/3432261.3432271
https://doi.org/10.1145/3432261.3432271

HPCAsia 2021, January 20–22, 2021, Virtual Event, Republic of Korea Majid Rasouli, Robert M. Kirby, and Hari Sundar

These product blocks are then combined in an efficient man-
ner to produce the resulting product matrix 𝐶 in a sparse
format.
The dominant cost of a distributed GEMM is usually the

communication part. The situation gets even worse when
the matrices become denser. This causes high idle time for
processors waiting until the communication is finished. To
address this situation, we have implemented a lossless data
compression. Before sending the data, processors compress
it. Then, after receiving the data, they decompress it and
use it. Following this method, we show significant reduction
in the communication cost and improved scalability for the
GEMM operation.
We demonstrate the effectiveness of our algorithms and

data-structures by comparing with PETSc [2] and demon-
strate performance comparable to, and in some cases better
than, PETSc for sparse matrices. In contrast, while the per-
formance and scalability of PETSc suffers when the matrices
become denser, our GEMM demonstrates excellent scalabil-
ity even for these cases. We use the example of building an
AMG grid hierarchy to evaluate our methods. Specifically, an
AMG grid hierarchy is built using a Galerkin approximation
by the multiplication of three sparse matrices. This leads to
increasing loss of sparsity at coarser levels.

The main contributions of this work are:
• A new divide and conquer algorithm for GEMM that is
able to perform efficiently for a wide range of sparsity
patterns;
• A new communication pattern to improve the parallel
scalability of GEMM;
• A lossless data compression for data exchange; and
• A thorough evaluation and scalability study to demon-
strate the effectiveness of the proposed methods.

The rest of the paper is organized as follows. In the next
section, we provide background into AMG to help the readers
understand the target application. We chose AMG as the
application because we wanted to consider realistic scenarios
where variable sparsity patterns are encountered.We provide
a brief review of related work in §1.2. In §2 we discuss the
different strategies used to improve the performance and
scalability of GEMM. In §3 we show the strong and weak
scaling of our methods and compare our method with PETSc.
Finally, we conclude the paper in §4.

1.1 Background - AMG

AMG has been a popular method for solving the large-scale
and often sparse linear system one obtains from discretiza-
tion of elliptic partial differential equations. The linear sys-
tem can be written as

𝐴𝑥 = 𝑏 (1)

in which, 𝐴 ∈ 𝑅𝑛×𝑛 , 𝑥 and 𝑏 ∈ 𝑅𝑛 . AMG consists of a setup
and a solve phase. During the setup phase, a hierarchy of
matrices is computed based on the matrix 𝐴. The hierarchy
then will be used in the solve phase to get the solution 𝑥 . The
dominant cost of the setup phase is the matrix-matrix mul-
tiplications needed to compute the coarse-grid approxima-
tion (Galerkin approximation). The multiplications gets even
more costly in deeper levels of the hierarchy, because sparse
matrix products cause fill-in, i.e. increasing the number of
nonzeros. This is where a GEMM that performs efficient for
a wide range of sparsity rates becomes important and the
scalability of the whole AMG would greatly depend on it.

While AMG is highly attractive due to its black-box nature
[6, 16, 17], it does not scale well due to the loss of sparsity at
coarser levels arising from the Galerkin approximation [14],
leading to poor scalability, especially at the coarser levels.
In this paper, we develop a GEMM algorithm that would
perform well for all ranges of sparsity rates, for which AMG
would be a great application case.

1.2 Related Work

While significant research has been done on improving the
efficiency and scalability of sparse matrix-vector products,
sparse GEMM in comparison has received far less attention.
Yuster and Zwick [18] provide a theoretically nearly opti-
mal algorithm for multiplying sparse matrices, but rely on
fast rectangular matrix multiplication. Consequently the ap-
proach is currently of only theoretical value. In [3], Buluc
and Gilbert present algorithms for parallel sparse GEMM
using a two-dimensional block data distributions with serial
hypersparse kernels. Gremse et al. [8] present a promising
algorithm using iterative row merging to improve the per-
formance on GPUs. Similarly, Saule et al. [13] evaluate the
performance of sparse matrix multiplication kernels on the
Intel Xeon Phi. Most AMG implementations have relied on
standard sparseGEMM implementations without any special
considerations for the structure of the matrices generated
within AMG. This work attempts to fill this gap.

2 METHODS

In this section, we present our divide and conquer GEMM al-
gorithm. We first explain our recursive function and how
matrices are being divided to smaller blocks. Then, we ex-
plain how the communication is being done in an overlapped
distributed fashion to help the recursive function scale better.
In addition, we present our compression method to further
reduce the communication cost.

2.1 Matrix-Matrix Multiplication

Wedesign a divide and conquer approach to performGEMM in
a node-local fashion. The key idea is to perform simple tasks

A Compressed, Divide and Conquer Matrix-Matrix Multiplication HPCAsia 2021, January 20–22, 2021, Virtual Event, Republic of Korea

while recursing, having efficient memory access, and to per-
form the multiplication for small chunks where the resulting
matrix can fit into an appropriate cache. For clarity of pre-
sentation, we assume that the data is available locally and
discuss it as a serial implementation. Shared memory paral-
lelism is added in a straightforward manner. The distributed
part is explained in the next section.

To perform the multiplication
𝐶 = 𝐴 × 𝐵 (2)

we keep splitting the matrices horizontally and vertically
(Figure 1) based on row size and column size of the matrices,
until we can fit the result of the multiplication in a pre-
allocated buffer.

Figure 1: A basic scheme that shows splitting the ma-

trix first horizontally, then vertically.

The recursive function, RECURS_GEMM, includes three
cases:
(1) Case 1: Stop the recursion and perform the multiplica-

tion.
(2) Case 2: 𝐴 is horizontal (𝑟𝑜𝑤 𝑠𝑖𝑧𝑒 ≤ 𝑐𝑜𝑙 𝑠𝑖𝑧𝑒). Split 𝐴

column-wise and 𝐵 row-wise.
(3) Case 3: 𝐴 is vertical (𝑟𝑜𝑤 𝑠𝑖𝑧𝑒 > 𝑐𝑜𝑙 𝑠𝑖𝑧𝑒). Split 𝐴 row-

wise and 𝐵 column-wise.

2.1.1 Case 1. For this part, we have tried three methods:
(1) Dense buffer;
(2) Intel MKL’s𝑚𝑘𝑙_𝑑𝑐𝑠𝑟𝑚𝑢𝑙𝑡𝑐𝑠𝑟 ; and
(3) Intel MKL’s𝑚𝑘𝑙_𝑠𝑝𝑎𝑟𝑠𝑒_𝑠𝑝𝑚𝑚.
First we explain our dense buffer implementation, since

the main idea of the three methods is the same. Our goal is
to fit the multiplication result of blocks of𝐴 and 𝐵 in a dense
buffer. We represent the blocks of𝐴 and 𝐵 as𝐴𝑖 𝑗 and 𝐵𝑙𝑘 . We
use two indices here because the matrices get divided both
horizontally and vertically. The size of the dense buffer to
store 𝐴𝑖 𝑗 × 𝐵𝑙𝑘 is

𝑟𝑜𝑤 𝑠𝑖𝑧𝑒 𝑜 𝑓 𝐴𝑖 𝑗 × 𝑐𝑜𝑙𝑢𝑚𝑛 𝑠𝑖𝑧𝑒 𝑜 𝑓 𝐵𝑙𝑘 . (3)
Therefore, Equation (3) can be used as the naive choice

to decide when to stop the recursion, but Figure 2 shows
why that is not a good choice. If we use Equation (3) for this
example, the splitting process for the top two blocks of the
matrix stops at the same step because they have the same

size, but to have a more efficient method the top left block
should be divided to more blocks than the top right block.

Figure 2: Using row and column sizes to decide when

to stop the recursion is not efficient, because the top

left block is the same size as the top right one, but it

should be divided to more sub-blocks.

Furthermore, by splitting sparse matrices recursively, we
will have more and more zero rows and columns in the re-
sulting blocks. So, using row size and column size of the
blocks is not very helpful. Instead, we use nonzero rows and
nonzero columns.
At the start of the recursive function, we compute the

number of nonzero rows of A (𝐴_𝑛𝑛𝑧_𝑟𝑜𝑤) and nonzero
columns of B (𝐵_𝑛𝑛𝑧_𝑐𝑜𝑙). A threshold for

nnz_mat_size := 𝐴_𝑛𝑛𝑧_𝑟𝑜𝑤 × 𝐵_𝑛𝑛𝑧_𝑐𝑜𝑙 (4)

is set. Our code has a profiling function that allows us to
empirically determine the appropriate threshold by running
several test cases. This is machine dependent and needs to
be done only once on a new machine.

We allocate a memory block of size of the threshold once,
before starting the matrix product, to use for all the multipli-
cations that we do in the recursive calls.
When performing the multiplication, at least one of the

matrices, typically the output, needs random access as it is
accumulating the results. Given that the divide and conquer
approach has reduced the size of the output matrix, we keep
a temporary buffer for dense matrix storage. Each nonzero
of 𝐵 is multiplied by its corresponding nonzero of 𝐴 and the
result will be added to the corresponding index in the dense
matrix. As long as the dense matrix is small enough to fit
within the 𝐿2 cache, we should get good performance. At
the end of the multiplication, we traverse the dense matrix
and extract the non-zeros as a sparse matrix.

When we reach the stop condition for each recursive call,
we preform the following steps:

(1) Initialize the first nnz_mat_size entries to 0.
(2) Perform the multiplication and add the result entries

to the buffer matrix.

HPCAsia 2021, January 20–22, 2021, Virtual Event, Republic of Korea Majid Rasouli, Robert M. Kirby, and Hari Sundar

(3) Extract nonzeros from the dense matrix and add them
to C.

As the next steps, to perform the multiplication when we
stop the splitting, we have tried two of the Intel’s MKL sparse-
sparse matrix multiplication functions,𝑚𝑘𝑙_𝑠𝑝𝑎𝑟𝑠𝑒_𝑠𝑝𝑚𝑚

and𝑚𝑘𝑙_𝑑𝑐𝑠𝑟𝑚𝑢𝑙𝑡𝑐𝑠𝑟 . The former,𝑚𝑘𝑙_𝑠𝑝𝑎𝑟𝑠𝑒_𝑠𝑝𝑚𝑚, is the
newer function in Sparse BLAS part of MKL. This function
does not have much memory management. So, we cannot
follow our approach to allocate a buffer first, then reuse that
to store the results of small blocks of 𝐴 and 𝐵. On the other
hand,𝑚𝑘𝑙_𝑑𝑐𝑠𝑟𝑚𝑢𝑙𝑡𝑐𝑠𝑟 is perfect for our algorithm. To use it,
the memory for the result matrix 𝐶 should be pre-allocated.
Also, there is no function overhead to use this function, like
the previous case.
One adjustment that we needed to use this function was

related to the sparse format. Our matrices are stored in the
CSC format, but this function only works on CSR matrices.
Since the transpose of a matrix stored in the CSC format,
would be in CSR, we use the following fact and pass the
matrices 𝐴 and 𝐵 in the opposite order to the function and
have the result matrix 𝐶 back in CSC format:

𝐴𝐶𝑆𝐶 × 𝐵𝐶𝑆𝐶 = (𝐵𝑇𝐶𝑆𝑅 ×𝐴
𝑇
𝐶𝑆𝑅)

𝑇 = 𝐶𝑇
𝐶𝑆𝑅 = 𝐶𝐶𝑆𝐶 . (5)

Comparing the three methods mentioned in this section,
𝑚𝑘𝑙_𝑑𝑐𝑠𝑟𝑚𝑢𝑙𝑡𝑐𝑠𝑟 was significantly faster than the other two
functions. We use this method for the rest of the paper.

2.1.2 Case 2. When A is horizontal, i.e. its row size is less
than or equal to its column size, we halve A by column based
on its column size (Figure 3). Since row size of B equals
column size of A, we halve B by row, so it will be a split
similar to A, but horizontally. Then, the RECURS_GEMMwill
be called twice, once on 𝐴1 and 𝐵1, and again on 𝐴2 and 𝐵2
(Algorithm 1). The results of the two multiplications need
to be added together at the end. This results in there being
entries in the result matrix that have the same index. We
call these entries duplicates. Since there will be numerous
nested recursive calls, we avoid doing adding duplicates at
this stage. After the starting recursive function is finished,
we sort 𝐶 and then add the duplicates only once at the end.

A

A1 A2

B1

B2

A1xB1

A2xB2
+x =

B

C

Figure 3: Case 2: When A is horizontal, split A by col-

umn and B by row. Call the recursive function twice.

B

B1 B2

A1

A2

A1xB1

A2xB1

x =

A C

A1xB2

A2xB2

Figure 4: Case 3:WhenA is vertical, split A by row and

B by column. Call the recursive function four times.

Algorithm 1 Case 2: 𝐶 = RECURS_GEMM2(𝐴, 𝐵)
Input: 𝐴, 𝐵
Output: 𝐶

1: (𝐴1, 𝐴2) = split_by_col(𝐴)
2: (𝐵1, 𝐵2) = split_by_row(𝐵)
3: 𝐶 ← RECURS_GEMM(𝐴1, 𝐵1)
4: 𝐶 ← RECURS_GEMM(𝐴2, 𝐵2)

2.1.3 Case 3. When A is vertical, i.e. its row size is greater
than its column size, we halve A by row and B by column
(Figure 4). This time the RECURS_GEMM will be called four
times (Algorithm 2). Although we have 4 recursive calls in
this case, but there is no duplicates at the end, which makes
this case more efficient than Case 2 for the total time, because
we have a smaller set of entries to sort and add the duplicates.

Algorithm 2 Case 3: 𝐶 = RECURS_GEMM3(𝐴, 𝐵)
Input: 𝐴, 𝐵
Output: 𝐶

1: (𝐴1, 𝐴2) = split_by_row(𝐴)
2: (𝐵1, 𝐵2) = split_by_col(𝐵)
3: 𝐶 ← RECURS_GEMM(𝐴1, 𝐵1)
4: 𝐶 ← RECURS_GEMM(𝐴2, 𝐵1)
5: 𝐶 ← RECURS_GEMM(𝐴1, 𝐵2)
6: 𝐶 ← RECURS_GEMM(𝐴2, 𝐵2)

We have also implemented splitting based on the number
of nonzeros. In Case 2, we split 𝐴 in a way to have half of
nonzeros in 𝐴1, and the other half in 𝐴2. The same split is
used for 𝐵. In Case 3, we do the same, but separately for both
𝐴 and 𝐵. We compare these two splitting methods in the last
section.

2.1.4 All together. When all three cases work together, we
have Case 2 and Case 3, that aim to divide the matrices into
skinny matrices such that the resulting matrix is small. Then
by using a hybrid multiplication algorithm, we get these
results. These results are then accumulated and merged to-
gether. From a memory access perspective, the accumulation
and merging required for Case 2 and 3 is structured access to

A Compressed, Divide and Conquer Matrix-Matrix Multiplication HPCAsia 2021, January 20–22, 2021, Virtual Event, Republic of Korea

P0

P1

P2

P0

P1

P2
A

B

Figure 5: Partitioning of the matrices across the pro-

cessors in row blocks.

the matrix, with the only random access happening during
Case 1. This makes the overall algorithm very efficient.

2.2 Communication

In the previous section, we explained how to perform RE-
CURS_GEMM if the data is available locally. In this sec-
tion, we explain how the communication is done to perform
𝐶 = 𝐴×𝐵 in a distributed fashion. Then we demonstrate how
we reduce the communication cost by applying an integer
compression method.

2.2.1 Overlapped Communication. Matrices are partitioned
across multiple processors by row blocks (Figure 5). Since
matrices 𝐴 and 𝐵 may have different number of rows, they
may not be partitioned the same way. We avoid communi-
cating 𝐴 in our method and only communicate 𝐵, to avoid
any communication at the end of the multiplication. Algo-
rithm 3 shows how the communication is done. We use𝑀𝑃𝐼

for communicating sub-matrices between processors. 𝑛𝑝𝑟𝑜𝑐𝑠
is the total number of processors and𝑚𝑦𝑟𝑎𝑛𝑘 is each proces-
sor’s rank. 𝐼𝑠𝑒𝑛𝑑 and 𝐼𝑟𝑒𝑐𝑣 are MPI’s non-blocking send and
receive commands, which means sending and receiving data
gets started but the program does not stop for it to finish.
Instead, it runs the next commands until it reaches the𝑤𝑎𝑖𝑡

command.
It is an overlapped implementation, so while the proces-

sors are communicating the data, the multiplication is being
executed on the available data from the previous processor
(so executing RECURS_GEMM between the Isend-Irecv part
and wait). This is done so that we save a portion of the time
that the communication takes and use it to do the multiplica-
tion. The other advantage of our communication algorithm is
having each processor to communicate only with their neigh-
bors. Another advantage of using an overlapped approach
will be explained in the compression part.

2.2.2 Compression. We have implemented our GEMM algo-
rithm in C++. Thematrices are stored in theCSC (Compressed
Sparse Column) format, in which 3 arrays are needed: one to

Algorithm 3 𝐶𝑖 = 𝐴𝑖 × 𝐵
Input: 𝐴𝑖 , 𝐵
Output: 𝐶𝑖 (result of 𝐴𝑖 × 𝐵)
1: 𝐵_𝑠𝑒𝑛𝑑 ← 𝐵𝑖
2: for 𝑘 =𝑚𝑦𝑟𝑎𝑛𝑘 :𝑚𝑦𝑟𝑎𝑛𝑘 + 𝑛𝑝𝑟𝑜𝑐𝑠 do
3: 𝐼𝑠𝑒𝑛𝑑 (𝐵_𝑠𝑒𝑛𝑑) to left neighbor
4: 𝐵_𝑟𝑒𝑐𝑣 ← Irecv(remote 𝐵) from right neighbor
5: 𝐶𝑖 ← RECURS_GEMM(𝐴𝑖 , 𝐵_𝑠𝑒𝑛𝑑)
6: wait for Isend and Irecv to finish
7: 𝑠𝑤𝑎𝑝_𝑝𝑜𝑖𝑛𝑡𝑒𝑟𝑠 (𝐵_𝑠𝑒𝑛𝑑, 𝐵_𝑟𝑒𝑐𝑣)
8: end for

9: locally sort 𝐶𝑖 and add duplicates

store row indices, the second one to have scan on columns
and the third one to store values of the matrix entries. We
use data-type int for the first two arrays and double for the
values.

The communication cost is usually the dominant cost to
perform our GEMM, especially when the matrices become
denser. To reduce the communication cost, we designed a
lossless compression method to reduce the size of the int
arrays. Then, each processor after receiving the sub-matrix,
decompresses it and uses it.

We designed a compression method based on the Golomb-
Rice encoding [12] algorithm, which is a lossless integer
compression method. First, we choose a fixed integer number
𝑀 . Then we can write each integer number 𝑎 as:

𝑎 = 𝑞 ×𝑀 + 𝑟 (6)

in which, 𝑞 is the quotient of 𝑎/𝑀 and 𝑟 is the remainder.
Now, we have 2 smaller integer numbers 𝑞 and 𝑟 . We store
𝑟 in bit arrays, but do not encode 𝑞. For any given integer
array, the goal is to choose an𝑀 which is not very big but
makes the quotient (𝑞) zero for most entries of the array.
By choosing 𝑀 as a power of 2, we can make divisions

by 𝑀 possible by bit operations. If 𝑀 = 2𝑘 , then 𝑎/𝑀 is
equivalent to 𝑎 >> 𝑘 . The same is true for multiplications.
𝑞 ×𝑀 can be done by 𝑞 << 𝑘 .

We need to divide by𝑀 for compression and multiply by
𝑀 for decompression, which now can be done very fast by
shifting bits. Also, we can store 𝑟 in 𝑘 bits and use 1 bit to
know if 𝑞 was zero or non-zero (we call that the 𝑞 − 𝑏𝑖𝑡).
Finally, if 𝑞 was non-zero, we set the 𝑞 − 𝑏𝑖𝑡 to 1 and store 𝑞
as a short integer, which usually takes 2 bytes (half of int).
We can have a better compression rate, if more 𝑞’s are

zero. To achieve that, to compress an array 𝐴, instead of
compressing each entry, we do so on the differences of the
entries. So, to compress
𝐴[0], 𝐴[1], 𝐴[2], 𝐴[3], ...
we apply the compression on:
𝐴[0], 𝐴[1] −𝐴[0], 𝐴[2] −𝐴[1], 𝐴[3] −𝐴[2],

HPCAsia 2021, January 20–22, 2021, Virtual Event, Republic of Korea Majid Rasouli, Robert M. Kirby, and Hari Sundar

We have implemented a part to check the array that we
want to compress, and decide between two values for 𝑘 , 7
or 15. The reason is that, we need 𝑘 + 1 bits to store the
remainder part and the 𝑞 − 𝑏𝑖𝑡 , and it is more efficient to do
the compression and decompression if 𝑘 + 1 is a multiple of 8.
Because each byte is 8 bits and processing complete bytes is
faster than doing so on two or more partial bytes. To make it
more clear, let us assume 𝑘 is 5. Then, to write a compressed
number, we need to write 6 bits of a byte. To compress the
next number we need to do the same on the last 2 bits of the
current byte and 4 bits of the next byte. Processing partial
bytes adds a big processing time to our operations, so we
keep whole bytes for the compression method.

If the difference between consequent entries in the arrays
are big, then using 𝑘 = 7 may result in high number of
non-zero 𝑞’s, because any difference which is higher than
𝑀 = 27 = 128 will have a non-zero 𝑞. That’s the reason
we also check 𝑘 = 15. In this case, any number less than
𝑀 = 215 = 32768 has a zero 𝑞, so we do not need to store
that quotient.
In the best case scenario (𝑘 = 7 and zero 𝑞), we would

need 7 + 1 = 8 bits (1 byte) to store integers (which are 4
bytes). In this case, we save %75. In the worst case (𝑘 = 15
and non-zero 𝑞), we would need 15 + 1 = 16 bits (2 bytes)
for the remainder and 2 bytes to store the quotient, which
would be the same size as int.

Algorithm 4 shows the communication algorithm after
applying the compressionmethod.We see another advantage
of using the overlapped communication here, to hide the
decompression cost.
Table 1 shows how much we save by applying our com-

pression method on 8 matrices from the SuiteSparse Matrix
Collection. We present the result of our compression method
on 335 matrices from that collection in the nex section.

Algorithm 4 𝐶𝑖 = 𝐴𝑖 × 𝐵
Input: 𝐴𝑖 , 𝐵
Output: 𝐶𝑖 (result of 𝐴𝑖 × 𝐵)
1: 𝐵_𝑠𝑒𝑛𝑑 ← 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠 (𝐵𝑖)
2: for 𝑘 =𝑚𝑦𝑟𝑎𝑛𝑘 :𝑚𝑦𝑟𝑎𝑛𝑘 + 𝑛𝑝𝑟𝑜𝑐𝑠 do
3: Isend(𝐵_𝑠𝑒𝑛𝑑) to left neighbor
4: 𝐵_𝑟𝑒𝑐𝑣 ← Irecv(remote 𝐵) from right neighbor
5: 𝐵 𝑗 ← 𝑑𝑒𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠 (𝐵_𝑠𝑒𝑛𝑑)
6: 𝐶𝑖 ← RECURS_GEMM(𝐴𝑖 , 𝐵 𝑗)
7: wait for Isend and Irecv to finish
8: 𝑠𝑤𝑎𝑝_𝑝𝑜𝑖𝑛𝑡𝑒𝑟𝑠 (𝐵_𝑠𝑒𝑛𝑑, 𝐵_𝑟𝑒𝑐𝑣)
9: end for

10: locally sort 𝐶𝑖 and add duplicates

Table 1: Sample compression rates on 8matrices from

the Florida Matrix Collection

Matrix ID saving %
1 63

1213 56
1257 73
1402 56
1403 53
1412 50
1421 51
1883 50

3 NUMERICAL RESULTS

Our platform is called Saena. It is written in C++ using MPI
and OpenMP and is freely available on GitHub (url withheld
for review) under an MIT license. All experiments were con-
ducted on Frontera at the Texas Advanced Computing Center
(TACC). The configuration of each compute node is described
below:
• Processors:
– Intel Xeon Platinum 8280 ("Cascade Lake")
– Number of cores: 28 per socket, 56 per node.
– Clock rate: 2.7𝐺ℎ𝑧 ("Base Frequency")
– "Peak" node performance: 4.8𝑇𝐹 , double precision
• Memory: 𝐷𝐷𝑅 − 4 memory, 192GB/node
• Network: Mellanox InfiniBand, HDR-100

For these experiments we have used matrices from the
SuiteSparseMatrix Collection (formerly known as the Florida
Matrix Collection) [5]. We have used the symmetric matrices
that have at least 50𝑘 number of rows and columns. For the
compression experiment, we have used 335matrices. For the
PETSc comparison experiments, we have used 264 of them,
because of some limitations, such as lack of enough mem-
ory (for matrices with very high number of nonozeros) or
the inability of our software to partition the irregular cases
between processors before calling GEMM. The symmetry
condition is not a requirement for our method. We need to
pass the transpose the right-hand matrix to our GEMM func-
tion. For simplicity, we have chosen the symmetric cases.
To perform the multiplication, we multiply the matrix

with itself, assuming that the matrix is being multiplied with
a separate matrix, so not using any information from the
left-hand side matrix for the right-hand side one.

As the first experiment, we show the efficacy of our com-
pression method. We perform the compression on a matrix
in the CSC (Compressed Sparse Column) format, which has
two integer arrays for the indices and one floating point
array for the values. We perform the compression only on
the integer arrays.

A Compressed, Divide and Conquer Matrix-Matrix Multiplication HPCAsia 2021, January 20–22, 2021, Virtual Event, Republic of Korea

Figure 6 shows the compression rate on 335 matrices. We
use the term compression rate as the percentage we reduce
the data size, so 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑠𝑖𝑧𝑒 − 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑠𝑖𝑧𝑒

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑠𝑖𝑧𝑒
. The x axis shows

the least compression rate and the y axis shows the cumula-
tive percentage of the matrices that we can compress up to
any rate. Point (𝑥,𝑦) on the line tells us we can compress %𝑥
of the matrices to at least %𝑦 compression rate. For instance,
we can gain at least %30 compression rate on all the matrices,
%70 compression rate on almost %20 of the matrices and we
can not compress any matrix higher than %75 compression
rate. These numbers show the rate only for integer arrays
of the matrix, and does not include the floating point array.
The total compression rate that we gain on the whole matrix
is in the %20 − 25 range.

0

25

50

75

100

10 20 30 40 50 60 70 80 90 100
Least Compression Rate %

C
um

ul
at

iv
e

P
er

ce
nt

ag
e

of
 M

at
ric

es

Figure 6: This plot shows the compression rate on 335
matrices. It shows how much we can reduce the data

size by using our compression method.

Figure 7 shows the average speed-up of one GEMM on 264
matrices when using our method, comparing with PETSc.
These experiments are done on 32 nodes, each with 28 MPI
tasks. The horizontal dashed line at 1 shows the base for the
comparison. Any dot above that line shows the speed-up we
gain by using our method and any dot below that shows we
lose performance. 207 matrices are above the red line, so we
gain speed-up on %78 of the cases. The average gain is 2.24𝑥 ,
so on average we gain more than twice execution time boost.
The majority of the cases that our method is slower, are

the matrices that are very close to diagonal matrices. Our
method, because of its divide and conquer nature, would
spend time on any sub-blocks of the matrix, even the ones
that only have very few nonzeros, which causes our method
to be slower than PETSc. The cases that we are significantly

ahead of PETSc, are the ones that have nonzeros far from the
diagonal of the matrix. Our algorithm shows its capabilities
in these cases, because it is agnostic about on what parts of
the matrix it is performing the multiplication.

1

10

100

0 100 200

Matrix
S

pe
ed

−
up

 (
lo

ga
rit

hm
ic

)

Figure 7: This plot shows the average speed-up of one

GEMM on 264 matrices when using our method, com-

paring with PETSc. Dots above the red dashed line

show the matrices that benefit from our multiplica-

tionmethod.GEMM is slower by using ourmethod on

the ones below the red line.

Figure 8 shows the histogram plot based on the same
results. The x axis shows the speed-up we gain or lose and
the height of each bar shows the number of matrices with
that boost rate. Any bar on the right side of the red dashed
line shows the gain and any bar on the left shows the cases
with performance loss.

Our application, as explained in Section 1, is Algebraic
Multigrid. The previous two plots show how effective our
method is at the finest level of the multigrid hierarchy, if
those matrices are used in an AMG solver. At the coarser lev-
els of multigrid (levels 2 and above), the matrices get denser
and our method performs even better on them. In the fol-
lowing plots, we compare one GEMM execution time using
our method and PETSc in the cases that our method was
slower than PETSc. To have a fair comparison, we first cre-
ate a multigrid hierarchy (5𝑙𝑒𝑣𝑒𝑙𝑠) using our software. Then
we call GEMM on those matrices, by both PETSc and our
method. By following this heuristic, instead of creating the
hierarchy separately, we can compare the GEMM operation
on the exact same matrices at all levels of the hierarchy.
Figures 9 - 11 show GEMM comparison on three matri-

ces for which our method was slower than PETSc. They

HPCAsia 2021, January 20–22, 2021, Virtual Event, Republic of Korea Majid Rasouli, Robert M. Kirby, and Hari Sundar

m

0

10

20

30

0.1 1 10 100
Speed−up (logarithmic)

M
at

rix
 C

ou
nt

Figure 8: This plot is the histogram plot of speed-up

gain or loss using our method comparing with PETSc.

The matrices that are on the right side are the ones

that perform GEMM faster based on our method and

the ones on the left are slower than PETSc.

show GEMM at 5 levels of the hierarchy. Level 1 is the finest
level. We observe that our method out-performs PETSc in the
coarse levels, except one case. Also, we can see that the total
matrix multiplication time is shorter by using our method.

0.15

0.20

0.25

0.30

0.35

1 2 3 4 5
Multigrid Level

lo
g

−
sc

a
le

 T
im

e
 (

s)

PETSc
Saena

Figure 9: This plot compares the average time of one

GEMM on a matrix (𝑙𝑑𝑜𝑜𝑟) for which our method is

slower at the finest level. Our method out-performs

PETSc at levels 2 − 5.

To compare strong scaling, we have chosen 4 matrices
from different speed-up gain or loss range. They are marked
by the dashed lines in Figure 12. The strong scaling of one
GEMM time for thosematrices are shownwith the same color
in Figure 13. The solid lines show the time for our method

0.03

0.10

0.30

1.00

1 2 3 4 5
Multigrid Level

lo
g

−
sc

a
le

 T
im

e
 (

s)

PETSc
Saena

Figure 10: This plot compares the average time of one

GEMM on a matrix (𝐻𝑜𝑜𝑘_1498) for which our method

is slower at the finest level. Our method out-performs

PETSc at levels 2 − 5.

0.3

1.0

3.0

10.0

1 2 3 4 5
Multigrid Level

lo
g

−
sc

a
le

 T
im

e
 (

s)

PETSc
Saena

Figure 11: This plot compares the average time of one

GEMM on amatrix (𝐵𝑢𝑚𝑝_2911) for which ourmethod

is slower at the finest level. Our method out-performs

PETSc at levels 3 − 5.

(Saena), while the dashed lines show the PETSc execution
times. Each matrix is shown with the same color for both
our method and PETSc.

As the final plot, we compare the strong scaling at 2 levels
of the multigrid (levels 1 and 4) for a case that our method
was slower at the finest level. We can observe from Figure 14
that the performance and scalability of our method improves
significantly at the coarser level.

A Compressed, Divide and Conquer Matrix-Matrix Multiplication HPCAsia 2021, January 20–22, 2021, Virtual Event, Republic of Korea

0

10

20

30

0.1 1 10 100
Speed−up (logarithmic)

M
at

rix
 C

ou
nt

Figure 12: This plot shows the 4 matrices (the dashed

lines) that we have chosen from different speed-up

gain or loss range, for the strong scaling plot.

0.03

0.10

0.30

1.00

3.00

2 4 8 16 32 64 128
Number of Nodes

lo
g

−
sc

a
le

 T
im

e
 (

s)

PETSc_Bump

PETSc_darcy

PETSc_ldoor

PETSc_SiO2

Saena_Bump

Saena_darcy

Saena_ldoor

Saena_SiO2

Figure 13: This plot shows the strong scaling of one

GEMM time for 4 matrices. The solid lines show the

time for our method (Saena), while the dashed lines

are for PETSc. The two timings for the same matrix

have the same color.

4 CONCLUSION

Wehave presented a divide and conquer approach to improve
the performance and scalability of GEMM. Our GEMM has a
very good performance and is scalable even when the matrix
becomes very dense, as in the case of AMG matrix hierar-
chies. We have also designed an overlapped communication
method to improve the efficiency of our algorithm. Our com-
pression method also worked very well for reducing the data

0.1

0.3

0.5

4 8 16 32 64 128
Number of Nodes

lo
g−

sc
al

e
Ti

m
e

(s
)

PETSc_L1

PETSc_L4

Saena_L1

Saena_L4

Figure 14: This plot shows the strong scaling for a ma-

trix at levels 1 and 4. The solid lines show the timing

for Saena (our method), while the dashed lines are for

PETSc. Each level is shown with same color.

size and consequently the communication cost. We demon-
strated performance gains from using our method and com-
pared our multiplication with the in-built function within
PETSc. In our future work, we want to further improve our
performance and scalability and also focus on using sparsifi-
cation algorithms to ensure the sparsity of coarser levels in
the AMG application.

ACKNOWLEDGMENTS

This work was supported in part by the National Science
Foundation grant CCF-1704715 and Army Research Office
W911NF1510222 (Program Manager Dr. Mike Coyle). This
research used resources of the Extreme Science and Engi-
neering Discovery Environment (XSEDE), allocation number
𝑃𝐻𝑌20033.

REFERENCES

[1] Ariful Azad, Aydin Buluç, and John Gilbert. 2015. Parallel triangle
counting and enumeration using matrix algebra. In 2015 IEEE Interna-
tional Parallel and Distributed Processing Symposium Workshop. IEEE,
804–811.

[2] Satish Balay, Shrirang Abhyankar, Mark F. Adams, Jed Brown, Peter
Brune, Kris Buschelman, Lisandro Dalcin, Victor Eijkhout, William D.
Gropp, Dinesh Kaushik, Matthew G. Knepley, Dave A. May, Lois Curf-
man McInnes, Karl Rupp, Barry F. Smith, Stefano Zampini, Hong
Zhang, and Hong Zhang. 2017. PETSc Web page. http://www.mcs.anl.
gov/petsc. (2017). http://www.mcs.anl.gov/petsc

[3] A. Buluç and J. Gilbert. 2012. Parallel Sparse Matrix-Matrix Mul-
tiplication and Indexing: Implementation and Experiments. SIAM
Journal on Scientific Computing 34, 4 (2012), C170–C191. https:
//doi.org/10.1137/110848244 arXiv:https://doi.org/10.1137/110848244

[4] Aydin Buluç and John R Gilbert. 2011. The Combinatorial BLAS:
design, implementation, and applications. The International Journal
of High Performance Computing Applications 25, 4 (2011), 496–509.
https://doi.org/10.1177/1094342011403516

http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
https://doi.org/10.1137/110848244
https://doi.org/10.1137/110848244
https://arxiv.org/abs/https://doi.org/10.1137/110848244
https://doi.org/10.1177/1094342011403516

HPCAsia 2021, January 20–22, 2021, Virtual Event, Republic of Korea Majid Rasouli, Robert M. Kirby, and Hari Sundar

[5] Timothy A. Davis and Yifan Hu. 2011. The University of Florida Sparse
Matrix Collection. ACM Trans. Math. Softw. 38, 1, Article 1 (Dec. 2011),
25 pages. https://doi.org/10.1145/2049662.2049663

[6] J. E. Dendy, Jr. 1982. Black box multigrid. J. Comput. Phys. 48, 3 (1982),
366–386.

[7] John R Gilbert, Steve Reinhardt, and Viral B Shah. 2008. A unified
framework for numerical and combinatorial computing. Computing
in Science & Engineering 10, 2 (2008), 20–25.

[8] F. Gremse, A. Höfter, L. Schwen, F. Kiessling, and U. Naumann.
2015. GPU-Accelerated Sparse Matrix-Matrix Multiplication by
Iterative Row Merging. SIAM Journal on Scientific Comput-
ing 37, 1 (2015), C54–C71. https://doi.org/10.1137/130948811
arXiv:https://doi.org/10.1137/130948811

[9] Jeremy Kepner and John Gilbert. 2011. Graph algorithms in the lan-
guage of linear algebra. SIAM.

[10] Jack Poulson, Bryan Marker, Robert A. van de Geijn, Jeff R. Hammond,
and Nichols A. Romero. 2013. Elemental: A new framework for dis-
tributed memory dense matrix computations. ACM Trans. Math. Soft-
ware 39, 2 (2013), 13:1–13:24. https://doi.org/10.1145/2427023.2427030

[11] M. Rasouli, V. Zala, R. M. Kirby, and H. Sundar. 2018. Improving
Performance and Scalability of Algebraic Multigrid through a Spe-
cialized MATVEC. In 2018 IEEE High Performance extreme Computing
Conference (HPEC). 1–7. https://doi.org/10.1109/HPEC.2018.8547580

[12] R. Rice and J. Plaunt. 1971. Adaptive Variable-Length Coding for
Efficient Compression of Spacecraft Television Data. IEEE Transactions
on Communication Technology 19, 6 (December 1971), 889–897. https:
//doi.org/10.1109/TCOM.1971.1090789

[13] Erik Saule, Kamer Kaya, and Ümit V. Çatalyürek. 2014. Performance
Evaluation of Sparse Matrix Multiplication Kernels on Intel Xeon Phi.
In Parallel Processing and Applied Mathematics, Roman Wyrzykowski,
Jack Dongarra, Konrad Karczewski, and Jerzy Waśniewski (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 559–570.

[14] Eran Treister and Irad Yavneh. 2015. Non-Galerkin multigrid based on
sparsified smoothed aggregation. SIAM Journal on Scientific Computing
37, 1 (2015), A30–A54.

[15] Stijn Marinus Van Dongen. 2000. Graph clustering by flow simulation.
Ph.D. Dissertation.

[16] Petr Vaněk, Marian Brezina, Jan Mandel, et al. 2001. Convergence of
algebraic multigrid based on smoothed aggregation. Numer. Math. 88,
3 (2001), 559–579.

[17] Petr Vanek, Jan Mandel, and Marian Brezina. 1995. Algebraic Multigrid
by Smoothed Aggregation for Second and Fourth Order Elliptic Problems.
Technical Report. Denver, CO, USA.

[18] Raphael Yuster and Uri Zwick. 2005. Fast Sparse Matrix Multiplication.
ACM Trans. Algorithms 1, 1 (July 2005), 2–13. https://doi.org/10.1145/
1077464.1077466

https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1137/130948811
https://arxiv.org/abs/https://doi.org/10.1137/130948811
https://doi.org/10.1145/2427023.2427030
https://doi.org/10.1109/HPEC.2018.8547580
https://doi.org/10.1109/TCOM.1971.1090789
https://doi.org/10.1109/TCOM.1971.1090789
https://doi.org/10.1145/1077464.1077466
https://doi.org/10.1145/1077464.1077466

	Abstract
	1 Introduction
	1.1 Background - AMG
	1.2 Related Work

	2 Methods
	2.1 Matrix-Matrix Multiplication
	2.2 Communication

	3 Numerical Results
	4 Conclusion
	Acknowledgments
	References

