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ABSTRACT

A novel implicit parametric shape model is proposed for seg-
mentation and analysis of medical images. Functions repre-
senting the shape of an object can be approximated as a union
ofN polytopes. Each polytope is obtained by the intersection
of M half-spaces. The shape function can be approximated
as a disjunction of conjunctions, using the disjunctive normal
form. The shape model is initialized using seed points defined
by the user. We define a cost function based on the Chan-Vese
energy functional. The model is differentiable, hence, gradi-
ent based optimization algorithms are used to find the model
parameters.

Index Terms— implicit, parametric, shape model, dis-
junctive normal form, Chan-Vese.

1. INTRODUCTION

Shape models play an important role in many problems in
biomedical imaging such as segmentation and analysis of
variability in populations. Shape models can be categorized
into several broad categories. First, shape models are either
explicit where points on the curve/surface being modeled
are directly represented or they are implicit where points
on the curve/surface are embedded as a level set of a func-
tion. Second, shape models can also be categorized as para-
metric or non-parametric. A list of points on a 3D surface
would be considered a non-parametric explicit model whereas
snakes [1] and B-splines [2] are parametric explicit models.
The most common implicit shape representation is the level
set method [3, 4, 5], which is non-parametric. Parametric,
implicit models are rarer and include algebraic curves and
surfaces [6, 7]. In this paper, we propose a novel parametric,
implicit shape model which we call the Disjunctive Normal
Shape Model (DNSM). We approximate the characteristic
function of a shape as a union of convex polytopes which
themselves are represented as intersections of half-spaces in
2D or 3D. This type of representation of a Boolean function
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is known as the disjunctive normal form [8]. Next, we convert
the disjunctive normal form into a differentiable model by: 1)
using DeMorgan’s laws [8] to replace unions with intersec-
tions and complements, 2) representing intersections of half
spaces as a product of perceptron equations and 3) relaxing
the perceptrons used in representing the half-spaces to logis-
tic sigmoid functions. We also take a variational approach
and propose a simple cost function based on the Chan-Vese
energy that can be used to drive the proposed model for
segmenting objects in biomedical images. In this paper, we
demonstrate the experimental results of segmentation for
different modalities, retinal cells from confocal microscopy
images in zebrafish, cardiac CT image, knee MR image, tu-
mors in multimodal MRI brain images. While we focus on
the mathematical foundation of the proposed model and its
application to data-driven, region-based image segmentation
in this paper, it is possible to extend its use to other segmen-
tation scenarios. For instance, given a set of training shapes,
prior distributions for the model parameters can be learned
and used in segmenting new images. Along with such prior
distributions, one can also use DNSMs in conjunction with
atlas-based initializations. Finally, the statistics of the model
parameters can also be useful in analyzing shape variability.

2. RELATED WORK

The pioneering work of Mumford and Shah [9] exemplifies
variational approaches to image segmentation without any ex-
plicit ties to a shape model. Methods such as snakes [1]
also employ energy minimization in conjunction with a spe-
cific shape model. Among such methods, variational image
segmentation with level-sets has been a popular choice due
to properties such as adaptive topology of level sets which
can naturally change during evolution [10, 11]. However,
due to their non-parametric nature level-set propagation al-
ways has to include a regularization term such as a penalty
on curve length/surface area or curvature [12]. On the other
hand, regularization is inherent in our model due to the lim-
ited amount of representation power afforded by its paramet-
ric nature. The proposed DNSM model is implicit and para-
metric. It has the advantage of being parametric which will
can allow us to easily learn statistics and place regularizing
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priors on the shape model and it has the advantage of being
an implicit representation which allows the model to naturally
change topology during its evolution if needed. Graph-cut
methods have become a popular alternative to level-set based
segmentation [13, 14]. The use of interactive segmentation
methods have been favored in scenarios when we need to seg-
ment a variety of regions. The GrabCut algorithm [15] uses
iterative graph-cuts in an interactive fashion. Another popu-
lar interactive segmentation method is the random walks [16].
Our work is motivated by the recently proposed logistic dis-
junctive normal classifier [17].

3. METHODS

Shapes can be represented with their characteristic function
f : Rn → B where B = {0, 1}. Let Ωf = {x ∈ Rn :
f(x) = 1} represent the foreground region. The foreground
region Ωf can be approximated as the union of N convex
polytopes Ω̃f =

⋃N
i=1 Pi where the ith polytope is the inter-

section Pi =
⋂M
j=1Hij of M half-spaces Hij = {x ∈ Rn :

hij(x)}. The half-space Hij , in arbitrary dimensions is de-
fined using the perceptron equation

hij(x) =

1,
n∑
k=0

wijkxk ≥ 0

0, otherwise
(1)

wherewijk are the weights. Using Boolean logic any function
b : Bn → B can be represented as a disjunction of conjunc-
tions, known as the disjunctive normal form [8]. Hence, we
can formulate the characteristic function for Ω̃f as

f̃(x) =

N∨
i=1

 M∧
j=1

hij(x)


︸ ︷︷ ︸

di(x)

(2)

such that Ω̃f = {x ∈ Rn : f̃(x) = 1}. We would like
to convert the disjunctive normal form of the function to a
differentiable model. First, the conjunction of binary vari-
ables

∧M
j=1 hij(x) is equivalent to the product

∏M
j=1 hij(x).

Next, using De Morgan’s laws, we can express the disjunc-
tion

∨N
i=1 di(x) as negation of conjunctions, ¬

∧N
i=1 ¬di(x),

which in turn can be replaced by 1 −
∏N
i=1(1 − di(x)). Fi-

nally, we relax the binary perceptrons hij(x) to logistic sig-
moid functions,

σij(x) =
1

1 + e
∑n

k=0 wijkxk
(3)

The resulting approximation to the shape characteristic func-
tions is then given as

f̂(x) = 1−
N∏
i=1

(1−
M∏
j=1

σij(x)︸ ︷︷ ︸
gi(x)

) (4)

3.1. Parameter initialization

The parameters are initialized interactively using inputs from
the user. The user defines a set of N seed points, Ci , i =
1 to N , for the foreground object such that they are well dis-
tributed in the region of interest. Using these seed points, we
initialize the shape model with N polytopes and M = 32 lo-
gistic sigmoids per polytope. The polytopes are approximated
as spheres with a fixed radius. This approximation is obtained
by choosing the parameters as

wijk =



cos θp sinφq, k = 0

sin θp sinφq, k = 1

cosφq, k = 2

−(r + Cix cos θp sinφq + Ciy sin θp sinφq

+Ciz cosφq), k = 3

for varying values of θp, φq . We choose θp = π
4 p and φq =

π
4 q for p = [1 · · · 8] and q = [1 · · · 4]. By using different
combinations of θp and φq , we get parameters representing
different planes.

3.2. Energy Minimization
The cost function based on the Chan-Vese energy segments
the image into foreground and background regions.

E(W ) =

∫
Ωf

(I(x)− cf )2 dx +

∫
Ω0

(I(x)− c0)2 dx (5)

=

∫
Ω

(I(x)− cf )2f(x) + (I(x)− c0)2(1− f(x))dx

where cf and c0 are the average intensities in the foreground
and background region and Ω0 represents the background re-
gion. We fit the model to the data by minimizing this energy
with respect to the weights W , using gradient descent. The
gradient of the energy function with respect to the weights
wijk is evaluated as follows:

∂E

∂wijk
=
[
(I(x)− cf )2 − (I(x)− c0)2

]
f(x)′

f(x)′ =
∂

∂wijk

(
1−

N∏
r=1

(1− gr(x))

)

=

∏
r 6=i

(1− gr(x))

 ∂gi(x)

∂wijk

=

∏
r 6=i

(1− gr(x))

M∏
l 6=j

σil(x)

 ∂σij(x)

∂wijk

= −

∏
r 6=i

(1− gr(x))

 gi(x)(1− σij(x))xk

The update equation is given aswijk ← wijk−η ∂E
∂wijk

, where
η is the step-size which needs to be tuned for every dataset.
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(a) N=1 (b) N=2 (c) N=3

(d) N=4 (e) N=5

Fig. 1. Segmentation of retinal cell in zebrafish embryo for N = 1 · · · 5.
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Fig. 2. Optimized energy of the shape
model for varying N (knee MR im-
age).
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a) Knee MR, N = 3
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b) Cardiac CT, N = 2

Fig. 3. Sensitivity analysis of segmentation over 20 trials. Left: Seed initialization in green on original 2D image, the segmented
region boundary in green, Right: Experimental results. The x-axis represents the standard deviation in pixels for the shift in
the centroid positions. The y-axis represents the change in segmentation. The plotted line represents the mean, with error bar
indicating the standard deviation.

4. RESULTS

We present three experimental setups. We first experimented
with confocal images to learn representations of retinal cells
in zebrafish embryos. The underlying cell shapes are obtained
by smoothing and thresholding the actual image. Segmenta-
tion of a cell with increasingly complex models is shown in
Figure 1. We first start the segmentation with a single poly-
tope, N = 1 and then refine the segmentation by increasing
the number of polytopes. By comparing the segmentations for
N = {1 · · · 5} polytopes, we see that the DNSM can capture
complex boundaries. In this case, N = 3 captures most of
the shape information while N = 5 provides almost a perfect
representation.
Next, to demonstrate the general applicability of our segmen-
tation, we segment images of different organs from different
modalities. The objects of interest in these images are varying
in size, shape, and contrast. We need to determine the num-
ber of polytopes needed to segment a region. We do this by

varying the value of N and calculating the optimized energy
of the DNSM, as seen in Figure 2. We see that the energy
defined in Equation (5) decreases initially and stabilizes at
N = 3, giving us the minimum number of polytopes needed
to represent this object. We see in Figure 3(a), that the cho-
sen N fits the knee nicely in terms of complexity. Since our
algorithm is interactive, we also studied how sensitive the re-
sults are to the selection of seed points. The sensitivity of
the placement of seed points is studied for a knee MR image
and a CT cardiac image. The user defines a set of N seed
points. These seed points are randomly shifted, the displace-
ments are drawn from a normal distribution N(0, σ2). The
segmentation is recomputed for the shifted seed points. The
change in segmentation is calculated as the ratio of pixels that
switched labels to the number of pixels originally labeled as
foreground. The original images, segmentations and experi-
mental results are shown in Figure 3. The experimental results
are averaged over 20 trials. From the results, we observe that
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Fig. 4. Segmentation results for the BRATS 2012 dataset. Left: input weighted image (α T2 + β T1), manual segmentation
(gray - edema, white - tumor), segmentation overlay on input image, Right: segmentation overlay on manual segmentation. The
Top row shows an example of a high grade (HG) image and the bottom row shows an example of a low grade (LG) image.

the algorithm is stable and produces a small change in seg-
mentation for small displacements of the seed points.
While the previous results focused on demonstrating how the
techniques works and sensitivity analysis, the last experiment
is designed to obtain a quantitative assessment of the seg-
mentation accuracy provided by our method. We applied our
method to segment tumors in multimodal brain images in the
BRATS-2012 dataset. We used the training set images which
consists of 20 high grade images and 10 low grade images.
The manual segmentations given had three intensity levels:
1 for edema, 2 for active tumor, and 0 for everything else.
We only segmented the active tumor regions in this paper and
usedN = 5,M = 32. The visual segmentation results for the
high grade and low grade real images are shown in Figure 4.
Quantitative results for comparing the segmentation with au-
tomatic [18, 19] and semiautomatic [20] methods in [21] is
given in Table 1. We use the DICE coefficients to compute
the similarity between the segmented shape and the manual
segmentations. We see that the performance of our algorithm
is comparable to the methods in the challenge for high grade
images, while it outperforms them for low grade images.

Table 1. Quantitative comparison of DICE coefficients for
segmentation of the BRATS-2012 dataset (HG - high grade
images, LG - low grade images).

Method HG LG
Zikic et al. [18] 0.71 0.62

Bauer et al. [19] (with std. dev.) 0.62±0.27 0.49±0.26
Hamamci et al. [20] 0.73 0.71

Our method 0.73 0.74

5. CONCLUSION

We proposed a novel implicit parametric shape model and an
associated energy to segment objects of interest in medical
images. The proposed method provides good segmentations
even on low grade tumor images. We examined the sensi-
tivity of the algorithm to the placement of seeds needed to
represent a region. We also illustrated how we can capture
complex boundaries by increasing the number of polytopes in
the model for segmentation. A local Chan-Vese model can be
used to further improve our segmentation results. One direc-
tion for future work is fully automated segmentation using the
proposed model and atlas based initializations for tasks such
as prostate or hippocampus segmentation. While we have
used conjunctions of half-spaces in our current work, more
application specific shape primitives will be considered in fu-
ture work. Finally, given a set of training shapes, prior distri-
butions for the model parameters can be learned and used as
a regularization term in segmenting new images.
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