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ABSTRACT

We describe an efficient, robust, automated method for image
alignment and merging of translated, rotated and flipped con-
focal microscopy stacks. The samples are captured in both
directions (top and bottom) to increase the SNR of the indi-
vidual slices. We identify the overlapping region of the two
stacks by using a variable depth Maximum Intensity Projec-
tion (MIP) in the z dimension. For each depth tested, the
MIP images gives an estimate of the angle of rotation between
the stacks and the shifts in the x and y directions using the
Fourier Shift property in 2D. We use the estimated rotation
angle, shifts in the x and y direction and align the images in
the z direction. A linear blending technique based on a sig-
moidal function is used to maximize the information from the
stacks and combine them. We get maximum information gain
as we combine stacks obtained from both directions.

Index Terms— Confocal Microscopy, Zebrafish, Maxi-
mum Intensity Projection, Fourier Shift Theorem.

1. INTRODUCTION

Confocal microscopy is a powerful tool for evaluation of 3D
structure of a variety of tissues and biological samples. Biol-
ogists analyze small vertebrate models, such as zebrafish be-
cause of its similarity to other vertebrates, genetic tractability
and optical transparency of its embryo and larvae. The preva-
lence of confocal imaging has increased rapidly in zebrafish
research. One challenge is that the SNR of the slices of the
stacks obtained using confocal microscopes decreases with
increasing depth. Hence, if we image the organism on the
dorsal (back) side we lose partial information from the ven-
tral (front) side of the organism. We generate image stacks
from both directions and merge the information from stacks
after alignment. The transformation between the dorsal and
ventral stacks includes translation in the x, y and z direction,
rotation and flipping of the stacks. We get maximum infor-
mation gain as we combine stacks obtained from both direc-
tions. We propose an approach described in section 3 that
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computes the unknown 3D translation and rotation between
two confocal stacks. We use Maximum Intensity Projection
(MIP) of the 3D stacks to roughly estimate the overlap in z.
Our method uses the Fourier Shift property in 2D on the MIP
images to estimate the rotation angle and the shifts in x and
y directions. Finally, the precise shift in the z direction is
calculated. The stacks are combined using a linear blending
technique based on a sigmoidal function.

2. RELATED WORK

Image alignment is a very important topic in the field of con-
focal microscopy images. Intensity based registration meth-
ods compute transformations using image intensity informa-
tion [1]. Cross-correlation is a reliable metric for matching di-
rectly image intensities between images. Fourier based meth-
ods improve the computational speed. The phase correlation
registration method is based on the Fourier Shift Theorem [2]
and was originally proposed for the registration of translated
images. It computes the cross-power spectrum of the target
and reference images and looks for the location of the peak
in its inverse. The method shows strong robustness against
correlated and frequency dependent noise and non-uniform,
time varying illumination disturbances. Computational time
savings are more significant if the images, which are to be
registered, are large. Tasdizen et al. proposed a method to
construct large mosaics, align overlapping sections for serial
section transmission electron microscopy images [3]. Their
method is based on the Fourier shift property to detect the
displacement vectors. In their method they align 2D sections
to build 3D volume (stack) for serial-section microscopy. In
this work, we need to align 3D volumes which are rotated
and have unknown number of overlapping slices between the
stacks. The method proposed by Preibisch et al. [4] supports
confocal stacks in which the only transformation between the
stacks is translation. Their method does not support rotation
and varying number of overlapping slices between stacks. [5]
discusses an extension of the well known phase correlation
technique to cover translation, rotation, and scaling. Fourier
scaling properties and Fourier rotational properties are used
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Fig. 1. MIP of dorsal view of brain of Zebrafish

to find scale and rotational movement. Another Fourier-based
approach that estimates large translations, scalings, and rota-
tion is an algorithm that uses the pseudo polar (PP) Fourier
transform to achieve substantial improved approximations of
the polar and log-polar Fourier transforms of an image [6].
We will extend similar methods to estimate the rotation in 3D
stacks.

3. METHOD

The data consists of dorsal (back) and ventral (front) stacks
which need to be aligned and merged with one another. The
ventral stack is flipped in the z direction. The MIP of the dor-
sal and ventral regions are shown in Figure (1) and Figure (2).
We use MIP of the 3D stacks to roughly estimate the overlap
in z. We vary the number of slices over which the MIP is
taken. The Fourier Shift property in 2D on the MIP images
is used to estimate the rotation angle and the shifts in x and y
directions. Finally, the precise shift in the z direction is cal-
culated for the rotated stacks. The stacks are combined using
a linear blending technique based on a sigmoidal function.

3.1. Estimation of overlapping slices in the 3D stack, ro-
tation angle, shift in the x and y direction

We consider the last n slices from one stack (dorsal) and the
first n slices from the other stack (ventral). We take the MIP
of these n slices for the intensity images. We use the MIP
image from one of the stacks as a reference image (dorsal
stack). We rotate the MIP image from the other stack in the
range of 1 to 360 degrees (increments of 1 degree). For every
rotation we estimate the best shift in the x and y direction
using 2D Phase Correlation between the reference image and
the rotated image.

Fig. 2. MIP of ventral view of brain of ZebraFish

The Fourier Shift property based phase correlation method
[2] is used to compute the translational shifts between the ref-
erence and shifted images. This method provides fast com-
putation. Let F[g](u,v) denote the two-dimensional Fourier
transform of image g(x,y) where u and v denote the variables
in the frequency domain. The cross power spectrum of two
images g and h is defined as

S(g, h) =
F [g]F ∗[h]

|F [g]F ∗[h]|
(1)

where F ∗ denotes the complex conjugate of the Fourier
transform. For image g and its circularly shifted version
gcirc(x0,y0) simplifies to S(g, gcirc(x0,y0) ) = ej(ux0+vy0).

The cross power spectrum isolates the complex exponen-
tial, the displacement vector (x0, y0) can be recovered by tak-
ing the inverse Fourier transform of the cross power spectrum
(2).

C = F−1[S(g, gcirc(x0,y0)] = δ(x− x0, y − y0), (2)

where δ(x− x0, y− y0) is the Dirac delta function located at
(x0, y0). In real images, R contains several peaks. We choose
the strongest peak by selecting the maximum value of C (3).

(x0, y0) = arg max{C} (3)
Due to periodicity assumption of the Fourier Transform a

peak at (x0, y0) can correspond to any one of the four possi-
ble displacement vectors (x0, y0), (Q−x0, y0), (x0, R−y0),
(Q − x0, R − y0) where (Q, R) is the size of the image. We
generate all possible displacements between pair of images,
compute the cross correlation of each and choose the dis-
placement vector that yields the best correlation. The cross
correlation between images is computed as follows (4)

ρ1 =

∑
x,y (g(x, y)− µg)(gcirc(x̂, ŷ)− µgcirc)√

(
∑

(g(x, y)− µg)2)(
∑

(gcirc(x̂, ŷ)− µgcirc)
2)

(4)
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Fig. 3. Hmax(n) vs number of slices (n)

where x̂ = x0 + x, ŷ = y0 + y.

The cross correlation coefficient represented as Hn be-
tween the rotated and shifted image is recorded for every an-
gle of rotation θ, where n signifies the number of slices of
overlap. We use the median of the correlation coefficient
to help identify significant peaks. The median is denoted as
Hmedian n. To check for a strong peak we subtract the me-
dian correlation coefficient from the true value.

Hn(θ) = Hn(θ)−Hmedian n(θ) (5)

We repeat this step for varying multiples of n till we there
is complete overlap between the two stacks. The maximum
value of Hn(θ) ∀ n indicates the correct overlap between the
stacks, Figure (3), Figure (4). This gives a rough estimate of
the overlap in z, denoted as zinitial e. The location of the peak
helps to determine the angle of rotation between the images.
Let θe be the estimate of the rotation angle between the dorsal
and ventral stacks. We choose the best shift in the x and y
direction corresponding to θe.

3.2. Image Alignment of the Rotated 3D Stacks

Let θe be the estimate of the rotation angle between the dorsal
and ventral stacks. Let (xe, ye) be the estimates of the shifts
in the x and y direction. We first rotate the ventral stack using
the estimated angle and translate the slices in accordance with
the shifts in the x and y direction. Since we know the rough
overlap between the stacks, we limit the shift in the direction
to±10 of the zinitial e to reduce additional computation. The
stacks are denoted as A and B. The cross correlation in 3D
between images is computed as follows (6)

ρ2 =

∑
(A(x, y, z)− µA)(Bθe(x

′, y′, z)− µBθe )√
(
∑

(A(x, y, z)− µA)2)(
∑

(Bθe(x
′, y′, z)− µBθe )

2)

(6)

Fig. 4. Hn(θ) vs angle of rotation (θ), n = 100 and n = 40

where x′ = x + xe, y
′ = y + ye. The maximum correlation

is obtained for the right shift in the z direction.

3.3. Sigmoidal Image Blending

There are visible brightness differences between the slices in
the dorsal and the ventral stacks. The dorsal stack has more
information in the first half whereas the ventral stack has more
information in the latter half. We combine the two stacks by
merging the dorsal and ventral stacks. Linear interpolation is
used for the overlapping slices. Let α ∈ [0,1] be the transi-
tion parameter. The value of α varies for every overlapping
slice in the stack as a sigmoidal function. Let dx,y,z denote a
pixel in the first stack (dorsal) and vx,y,z denote a pixel in the
second stack (ventral) where x = 1.....Q, y = 1.....R, z = any
overlapping slice. The result of an image blend is a family of
images wx,y,z related using the equation given below (7).

wi,j,z = (1− α(z))di,j,z + (α(z))vi,j,z (7)

Fig. 5. a) Ventral side data, the dorsal side has no clear sig-
nals. c) Dorsal side data, there are no clear neurons on ventral
side. b) In our result, the arrow indicates the splitting point
for the motor neurons, which projects to ventral and dorsal
side of the eye
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Fig. 6. MIP of ventral view of brain of ZebraFish (after rota-
tion and translation, xe = 40, ye = 32, θe = 85)

Table 1. Comparison of estimated shifts with true shifts
DataSet xshift yshift zshift θ

xe xt ye yt ze zt θe θt
1 -40 -38 32 32.7 9 9 85 85.2
2 -187 -187 -142 -141 115 115 187 187

4. RESULTS & DISCUSSION

We used our proposed method on two confocal microscopy
datasets. The combined image stack from the dorsal and ven-
tral sections show no artifacts from misalignments between
the stacks. There is information gain as we combine stacks
obtained from both directions as seen is Figure(5). In the ven-
tral side data, the dorsal side has no clear signals, Figure(5a).
In the dorsal side data, there are no clear neurons on ventral
side, Figure(5c). In our result, the arrow indicates the split-
ting point for the motor neurons, which projects to ventral and
dorsal side of the eye, Figure(5b). We used n = multiples of
20, the number of sections in the MIP to estimate the approx-
imate overlap in the z direction. In the first dataset the correct
overlap is close to 100, we see a strong peak in Hn(θ) for n
= 100. For incorrect values of n there is no significant peak,
Figure(4). The location of the peak determines the angle of
rotation between the images. We choose the best shift in the
x and y direction corresponding to θest. The MIP of ven-
tral view of brain of Zebrafish after rotation and translation is
shown in Figure(6). The estimated shifts in pixels xe, ye , ze
and rotation angle θe are compared with the true shifts xt, yt,
zt and true rotation angle θt in Table (1). The correlation co-
efficients for the two datasets before and after alignment are
shown in Table (2).

This paper presents a methodology to align and combine

Table 2. Comparison of cross correlation results for 3D stacks
DataSet % overlap Correlation Coeff Correlation Coeff

slices before alignment after alignment
1 89.25% 0.231 0.7
2 7.25% 0.2128 0.6641

3D confocal microscopy data. This technique is effective in
maximizing the information from the two stacks to create a
combined stack. Further studies will be focused on using
Fourier based methods to estimate the rotation angle in 3D
stacks.
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