
Searching for Efficient XML-to-Relational Mappings

Maya Ramanath1, Juliana Freire2, Jayant R. Haritsa1, and Prasan Roy3

1 SERC, Indian Institute of Science
{maya,haritsa}@dsl.serc.iisc.ernet.in

2 OGI/OHSU
juliana@cse.ogi.edu

3 Indian Institute of Technology, Bombay
prasan@it.iitb.ac.in

Abstract. We consider the problem of cost-based strategies to derive efficient re-
lational configurations for XML applications that subscribe to an XML Schema.
In particular, we propose a flexible framework for XML schema transformations
and show how it can be used to design algorithms to search the space of equivalent
relational configurations. We study the impact of the schema transformations and
query workload on the search strategies for finding efficient XML-to-relational
mappings. In addition, we propose several optimizations to speed up the search
process. Our experiments indicate that a judicious choice of transformations and
search strategies can lead to relational configurations of substantially higher qual-
ity than those recommended by previous approaches.

1 Introduction

XML has become an extremely popular medium for representing and exchanging in-
formation. As a result, efficient storage of XML documents is now an active area of
research in the database community. In particular, the use of relational engines for this
purpose has attracted considerable interest with a view to leveraging their powerful and
reliable data management services.

Cost-based strategies to derive relational configurations for XML applications have
been proposed recently [1,19] and shown to provide substantially better configurations
than heuristic methods (e.g., [15]). The general methodology used in these strategies is
to define a set of XML schema transformations that derive different relational config-
urations. Given an XML query workload, the quality of the relational configuration is
evaluated by a costing function on the SQL equivalents of the XML queries. Since the
search space is large, greedy heuristics are used to search through the associated space
of relational configurations.

In this paper, we propose FlexMap, a framework for generating XML-to-relational
mappings which incorporates a comprehensive set of schema transformations. FlexMap
is capable of supporting different mapping schemes such as ordered XML and schemaless
content. Our framework represents the XML Schema [2] through type constructors
and uses this representation to define several schema transformations from the existing
literature. We also propose several new transformations and more powerful variations of
existing ones. We utilize this framework to study, for the first time, the impact of schema

Z. Bellahsène et al. (Eds.): XSym 2003, LNCS 2824, pp. 19–36, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.3
 Für schnelle Web-Anzeige optimieren: Nein
 Piktogramme einbetten: Nein
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [2400 2400] dpi
 Papierformat: [595.276 841.889] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 2400 dpi
 Downsampling für Bilder über: 3600 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Farbe nicht ändern
 Methode: Standard
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Ja
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Ja
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
 EPS-Info von DSC beibehalten: Ja
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Ja

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments true
 /DoThumbnails false
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize false
 /ParseDSCCommentsForDocInfo true
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.3
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends true
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo true
 /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /LeaveColorUnchanged
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 300
 /EndPage -1
 /AutoPositionEPSFiles true
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 2400
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 300
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [2400 2400]
>> setpagedevice

20 M. Ramanath et al.

transformations and the query workload on search strategies for finding efficient XML-
to-relational mappings.

We have incorporated FlexMap in the LegoDB prototype [1]. We show that the space
of possible configurations is large enough to remove the possibility of exhaustive search
even for small XML schemas. We describe a series of greedy algorithms which differ
in the number and type of transformations that they utilize, and show how the choice of
transformations impacts the search space of configurations. Intuitively, the size of the
search space examined increases as the number/types of transformations considered in
the algorithms increase. Our empirical results demonstrate that, in addition to deriving
better quality configurations, algorithms that search a larger space of configurations can
sometimes (counter-intuitively) converge faster. Further, we propose optimizations that
significantly speed up the search process with very little loss in the quality of the selected
relational configuration.

In summary, our contributions are:

1. A framework for exploring the space of XML-to-relational mappings.
2. More powerful variants of existing transformations and their use in search algo-

rithms.
3. A study of the impact of schema transformations and the query workload on search

algorithms in terms of the quality of the final configuration as well as the time taken
by the algorithm to converge.

4. Optimizations to speed up these algorithms.

Organization. Section 2 develops the framework for XML-to-relational mappings.
Section 3 proposes three different search algorithms based on greedy heuristics. Section
4 evaluates the search algorithms and Section 5 discusses several optimizations to reduce
the search time. Section 6 discusses related work and Section 7 summarizes our results
and identifies directions for future research.

2 Framework for Schema Transformations

2.1 Schema Tree

We define a schema tree to represent the XML schema in terms of the following type
constructors: sequence (“,”), repetition (“∗”), option (“?”), union (“|”), <tagname>
(corresponding to a tag) and <simple type> corresponding to base types (e.g., integer).
Figure 1 gives a grammar for the schema tree. The schema tree is an ordered tree where
tags appear in the same order as the corresponding XML schema.

As an example, consider the (partial) XML Schema of the IMDB (Internet Movie
DataBase) website [8] in Figure 2(a). Here, Title, Year, Aka and Review are simple types.
The schema tree for this schema is shown in Figure 2(b) with base types ommitted and
tags represented in normal font. Nodes in the tree are annotated with the names of the
types present in the original schema – these annotations are shown in boldface and paran-
thesized next to the tags. Note that, first, there need not be any correspondence between
tag names and annotations (type names). Second, the schema graph is represented as a

Searching for Efficient XML-to-Relational Mappings 21

<complex type> ::=

<simple type>

|| <complex type> , <complex type>

|| <complex type> | <complex type>

|| <complex type> *

|| <complex type> ?

|| <tagname> [<complex type>]

Fig. 1. Using Type Constructors to Represent XML schema Types

define element IMDB {
type Show*, type Director*, type Actor* }

define type Show {element SHOW {
type Title, type Year, type Aka*,
type Review*, (type Tv | type Movie) }}

define type Director {element DIRECTOR {
type Name, type Directed*}}

define type Directed {element DIRECTED {
type Title, type Year, type Info }}

(a) The (partial) IMDB Schema

1

1
TITLE ,

YEAR

(Title)

(Year)

,

,

|

MOVIE
(Movie)

TV
(Tv)

,

AKA

*

REVIEW

*
(Aka) (Review)

SHOW(Show)

* *

2

2

DIRECTOR

NAME *

DIRECTED

,

YEAR INFO

,

(Directed)

(Name)

(Director)

(Title)

(Year)
(Info)

IMDB

,

,

TITLE

(b) Tree Representation

Fig. 2. The IMDB Schema

tree, where different occurrences of equivalent nodes are captured, but their content is
assumed to be shared (see e.g., the nodes TITLE1 and TITLE2 in Figure 2(b)). Finally,
recursive types can be handled similarly to shared types, i.e., the base occurrence and
the recursive occurrences are differentiated, but share the same content.

Note that any subtree in the schema tree is a type regardless of whether it is annotated.
We refer to annotations as the name of the node and use it synonymously with annotation.
We also use the terms subtree, node and type interchangeably in the remainder of the
paper.

2.2 From Schema Trees to Relational Configurations

Given a schema tree, a relational configuration is derived as follows:

1. If N is the annotation of a node, then there is a relational table TN corresponding
to it. This table contains a key column and a parent id column which points to the
key column of the table corresponding to the closest named ancestor of the current
node if it exists. The key column consists of ids assigned specifically for the purpose

22 M. Ramanath et al.

Table Director [director key]
Table Name [Name key, NAME, parent director id]
Table Directed [Directed key, parent director id]
Table Title [Title key, TITLE, parent directed show id]
Table Year [Year key, YEAR, parent directed show id]
Table Info [Info key, INFO, parent directed id]

Fig. 3. Relational Schema for the Director Subtree

of identifying each tuple (and by extension, the corresponding node of the XML
document).

2. If the subtree of the node annotated by N is a simple type, then TN additionally
contains a column corresponding to that type to store its values.

3. If N is the annotation of a node, and no descendant of N is annotated, then TN

contains as many additional columns as the number of descendants of N that are
simple types.

Other rules which may help in deriving efficient schemas could include storing repeated
types and types which are part of a union in separate tables. The relational configuration
corresponding to the naming in Figure 2(b) for the Director subtree is shown in Figure 3.
Since Title and Year are shared by Show and Directed, their parent id columns contain ids
from both the Show and Directed tables. Note that the mapping can follow rules different
from the ones listed above (for example, storing types which are part of unions in the
same table by utilizing null values).

It is possible to support different mapping schemes as well – for example, in order to
support ordered XML, one or more additional columns have to be incorporated into the
relational table [16]. By augmenting the type constructors, it is also possible to support
a combination of different mapping schemes. For example, by introducing an ANYTYPE
constructor, we can define a rule mapping annotated nodes of that type to a ternary
relation (edge table) [5].

2.3 Schema Transformations

Before we describe the schema transformations we introduce a compact notation to
describe the type constructors, and using this notation, we define the notion of syntactic
equality between two subtrees. In the following, ti and t are subtrees and a is the
annotation.
Tag Constructor: E(label, t, a), where label is the name of the tag (such as TITLE,
YEAR, etc.)
Sequence, Union, Option and Repetition Constructors: The constructors are defined
as: C(t1, t2, a), U(t1, t2, a), O(t, a), and R(t, a), respectively.
Simple Type Constructor: Simple types are represented as S(base, a) where base is
the base type (e.g., integer).

Searching for Efficient XML-to-Relational Mappings 23

NAME *

DIRECTED

,

TITLE
, (T)

YEAR INFO

,

DIRECTOR

(Title)

(Directed)

(Name)

(Director)

(a) Introducing An-
notation T

INFO

,

,

(Directed) (Directed)

,

,

TITLE

INFO

YEARYEAR

DIRECTEDDIRECTED

(Year_Info)
TITLE (Title_Year)

(b) Applying Associativity

Fig. 4. Grouping Elements Using Annotations

Definition 1. Syntactic Equality Two types T1 and T2 are syntactically equal – denoted
by T1 ∼= T2 – if the following holds:
case T1, T2 of
| E(label, t, a), E(label′, t′, a′) → label = label′ AND a = a′ AND t ∼= t′

| C(t1, t2, a), C(t′
1, t

′
2, a

′) → a = a′ AND t1 ∼= t′
1 AND t2 ∼= t′

2

| U(t1, t2, a), U(t′
1, t

′
2, a

′) → a = a′ AND t1 ∼= t′
1 AND t2 ∼= t′

2

| R(t, a), R(t′, a′) → a = a′ AND t ∼= t′

| O(t, a), O(t′, a′) → a = a′ AND t ∼= t′

| S(b, a), S(b′, a′) → a = a′ AND b = b′

Inline and Outline. An annotated node in the schema tree is Outlined and has a separate
relational table associated with it. All nodes which do not have an annotation associated
with them are Inlined, i.e., form part of an existing table. We can outline or inline a type
by respectively annotating a node or removing its annotation. Inline and outline can be
used to group elements together as shown in Figure 4(a) where a new annotation T is
introduced. The corresponding relational configuration will “group” Year and Info into
a new table T.

Type Split/Merge. The inline and outline operations are analogous to removing and
adding annotations to nodes. Type Split and Type Merge are based on the renaming of
nodes. We refer to a type as shared when it has distinct annotated parents. In the example
shown in Figure 2(b), the type Title is shared by the types Show and Directed.

Intuitively, the type split operation distinguishes between two occurrences of a type
by renaming the occurrences. By renaming the type Title to STitle and DTitle, a relational
configuration is derived where a separate table is created for each title. Conversely, the
type merge operation adds identical annotations to types whose corresponding subtrees
are syntactically equal.

So far, we have defined transformations which do not change the structure of the
schema tree. Using only these transformations, the number of derived relational con-

24 M. Ramanath et al.

figurations is already exponential in the number of nodes in the tree. That is, since any
subset of nodes in the schema tree can be named (subject to the constraints of having
to name certain nodes which should have separate relations of their own as outlined in
Section 2.2), and the corresponding relational configuration derived, for a schema tree
with N nodes, we have a maximum of 2N possible relational configurations.

We next define several transformations which do change the structure of the schema
tree which in turn leads to a further expansion in the search space. Some of these
transforms were originally described in our earlier work [1]. We redefine and extend
these transforms in our new framework.

Commutativity and Associativity. Two basic structure-altering operations that we
consider are: commutativity and associativity. Associativity is used to group different
types into the same relational table. For example, in the first tree of Figure 4(b), Year
and Info about the type Directed are stored in a single table called Year Info, while after
applying associativity as shown in the second tree, Title andYear appear in a single table
called Title Year.

Commutativity by itself does not give rise to different relational mappings1, but when
combined with associativity may generate mappings different from those considered in
the existing literature. For example, in Figure 4(b), by first commuting Year and Info
and then applying associativity, we can get a configuration in which Title and Info are
stored in the same relation.

Union Distribution/Factorization. Using the standard distribution law for distributing
sequences over unions for regular expressions, we can separate out components of a
union: (a, (b|c)) ≡ (a, b)|(a, c). We derive useful configurations using a combination of
union distribution, outline and type split as shown below:

define type Show { element SHOW { type Title, (type Tv|type Movie) }}

Distribute Union → Outline → Type split Title →

define type TVShow { element SHOW { type TVTitle, type Tv }}
define type MovieShow { element SHOW { type MovieTitle, type Movie }}

The relational configuration corresponding to the above schema has separate tables
for TVShow and MovieShow, as well as for TVTitle and MovieTitle. Moreover, applying
this transformation enables the inlining of TVTitle into TVShow and MovieTitle into
MovieShow. Thus the information about TV shows and movie shows is separated out
(this is equivalent to horizontally partitioning the Show table). Conversely, the union
factorization transform would factorize a union.

In order to determine whether there is potential for a union distribution, one of the pat-
terns we search the schema tree is: C(X,U (Y,Z)) and transform it to U (C(X,Y),C(X,Z)).
We have to determine the syntactic equality of two subtrees before declaring the pattern

1 Commuting the children of a node no longer retains the original order of the XML schema.

Searching for Efficient XML-to-Relational Mappings 25

to be a candidate for union factorization. Note that there are several other conditions
under which union distribution and factorization can be done [11].

Other transforms, such as splitting/merging repetitions [1], simplifying unions [15]
(a lossy transform which could enable the inlining of one or more components of the
union), etc. can be defined similarly to the transformations described above.

We refer to Type Merge, Union Factorization and Repetition Merge as merge trans-
forms and Type Split, Union Distribution and Repetition Split as split transforms in the
remainder of this paper.

2.4 Evaluating Configurations

As transformations are applied and new configurations derived, it is important that precise
cost estimates be computed for the query workload under each of the derived configu-
rations – which, in turn, requires accurate statistics. Since it is not practical to scan the
base data for each relational configuration derived, it is crucial that these statistics be
accurately propagated as transformations are applied.

An important observation about the transformations defined in this section is that
while merge operations preserve the accuracy of statistics, split operations do not [6].
Hence, in order to preserve the accuracy of the statistics, before the search procedure
starts, all possible split operations are applied to the user-given XML schema. Statistics
are then collected for this fully decomposed schema. Subsequently, during the search
process, only merge operations are considered.

In our prototype, we use StatiX [6] to collect statistics and to accurately propagate
them into the relational domain. The configurations derived are evaluated by a relational
optimizer [12]. Our optimizer assumes a primary index on the key column of each
relational table. For lack of space, we do not elaborate on these issues. More information
can be found in [11].

3 Search Algorithms

In this section we describe a suite of greedy algorithms we have implemented within
FlexMap. They differ in the choice of transformations that are selected and applied at
each iteration of the search.

First, consider Algorithm 1 that describes a simple greedy algorithm – similar to the
algorithm described in [1]. It takes as input a query workload and the initial schema (with
statistics). At each iteration, the transform which results in the minimum cost relational
configuration is chosen and applied to the schema (lines 5 through 19). The translation
of the transformed schema to the relational configuration (line 11) follows the rules set
out in Section 2.2. The algorithm terminates when no transform can be found which
reduces the cost.

Though this algorithm is simple, it can be made very flexible. This flexibility is
achieved by varying the strategies to select applicable transformations at each iteration
(function applicableTransforms in line 8). In the experiments described in [1], only inline
and outline were considered as the applicable transformations. The utility of the other
transformations (e.g., union distribution and repetition split) were shown qualitatively.

26 M. Ramanath et al.

Algorithm 1 Greedy Algorithm
1: Input: queryWkld, S {Query workload and Initial Schema}
2: prevMinCost← INF
3: rel schema← convertToRelConfig(S, queryWkld)
4: minCost← COST(rel schema)
5: while minCost < prevMinCost do
6: S ′ ← S {Make a copy of the schema}
7: prevMinCost← minCost
8: transforms← applicableTransforms(S ′)
9: for all T in transforms do

10: S ′′ ←Apply T to S ′ {S ′ is preserved without change}
11: rel schema← convertToRelConfig(S ′′, queryWkld)
12: Cost← COST(rel schema)
13: if Cost < minCost then
14: minCost← Cost
15: minTransform← T
16: end if
17: end for
18: S ←Apply minTransform to S {The min. cost transform is applied}
19: end while
20: return convertToRelConfig(S)

Below, we describe variations to the basic greedy algorithm that allow for a richer set of
transformations. All search algorithms described use the fully decomposed schema as
the start point, and only merge operations are applied during the greedy iterations.

3.1 InlineGreedy

The first variation we consider is InlineGreedy (IG), which only allows the inline trans-
form. Note that IG differs from the algorithm experimentally evaluated in [1], which we
term InlineUser (IU), in the choice of starting schema: IG starts with the fully decom-
posed schema whereas InlineUser starts with the original user schema.

3.2 ShallowGreedy: Adding Transforms

The ShallowGreedy (SG) algorithm defines the function applicableTransforms to return
all the applicable merge transforms. Because it follows the transformation dependencies
that result from the notion of syntactic equality (see Definition 1), it only performs single-
level or shallow merges.

The notion of syntactic equality, however, can be too restrictive and as a result, SG
may miss efficient configurations. For example consider the following (partial) IMDB
schema:

define type Show {type Show1 | type Show2}
define type Show1 {element SHOW { type Title1, type Year1, type Tv }}
define type Show2 {element SHOW { type Title2, type Year2, type Movie }}

Searching for Efficient XML-to-Relational Mappings 27

Unless a type merge of Title1 and Title2 and a type merge of Year1 and Year2 take
place, we cannot factorize the union of Show1 | Show2. However, in a run of SG, these
two type merges by themselves may not reduce the cost, whereas taken in conjunction
with union factorization, they may lead to a substantial cost reduction. Therefore, SG
is handicapped by the fact that a union factorization will only be applied if both type
merges are independently chosen by the algorithm. In order to overcome this problem,
we design a new algorithm called DeepGreedy (DG).

3.3 DeepGreedy: Deep Merges

Before we proceed to describe the DG algorithm, we first introduce the notions of Valid
Transforms and Logical Equivalence. A valid transform is an element of the set of all
applicable transforms, S. Let V be a set of valid transforms.

Definition 2. Logical Equivalence Two types T1 and T2 are logically equivalent under
the set V of valid transforms, denoted by T1 ∼V T2, if they can be made syntactically
equal after applying a sequence of valid transforms from V .

The following example illustrates this concept. Let V = {Inline}; t1 := E(TITLE,
S(string,−),Title1), and t2 := E(TITLE, S(string,−),Title2). Note that t1 and
t2 are not syntactically equal since their annotations do not match. However, they are
logically equivalent: by inlining them (i.e., removing the annotations Title1 and Title2),
they can be made syntactically equal. Thus, we say that t1 and t2 are logically equivalent
under the set {Inline}.

Now, consider two types Ti and Tj where Ti := E(l, t1, a1) and Tj := E(l, t2, a2)
with t1 and t2 as defined above. Under syntactic equality, Ti and Tj would not be
identified as candidates for type merge. However, if we relax the criteria to logical
equivalence with (say) V = {TypeMerge}, then it is possible to identify the potential
type merge of Ti and Tj . Thus, several transforms which may never be considered by
SG can be identified as candidates by DG, provided the necessary operations can be
fired (like the type merge of t1 and t2 in the above example) to enable the transform.
Extending the above concept, we can enlarge the set of valid transforms V to contain all
the merge transforms which can be fired recursively to enable other transforms.

Algorithm DG allows the same transforms as SG, except that potential transforms
are identified not by direct syntactic equality, but by logical equivalence with the set of
valid transforms containing all the merge operations (including inline). This allows DG
to perform deep merges. Additional variations of the search algorithms are possible, e.g.,
by restricting the set of valid transforms. But, they are not covered in this paper.

4 Performance Evaluation

In this section we present a performance evaluation of the three algorithms proposed in
this paper: InlineGreedy (IG), ShallowGreedy (SG) and DeepGreedy (DG). We used a
synthetically generated subset of the IMDB dataset (≈60MB) for the experiments. The
user schema consisted of 22 types, with 2 unions, 3 repetitions and 2 shared types. We
describe the query workloads used next. For a more detailed discussion on the schema,
dataset and the query workloads, please refer to [11].

28 M. Ramanath et al.

4.1 Query Workloads

A query workload consists of a set of queries with a weight (in the range of 0 to 1)
assigned to each query. These weights reflect the relative importance of the queries in
some way (for example, the query with the largest weight might be the most frequent).We
evaluated each of the algorithms on several query workloads based on (1) the quality of
the derived relational configuration in terms of the cost for executing the query workload,
and (2) the efficiency of the search algorithm measured in terms of the time taken by
the algorithm. These are the same metrics as those used in [1]. Note that the latter is
proportional to the number of distinct configurations seen by the algorithm, and also
the number of distinct optimizer invocations since each iteration involves constructing
a new configuration and evaluating its cost using the optimizer.

From the discussion of the proposed algorithms in Section 3, notice that the behavior
of each algorithm (which runs on the fully decomposed schema) on a given query
depends upon whether the query benefits more from merge transformations or split
transformations. If the query benefits more from split, then neither DG nor SG is expected
to perform better than IG.

As such, we considered the following two kinds of queries: S-Queries which are
expected to derive benefit from split transformations (Type Split, Union Distribution
and Repetition Split), and M-Queries which are expected to derive benefit from merge
operations (Type Merge, Union Factorization and Repetition Merge).

S-Queries typically involve simple lookups. For example:

SQ1: for $i in /IMDB/SHOW SQ2: for $i in /IMDB/DIRECTOR
where $i/TV/CHANNEL = 9 where $i/DIRECTED/YEAR = 1994
return $i/TITLE return $i/NAME

The query SQ1 is specific about the Title that it wants. Hence it would benefit from
a type split of Title. Moreover, it also specifies that TV Titles only are to be returned, not
merely Show Titles. Hence a union distribution would be useful to isolate only TV Titles.
Similarly, query SQ2 would benefit from isolating Director Names from Actor Names
and Directed Year from all other Years. Such splits would help make the corresponding
tables smaller and hence lookup queries such as the above faster. Note that in the example
queries above, both the predicate as well as the return value benefit from splits.

M-queries typically query for subtrees in the schema which are high up in the schema
tree. When a split operation is performed on a type in the schema, it propagates down-
wards towards the descendants. For example, a union distribution of Show would result
in a type split of Review, which would in turn lead to the type split of Review’s children.
Hence queries which retrieve subtrees near the top of the schema tree would benefit from
merge transforms. Similarly predicates which are high up in the tree would also benefit
from merges. For example:

MQ1: for $i in /IMDB/SHOW, MQ2: for $i in /IMDB/ACTOR,
$j in $i/REVIEW $j in /IMDB/SHOW

return $i/TITLE, $i/YEAR, $i/AKA, where $i/PLAYED/TITLE = $j/TITLE
$j/GRADE, $j/SOURCE, return $j/TITLE, $j/YEAR, $j/AKA,
$j/COMMENTS $j/REVIEW/SOURCE, $j/REVIEW/GRADE,

$j/REVIEW/COMMENTS, $i/NAME

Query MQ1 asks for full details of a Show without distinguishing between TV Shows
and Movie Shows. Since all attributes of Show which are common for TV as well as

Searching for Efficient XML-to-Relational Mappings 29

Movie Shows are requested, this query is likely to benefit from reduced fragmentation,
i.e., from union factorization and repetition merge. For example, a union factorization
would enable some types like Title and Year to be inlined into the same table (the table
corresponding to Show). Similarly, query MQ2 would benefit from a union factorization
of Show as well as a repetition merge of Played (this is because the query does not
distinguish between the Titles of the first Played and the remaining Played). In both the
above queries, return values as well as predicates benefit from merge transformations.

Based on the two classes of queries described above and some of their variations,
we constructed the following six workloads. Note that each workload consists of a set
of queries as well as the associated weights. Unless stated otherwise, all queries in a
workload are assigned equal weights and the weights sum up to 1.
SW1: contains 5 distinct S-queries, where the return values as well as predicates benefit
from split transforms.
SW2: contains 5 distinct S-queries, with multiple return values which do not benefit
from split, but predicates which benefit from split.
SW3: contains 10 S-queries with queries which have: i) return values as well as predicates
benefitting from split and ii) only return values benefitting from split.
MW1: contains a single query which benefits from merge transforms.
MW2: contains the same single query as in MW1, but with selective predicates.
MW3: contains 8 queries which are M-Queries as well as M-Queries with selective
predicates.
The performance of the proposed algorithms on S-query workloads (SW1-3) and M-
query workloads (MW1-3) is studied in Sections 4.2 and 4.3, respectively.

There are many queries which cannot be conclusively classified as either an S-query
or an M-query. For example, an interesting variation of S-Queries is when the query
contains return values which do not benefit from split, but has predicates which do
(SW2). For M-Queries, adding highly selective predicates, may reduce the utility of
merge transforms. For example, adding the highly selective predicate YEAR > 1990
(Year ranges from 1900 to 2000) to query MW1 would reduce the number of tuples.

We study workloads where the two types of transformations conflict in Section 4.4.
Arbitrary queries are unlikely to give much insight because the impact of split trans-
formations vs. merge transformations would be different for different queries. Hence,
we chose to work with a mix of S- and M-queries where the impact of split and merge
transformations is controlled using a parameter. Finally, in Section 4.5 we demonstrate
the competitiveness of our algorithms against certain baselines.

4.2 Performance on S-Query Workloads

Recall that DG does “deep” merges, SG does “shallow” merges and IG allows only
inlinings. S-Queries do not fully exploit the potential of DG since they do not benefit
from too many merge transformations. So, DG can possibly consider transformations
which are useless, making it more inefficient – i.e., longer run times without any major
advantages in the cost of the derived schema. We present results for the 3 workloads:
SW1, SW2 and SW3.

As shown in Figure 5(a), the cost difference of the configurations derived by DG
and SG is less than 1% for SW1, whereas SG and IG lead to configurations of the same

30 M. Ramanath et al.

(a) Final Configuration Quality (b) Efficiency of the Algorithms

Fig. 5. Performance of Workloads containing S-Queries

cost for SW1. This is because of the fact that all queries of SW1 benefit mainly from
split transforms – in effect, DG hardly has an advantage over SG or IG. But for SW2,
the cost difference between DG and SG jumped up to around 17% – this is due to the
return values benefiting from merge which gives DG an advantage over SG because of
the larger variety of merge transforms it can consider. The difference between DG and
IG was around 48%, expectedly so, since even the merge transforms considered by SG
were not considered in IG.

The relative number of configurations examined by each of DG, SG and IG are
shown in Figure 5(b). In terms of the number of relational configurations examined, DG
searches through a much larger set of configurations than SG, while SG examines more
configurations than IG. DG is especially inefficient for SW1 where it considers about
30% more configurations than IG for less than 1% improvement in cost.

4.3 Performance on M-Query Workloads

Figure 6(a) shows the relative costs of the 3 algorithms for the 3 workloads, MW1, MW2
and MW3. As expected DG performs extremely well compared to SG and IG since DG
is capable of performing deep merges which benefit MW1. Note that the effect of adding
selective predicates reduces the magnitude of difference in the costs between DG, SG
and IG.

In terms of the number of configurations examined also, DG performed the best as
compared to SG and IG. This would seem counter-intuitive – we would expect that since
DG is capable of examining a superset of transformations as compared to SG and IG, it
would take longer to converge. However, this did not turn out to be the case since DG
picked up the cost saving recursive merges (such as union factorization) fairly early on
in the run of DG which reduced the number of lower level merge and inline candidates
in the subsequent iterations. This enabled DG to converge faster. By the same token, we
would expect SG to examine fewer configurations than IG, but that was not the case. This

Searching for Efficient XML-to-Relational Mappings 31

(a) Final Configuration Quality (b) Efficiency of the Algorithms

Fig. 6. Performance of Workloads containing M-Queries

is because SG was not able to perform any major cost saving merges since the “enabling”
merges were never chosen individually (note the cost difference between DG and SG).
Hence, the same set of merge transforms were being examined in every iteration without
any benefit, while IG was not burdened with these candidate merges. But note that even
though IG converges faster, it is mainly due to the lack of useful inlines as reflected by
the cost difference between IG and SG.

4.4 Performance on Controlled S-Query and M-Query Mixed Workloads

The previous discussion highlighted the strengths and weaknesses of each algorithm.
In summary, if the query workload consists of “pure” S-Queries, then IG is the best
algorithm to run since it returns a configuration with marginal difference in cost compared
to DG and in less time (reflected in the results for SW1), while if the query workload
consists of M-Queries, then DG is the best algorithm to run.

In order to study the behaviour of mixed workloads, we used a workload (named
MSW1) containing 11 queries (4 M-Queries and 7 S-Queries).

In order to control the dominance of S-queries vs. M-queries in the workload, we
use a control parameter k ∈ [0, 1] and give weight (1 − k)/7 to each of the 7 S-queries
and weight k/4 to each of the 4 M-queries. We ran workload MSW1 with 3 different
values of k ={0.1, 0.5, 0.9}. The cost of the derived configurations for MSW1 are shown
in Figure 7(a). Expectedly, when S-Queries dominate, IG performs quite competitively
with DG (with the cost of IG being within just 15% of DG). But, as the influence of
S-Queries reduce, the difference in costs increases substantially.

The number of configurations examined by all three algorithms are shown in Fig-
ure 7(b). DG examines more configurations than IG when S-Queries dominate, but the
gap is almost closed for the other cases. Note that both SG and IG examine more config-
urations for k = 0.5 than in the other two cases. This is due to the fact that when S-Queries
dominate (k = 0.1), cost-saving inlines are chosen earlier; while when M-queries dom-

32 M. Ramanath et al.

(a) Final Configuration Quality (b) Efficiency of the algorithms

Fig. 7. Performance of Workloads containing both M- and S-Queries

inate (k = 0.9), both algorithms soon run out of cost-saving transformations to apply.
Hence for both these cases, the algorithms converge faster.

4.5 Comparison with Baselines

From the above sections, it is clear that except when the workload is dominated by S-
queries, DG should be our algorithm of choice among the algorithms proposed in this
paper. In this section we compare the cost of the relational configurations derived using
DG with the following baselines:
InlineUser (IU): This is the same algorithm evaluated in [1].
Optimal (OPT): A lower bound on the optimal configuration for the workload given a
specific set of transformations. Since DG gives configurations of the best quality among
the 3 algorithms evaluated, the algorithm to compute the lower bound consisted of
transforms available to DG. We evaluated this lower bound by considering each query
in the workload individually and running an exhaustive search algorithm on the subset
of types relevant to the query. Note that an exhaustive search algorithm is possible only
if the number of types involved is very small since the number of possible relational
configurations increases exponentially with the number of types. The exhaustive search
algorithm typically examined several orders of magnitude more configurations than DG.

We present results for two workloads, MSW1 and MSW2 (MSW1 contains 4 M-
and 7 S-Queries and MSW2 contains 3 M- and 5 S-Queries). The proportion of queries
in each workload was 50% each for S-Queries and M-Queries. The relative cost for
each baseline is shown in Figure 8. InlineUser compares unfavorably with DG. Though
InlineUser is good when there are not many shared types, it is bad if the schema has
a few types which are shared or repeated since there will not be too many types left
to inline. The figures for the optimal configuration show that DG is within 15% of the
optimal, i.e., it provides extremely high quality configurations. This also implies that the

Searching for Efficient XML-to-Relational Mappings 33

Fig. 8. Comparison of DG with the Baselines

choice of starting schema (fully decomposed) does not hamper the search algorithm in
finding an efficient configuration.

5 Optimizations

Several optimizations can be applied to speed up the search process. In what follows,
we illustrate two such techniques. For a more comprehensive discussion, the reader is
referred to [11].

5.1 Grouping Transformations Together

Recall that in DG, in a given iteration, all applicable transformations are evaluated and
the best transformation is chosen. In the next iteration, all the remaining applicable
transformations are evaluated and the best one chosen. We found that in the runs of our
algorithms, it was often the case that, in a given iteration in which n transforms were
applicable, if transformations T1 to Tn were the best n transformations in this order
(that is, T1 gave the maximum decrease in cost and Tn gave the minimum decrease),
other transformations up to Ti, for some i <= n, were chosen in subsequent iterations.
This being the case, grouping transformations T1 to Ti together has the potential to
save several iterations. Using this observation, we developed a variation of Algorithm 1,
called GroupGreedy (GG).

We tried this optimization for DG on several workloads and the results were very
encouraging. The cost of the final configuration of GG was within 1% of DG and the
number of configurations examined by GG were about 30% for MW1 and about 20%
for MW2 compared to DG.

5.2 Early Termination

One obvious optimization is to stop the algorithm once the decrease in the estimated cost
goes below a small threshold δ. This saves several iterations which are costly to perform,

34 M. Ramanath et al.

Fig. 9. Progress of DeepGreedy on Workload W

but do not give substantial decrease in cost. This optimization would be possible if the
decrease in cost is monotonic. However, during the course of our experiments, we came
across several workloads which did not exhibit this behavior. The progress of DG on such
a workload, W, is shown in Figure 9. Reasons for this behaviour are analyzed in [11].

Clearly, with an unfortunate value of δ, the algorithm would terminate at iteration 7
and miss the big cost decrease at iteration 8. Thus, while this optimization would result
in improved execution times, the derived schema may be suboptimal.

6 Related Work

Existing techniques for XML-to-relational storage can be broadly classified into: generic
(e.g., the edge mapping of [5]); data-centric, where the structure of the XML document
is mined to guide the mapping process (e.g., [4,14,18]); and schema-centric, which make
use of schema information in the form of DTD or XML Schema in order to derive an
efficient relational storage design for XML documents (see e.g., [15,16,17]).

The LegoDB system [1] was the first schema-centric cost-based approach for au-
tomatically generating XML-to-relational mappings and took into account the schema,
statistics and the query workload to derive a low-cost relation configuration. In this paper,
we examine the search problem in detail. More recently, a cost-based approach was also
described in [19] where a hill-climbing algorithm and a set of four transforms are used.
Though the goals of our work and theirs is the same, we differ in the set of transforma-
tions used (they consider transforms similar to inline/outline and type split/merge). Also,
we have developed a series of search strategies and proposed optimizations to prune the
search space.

Formalizing the problem of finding the optimal XML-to-relational mapping was
considered in [9]. They analyze the interaction between mapping and query translation
for a subset of XML queries and XML Schemas under two simple cost metrics. In
contrast, our goal in the paper is to develop practical algorithms for selecting good
decompositions.

Searching for Efficient XML-to-Relational Mappings 35

Support for XML storage is currently provided by all major commercial RDBMSs,
including SQLServer [3], Oracle XML DB [10] and DB2 [7]. Although different kinds
of mappings are available, these mappings either need to be defined by the user or are
fixed. These systems could benefit from a cost-based approach such as the one described
in this paper.

7 Conclusions and Future Work

In this paper, we described a framework for exploring the space of XML-to-relational
mappings and defined several transformations which exploit the regular expressions
in XML Schema (such as unions and repetitions). These transformations encompass
physical database design strategies such as vertical and horizontal partitioning – through
the use of inline/outline and union distribution respectively. The framework is extensible
and new transformations such as some of the OO-to-relational mapping techniques [13]
can be added.

We designed and implemented three greedy algorithms and studied how the quality of
the final configuration is influenced by the transformations used and the query workload.
We have also proposed optimizations to speed up the time taken by the search algorithm
with little loss in the quality of the final relational configuration. Experimental results
show that our new algorithms provide significantly improved relational schemas as
compared to those derived by previous approaches in the literature.

This study can serve as a platform for further investigation into the problem of
efficient storage of XML in relational backends. There are several directions for future
work. For example:

1. The query workloads considered in this paper contain queries which retrieve data
from the database. It would be interesting to investigate a broader range of workloads
such as those which involve updates to the database. Update queries are especially
significant if indexes and views are considered in the relational configuration.

2. Another scenario not so far addressed is what would happen if the application’s query
workload changes significantly in terms of the queries being asked. The challenge
would then be to find a “minimum change” relational configuration which is efficient
for the new workload as well as efficient in terms of the changes needed to the existing
configuration (i.e., schema evolution).

Acknowledgements. This work was supported in part by a Swarnajayanti Fellowship
from the Dept. of Science & Technology, Govt. of India.

References

1. P. Bohannon, J. Freire, P. Roy, and J. Siméon. From XML schema to relations: A cost-based
approach to XML storage. In Proc. of ICDE, 2002.

2. A. Brown, M. Fuchs, J. Robie, and P. Wadler. XML Schema: Formal description, 2001. W3C
working draft available at http://www.w3.org/TR/2001/WD-xmlschema-formal-20010320/.

36 M. Ramanath et al.

3. A. Conrad. A survey of Microsoft SQL Server 2000 XML features.
http://msdn.microsoft.com/library/en-us/dnexxml/html/xml07162001.asp?frame=true, July
2001.

4. M. Fernandez, W. C. Tan, and D. Suciu. Silkroute: trading between relations and XML.
WWW9/Computer Networks, 33(1-6), 2000.

5. D. Florescu and D. Kossman. Storing and querying XML data using an RDMBS. IEEE Data
Engineering Bulletin, 22(3), 1999.

6. J. Freire, J. Haritsa, M. Ramanath, P. Roy, and J. Siméon. Statix: Making XML count. In
Proc. of SIGMOD, 2002.

7. IBM DB2 XML Extender.
http://www-3.ibm.com/software/data/db2/extenders/xmlext/library.html.

8. Internet movie database. http://www.imdb.com.
9. R. Krishnamurthy, V. Chakaravarthy, and J. Naughton. On the difficulty of finding optimal

relational decompositions for XML workloads: a complexity theoretic perspective. In Proc.
of ICDT, 2003.

10. Oracle XML DB: An oracle technical white paper.
http://technet.oracle.com/tech/xml/content.html, 2003.

11. M. Ramanath, J. Freire, J. Haritsa, and P. Roy. Searching for efficient XML to relational
mappings. Technical Report TR-2003-01, DSL/SERC, Indian Institute of Science, 2003.

12. P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe. Efficient and extensible algorithms for multi
query optimization. In Proc. of SIGMOD, 2000.

13. M. Rys. Materialisation and Parallelism in the Mapping of an Object Model to a Relational
Multi-Processor System. PhD thesis, ETH, Zurich, 1997.

14. A. Schmidt, M. Kersten, M.Windhouwer, and F.Waas. Efficient relational storage and retrieval
of XML documents. In Proc. of WebDB, 2000.

15. J. Shanmugasundaram, K. Tufte, G. He, C. Zhang, D. DeWitt, and J. Naughton. Relational
databases for querying XML documents: Limitations and opportunities. In Proc. of VLDB,
1999.

16. I. Tatarinov, S. Viglas, K. Beyer, J. Shanmugasundaram, E. Shekita, and C. Zhang. Storing
and querying ordered XML using a relational database system. In Proc. of SIGMOD, 2002.

17. Wang Xiao-ling, Luan Jin-feng, and Dong Yi-sheng. An adaptable and adjustable mapping
from XML data to tables in RDB. In First VLDB Workshop on EEXTT, 2002.

18. M. Yoshikawa, T. Amagasa, T. Shimura, and S. Uemura. Xrel: A path-based approach to
storage and retrieval of XML documents using relational databases. ACM Transactions on
Internet Technology, 1(1), 2001.

19. S. Zheng, J-R. Wen, and H. Lu. Cost-driven storage schema selection for XML. In Proc. of
DASFAA, 2003.

	Introduction
	Framework for Schema Transformations
	Schema Tree
	From Schema Trees to Relational Configurations
	Schema Transformations
	Evaluating Configurations

	Search Algorithms
	InlineGreedy
	ShallowGreedy: Adding Transforms
	DeepGreedy: emph {Deep} Merges

	Performance Evaluation
	Query Workloads
	Performance on S-Query Workloads
	Performance on M-Query Workloads
	Performance on Controlled S-Query and M-Query Mixed Workloads
	Comparison with Baselines

	Optimizations
	Grouping Transformations Together
	Early Termination

	Related Work
	Conclusions and Future Work

