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As computational tools for simulation and 
data analysis have matured, researchers, 
scientists, and analysts have become in-

terested in understanding not only the determinis-
tic output of these tools, but also 
the uncertainty associated with 
their computations and data col-
lection. Consequently, there is an 
increasing interest in uncertainty 
quantification as an integrated 
part of simulation and data sci-
ence in various science and engi-
neering disciplines. Uncertainty 
quantification views the simula-
tion and data science pipelines as 
a random process containing pos-
sibly both epistemic (reducible) 
and aleatoric (by chance) uncer-
tainty. Quantification efforts in 
this random process are divided 
into roughly two categories:

■■ efforts to understand the uncertainty and/or 
variability of the process by examining instances 
(samples) of the process and

■■ efforts to determine models (such as probability 
theory) that capture the nature of the process.

The first of these categories, and the focus of this 
study, utilizes an ensemble of solutions meant to 
capture the inherent variability or uncertainty in a 
computational or data-science pipeline. Although 
we assume that the variability seen in the ensem-
ble can be attributed to some condition or prop-
erty of the generating process, we do not assume 
that articulation of the process via a mathematical 

model is straightforward, and hence we have only 
the ensemble members themselves from which to 
gain insight into the originating process.

Studying an ensemble in terms of the vari-
ability or dispersion between ensemble members 
can provide useful information and insight about 
the underlying distribution of possible outcomes. 
Correspondingly, ensemble visualization can be a 
powerful way to study this variability. However, 
a key challenge here is to convey the variability 
among ensemble members while preserving the 
main features they share. Preserving these fea-
tures is particularly challenging in cases where the 
ensemble members are not fields over which sta-
tistical operations such as mean and variance are 
well-defined, but instead are derived or extracted 
features such as isosurfaces.

In this article, we examine the effectiveness of 
the contour boxplot technique,1 a descriptive sum-
mary analysis and visualization methodology, in 
the context of a particular medical-data-science 
application: brain atlas construction and analy-
sis. We conducted an expert-based evaluation of 
the visualization of ensembles generated through 
shape alignment using image deformation in the 
construction of atlases (or templates) for brain 
image analysis. To accomplish this evaluation, 
we constructed a prototype system for visual-
izing and interacting with ensembles of 3D iso-
surfaces through a combination of 3D rendering 
(isocontouring) and cut planes (slices through 
3D volumetric fields). In addition, we generalized 
the algorithm1 to three dimensions as a direct 
extension of their analysis of isocontours to iso-
surfaces—that is, from codimension-one objects 
embedded in 2D to codimension-one objects em-

Visualizing variability in 
surfaces embedded in 
3D provides a means of 
understanding the underlying 
distribution of a collection 
of surfaces. An expert-based 
evaluation of various ensemble 
visualization techniques 
demonstrates the efficacy of 
using a 3D contour boxplot 
ensemble visualization 
technique to analyze shape 
alignment and variability in 
atlas construction and analysis.
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bedded in 3D. This generalization lets us compare 
an ensemble’s contour boxplot summaries to both 
the full enumeration of the ensemble as well as 
other traditional means of atlas evaluation (such 
as qualitative visual inspection of slices of the at-
las image or individual volumetric images used to 
construct the atlas). In collaboration with domain 
experts, we used this system to explore the efficacy 
of using ensemble visualization techniques for eval-
uating 3D shape alignment of brain MRI images.

The purpose of this article is to study and evalu-
ate the use of contour boxplots in a real-world data-
science application: the alignment of 3D shapes or 
surfaces in a population-based ensemble. Our hy-
pothesis is that the contour boxplot will let users 
summarize their data in a meaningful way that al-
lows either better or more efficient (faster) assess-
ment of the atlas construction as compared with 
explicit enumeration of the ensemble (that is, look-
ing at each image individually) or through more 
coarse-grained characterizations, such as examin-
ing the average intensity image or label (segmenta-
tion) probability maps.

Our evaluation results show that the contour 
boxplot methodology has the potential to sig-
nificantly benefit the application under study by 
providing a visualization of the ensemble’s quan-
titative summaries. Although we have formulated 
our hypothesis in the context of a particular appli-
cation, we believe that our evaluation may provide 
insight into other arenas where visualization and 
analysis of shape ensembles are desired. 

Brain Atlas Construction
Constructing an anatomical atlas for a collec-
tion of brain images is an important problem in 
medical image analysis. The goal of various atlas 
construction schemes is to construct a statistical 
representative image and an associated set of co-
ordinate transformations (deformations) from an 
ensemble of images.2 Anatomical atlases provide a 
common coordinate system (atlas space) in which 
to define reference locations of brain structures.

As part of the atlas construction process, non-
linear registration techniques generate deforma-
tions that can map the anatomies in an individual 
image to the atlas space (see Figure 1). The atlas 
construction process jointly estimates a represen-
tative image defining the atlas space (the atlas 
image) and the deformations aligning individual 
images to this atlas image (that is, it maps the im-
age individually to the atlas space). The atlas image 
generated by these techniques then represents the 
average (or normal) anatomy of this population. 
Such atlases help domain experts characterize the 

expected anatomical structure and variability of a 
population and compare different populations in 
terms of their group atlases (for example, healthy 
and unhealthy groups). Differences in the atlas 
anatomy can be identified both qualitatively by 
inspecting unaligned structures (when mapped 
to the atlas space) and quantitatively by analyz-
ing the deformations, quantifying the amount of 
change necessary to bring an individual ensemble 
member into alignment.

Atlas generation is an automated process, but it 
is not parameter-free, and the choice of param-
eters can greatly influence the quality of the result. 
In particular, nonlinear deformations computed 
for medical image registration are a trade-off 
between image matching and plausible deforma-
tions. For example, the deformation should not re-
sult in the elimination of anatomical features or 
noninvertible transformations. Hence, the defor-
mation is often controlled by tuning parameters 
to find a compromise between the mismatch be-
tween images and the regularity (smoothness) of 
the transformation. Because of the regularization 
of the deformations and the inherent anatomi-
cal differences among ensemble members, not all 
features will be perfectly aligned. This imperfect 
alignment manifests as blurring in the atlas im-
age where there is disagreement regarding voxel 
intensity among ensemble members when mapped 
to the atlas space.

Image 1

Atlas

Image 2

Image 3 Image 4

Transformation

Figure 1. An atlas construction scheme involves 
deforming and registering all ensemble members to 
the atlas. This deformation and registration process is 
called transformation to the atlas coordinate system 
or the atlas space.
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Correct tuning of the regularization parameters 
lets the deformations account for as much anatom-
ical variability as possible by correctly aligning the 
corresponding anatomy and not simply matching 
similar intensities. This alignment of correspond-
ing anatomy is essential for an atlas to be effective 
in later statistical analyses of the population. Op-
timization convergence can be easily checked, but 
the degree to which particular structures align is 
analyzed qualitatively by observing the amount of 
blurring in the atlas image and by checking each 
ensemble member’s alignment (deformed to the 
atlas space) with the atlas image. The initial align-
ment is often unsatisfactory, which results in an 
iterative process of parameter tuning and rerun-
ning the atlas-generation process.

In addition, because of problems with image 
scans, extreme variability among the ensemble 
members, or incorrect preprocessing, it may not be 

possible to achieve reasonable alignment with the 
atlas image for some set of outlier images. Identi-
fying and removing such images is often another 
part of the atlas-generation procedure. Automated 
measures of global image alignment are available, 
but they do not give insight into why or in which 
spatial regions particular ensemble members have 
poor alignment. Depending on the proposed appli-
cation of the atlas, these insights may be pertinent 
to the decision to prune or keep particular images 
(ensemble members).

This manual iteration of parameter tuning/
pruning and atlas generation eventually yields the 
final atlas to be used in further analysis. We should 
note two important points about the final atlas im-
age. First, this representative image/segmentation 
is not a member of the ensemble itself, but rather 
an image/segmentation generated through statis-
tical operations on the deformation fields. That 
is, it is not a member of the population that best 
represents the population, but rather an attempt at 
statistically characterizing a representative image. 
Second, the iterative process does not guarantee 
that the resulting atlas image will be crisp, that 
there will be no blurry regions in the image. The 
image ensemble compared with the atlas image 

scenario is similar in spirit to the feature-space av-
eraging issue highlighted in earlier work1—that is, 
the average field’s isosurface (segmentation) is of-
tentimes not equivalent to a representative of a set 
chosen from isosurfaces of the individual fields. 
Thus, the avoidance of feature-space averaging is 
why we believe the contour boxplot methodology 
provides a useful way to summarize the type of 
ensemble data where analyzing feature sets and 
their representatives is important.1 Because the 
manual, qualitative evaluation of shape alignment 
(as a result of image registration) is challenging, 
quantifying the variability of the shape alignment 
and visualizing this variability can facilitate the 
domain experts’ ability to effectively validate the 
atlas-construction scheme.

Data Preprocessing for Atlases
The images analyzed in this article are 3D MRI im-
ages obtained from the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) database.3 Each brain 
image in our ensemble was also provided with a 
corresponding label map volume with various an-
atomical structures segmented and marked, with 
each brain region having a unique integer value. 
To analyze a specific structure within the brain 
anatomy, we used the label assigned to that struc-
ture to select it and mask out the remaining region 
in all members of the ensemble.

The atlas construction scheme we used is the 
unbiased diffeomorphic atlas,2 which was imple-
mented as part of an open-source medical im-
age atlas-construction package called AtlasWerks 
(www.sci.utah.edu/software/atlaswerks.html). 
We constructed atlases from MRI image ensembles 
using different parameter choices and/or different 
ensembles (subject groups). In each case, after con-
structing the atlas using the MRI images, the cor-
responding label map images were transformed to 
the common (atlas) coordinate space using defor-
mation fields calculated during the atlas-construc-
tion process we described in the last section. These 
transformed label maps were then passed as input 
to the preprocessing pipeline (which we describe in 
the next section) for visualization.

For a well-constructed atlas, we can expect 
the anatomical structures in the brain to have 
a relatively small amount of variability after be-
ing transformed to the atlas space. We selected 
two anatomical structures in the brain expected 
to pose different levels of difficulty during atlas 
construction: the left ventricle and the cortex. The 
ventricle is often considered to be a distinct struc-
ture (with high contrast) in the brain image and, 
therefore, can be expected to exhibit good align-

Deformations computed for  
medical image registration are a  

trade-off between image matching  
and plausible deformations.
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ment among ensemble members in the atlas space 
(if all goes well). The cortex was selected as an 
example of an anatomical structure with a com-
plex shape (see Figure 2), a significant challenge 
for registration and alignment.

Expert Evaluation Study Details
Domain experts use various open-source or 
commercial packages to visualize slices from in-
dividual volumetric images or simply from the 
average of the aligned images, but to the best of 
our knowledge, ours is the first attempt to study 
shape alignment in atlas construction using en-
semble visualization techniques. For our evalua-
tion study, we had access to a group of five domain 
experts who work with atlases regularly and who 
volunteered to participate in our expert evaluation 
study. This group included graduate students, staff 
researchers, and faculty who use atlases and medi-
cal image ensembles in their research projects.

We asked the participants to explain their current 
methodologies for evaluating the atlas construc-
tion scheme as well as the quality of the atlases 
in terms of being a representative of the ensemble. 
As mentioned earlier, we learned that this process 
is often performed qualitatively. A visual inspec-
tion is carried out to ascertain whether the shapes 
of the anatomical structures in the atlas space are 
realistic. Experts also mentioned that, in order for 
an atlas to be helpful for different medical imaging 
applications such as the segmentation of a specific 
brain structure, they need the atlas image and the 
anatomical structures therein to have sufficient 
contrast. For example, they expect to see a crisp 
boundary (in terms of the average combined image 
intensities) between gray and white matter in the 
brain. Therefore, the sharpness of the boundaries 
of the anatomical structures in the atlas image is 
another criterion examined qualitatively to evalu-
ate the ensemble’s alignment. These qualitative 
evaluations are often performed on a subset of the 
ensemble (in the atlas coordinate system) because 
visualizing the entire ensemble results in too much 
clutter and blurriness.

Figure 3 shows a snapshot of a slice of the brain 
atlas image used as a common (atlas) coordinate 
system to register individual label maps from the 
ensemble.

Visualization Pipeline
To describe our prototype system’s visualiza-
tion pipeline, we start with a brief summary of 
various ensemble visualization strategies that we 
considered and incorporated into our prototype 
system. We then provide an overview of the pipe-

line and our design choices to mitigate the chal-
lenge of visualizing and rendering an ensemble 
of 3D isosurfaces.

Ensemble Visualization Overview
Visualization is often data-driven, and therefore 
uncertainty visualization schemes are typically de-
signed to deal with the type of data being visual-
ized. For scientific data, users are often interested 
in visualizing derived features of their data, such 
as transition regions (or edges), critical points, 
and isosurfaces (of volumetric data), as well as 
the uncertainty associated with such feature sets. 

Figure 2. Example anatomical structure: the cortex 
(green) and the ventricle (red). This image shows the 
segmentation provided by the label map volume for 
a typical ensemble member. The coarseness of the 
segmentation seen in this label map is mitigated by 
smoothing for the final visualization.

(a) (b)

Figure 3. Atlas image slice constructed using AtlasWerks: (a) Atlas image 
slice and (b) MRI image slice. The anatomical structures in the atlas 
image usually have lower contrast and fuzzier edges compared with the 
original MRI images. This fuzziness results from performing averaging 
while constructing the atlas.
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(A thorough review of the rich literature on un-
certainty visualization is beyond the scope of this 
article. Interested readers can consult these works 
for further details on recent advancements on 
this topic.4,5 )

The focus here is the visualization of isosurfaces 
in the context of uncertain scalar fields, which has 
been studied somewhat extensively. Most relevant 
to the application under study (atlas construc-
tion) is the visualization of uncertain isosurface 
extracted from an ensemble of scalar fields.

Here we provide a brief summary of three classes 
of popular techniques for visualization of uncer-
tain isosurfaces that are extracted from ensembles 
of scalar fields. The following three techniques were 
chosen to represent the range of strategies for rep-
resenting an ensemble. To analyze the alignment, 
or lack thereof, of shapes in an ensemble, we incor-
porated representative members of these technique 
categories as part of our prototype system.

Enumeration. A widely used approach for ensemble 
visualization is the direct visualization of all en-
semble members. Direct visualization has gained 
significant interest in applications such as weather 
forecasting and hurricane prediction.6 Ensemble-
Vis is an example of a data analysis tool designed 
to visualize ensemble data.7 It uses multiple views 
of fields of interest to enhance the visual analysis 
of ensembles.

We incorporated direct visualization of 3D en-
semble members (see Figure 4b) by rendering the 
curves formed by the region of intersection of 
each ensemble member’s codimension one isosur-
face with a cut plane. As long as the isosurface 
embedded in 3D is closed, closed curves will be 
generated when the isosurface is sliced for visual-
ization purposes. We refer to this visualization as 
a spaghetti plot.

To facilitate the interpretation of the individual 
ensemble members, we rendered each of these 
curves with distinct and random colors. There are 
a variety of options for rendering the enumera-
tion of all 3D surfaces, including transparency, 
but clutter is a significant challenge.6 For this 
work, we present the surfaces of the innermost 
and outermost volumetric bands formed by all 
ensemble members. User studies have suggested 
the effectiveness of direct ensemble visualization 
techniques,6 but such approaches do not provide 

Region C

Region D

Region A

Region B

Region B

Region D
Region C

Region A

(a)

(b)

(c)

Figure 4. Three visualizations of ventricles from an 
ensemble containing 34 images from the Alzheimer’s 
Disease Neuroimaging Initiative (ADNI) dataset 
transformed to a common atlas space: (a) 3D contour 
boxplot visualization, where dark purple indicates the 
50 percent volumetric band, the 100 percent band 
volume is in light purple, the median is in yellow, and 
outliers are in red (on the cutting plane); (b) direct 
visualization of the ensemble members (spaghetti 
plot); and (c) 3D average intensity image.
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any quantitative information about the data un-
certainty and rely solely on the user for interpret-
ing data.

Parametric probabilistic summaries. Many uncer-
tainty visualization schemes use probabilistic 
modeling to convey quantitative information re-
garding data uncertainty. These techniques often 
rely on a certain kind of statistical model such as 
multivariate normal distributions.

As a representative of such techniques, we chose 
to consider the concept of level-crossing probabili-
ties (LCP).8 For visualization, we implemented the 
3D probabilistic marching cubes algorithms (pro-
posed based on LCP)9 as part of our initial visual-
ization system. Probabilistic marching cubes rely 
on approximating and visualizing the probability 
map of the presence of the isosurface at each voxel 
location. However, the use of parametric modeling 
can limit the capability of this technique. Approxi-
mating the underlying distribution that gives rise to 
the ensemble and presenting the user with only ag-
gregated quantities of the inferred distribution can 
be misleading in some applications. For instance, 
this approach can often hide or distort structures 
that are readily apparent in the ensemble.

Nonparametric descriptive summaries. An alterna-
tive strategy that relies on neither enumeration 
nor parametric modeling of the underlying dis-
tribution is to form descriptive statistics of an 
ensemble. Descriptive statistics offer an ensemble 
visualization paradigm for understanding or inter-
preting uncertainty from an ensemble’s structure. 
The notion of centrality is a natural approach to 
understanding an ensemble’s structure. Because 
an ensemble is an empirical description of its dis-
tribution, some instances from it are more central 
to the distribution and therefore are more typical 
within the distribution.

The notion of data depth provides a formalism 
for characterizing how central a sample is within 
an ensemble. Data depth provides a natural gen-
eralization of rank statistics to multivariate data.10 
The univariate boxplot (or whisker plot) is a con-
ventional approach to visualize order statistics. 
Boxplot visualizations provide a visual represen-
tation of an ensemble’s main features, such as the 
most representative member (the median), quar-
tile intervals, and potential outliers. The notation 
of data depth has been generalized for ensembles 
of isocontours.1 Researchers have also proposed 
the contour boxplot technique to summarize ro-
bust and descriptive statistics of ensembles of 2D 
isocontours.1

In our system, we algorithmically extend and 
implement the contour boxplot analysis for iso-
surfaces embedded in 3D (see Figure 4a) as an 
example of visualization techniques based on an 
ensemble’s nonparametric descriptive statistical 
summaries.

Ensemble Visualization Prototype System
At a high level, our prototype system consists of 
two stages: data preprocessing and visualization 
(see Figure 5).

When visualizing isosurfaces of a binary 3D 
segmented image, it is often necessary to perform 
smoothing to reduce aliasing artifacts and facili-
tate 3D rendering and shading. First, we perform 
this smoothing in a two-step preprocessing stage. 
In the first step, the binary partitioned image is 
antialiased using an iterative relaxation process.11 
Next, a small amount of mesh smoothing is per-
formed on the isosurface mesh generated from the 
antialiased binary image. All visualization prepro-
cessing operations occur on the 3D volume (and 
corresponding codimension one isosurfaces) prior 
to cut-plane extraction.

The second stage includes some visualization 
strategies to facilitate the perception and naviga-
tion of the rendered 3D objects. To improve shape 
perception in our application, we include interac-
tivity with renderings of 3D objects as part of the 
visualization system. In our settings, the user can 
rotate the object displayed on the screen using a 
standard trackball interaction mechanism. The 
system lets the user select cutting planes, which 
clip a portion of the volume displayed on the 
screen, to render cross-section views of surfaces 
embedded in 3D. The user can also interactively 
orient and translate the cutting plane. Addition-
ally, the system provides the flexibility of having 
one or multiple cutting planes and interactively ad-
justing their position and orientation. The system 

Ensemble feature
extraction

Dual cut planes

Filtering,
feature selection

Surface or volume
rendering

Image object
manipulation

Antialiasing

Data preprocessing Visualization

Mesh
smoothing

Figure 5. Overview of prototype system designed for shape alignment 
evaluation using ensemble visualization. The prototype system consists 
of data preprocessing and visualization stages.
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interface lets the user interactively select various 
features of interest for rendering in order to focus 
on particular features of interest. For example, the 
user can select specific ensemble members to be 
rendered individually.

In the case of 3D contour boxplots, we per-
formed the analysis on the 3D binary segmented 
volumetric data (in the preprocessing stage) and 
rendered the results interactively. Although the 
analysis was performed on the volumetric data 
leading to volumetric 50 and 100 percent bands, 
we rendered the visualization of the statistical 
summaries only on chosen cut planes to deal with 
the issue of occlusion. For instance, in the absence 
of a cut plane, the 100 percent band entirely oc-
cludes the median shape and the 50 percent band.

Evaluation
To demonstrate the efficacy of using ensemble vi-
sualization techniques to study the alignment of 
MRI brain images during brain atlas construc-
tion, we gathered feedback in an expert evalu-
ation study of the proposed prototype system. 
We described the prototype system to our expert 
evaluators (whom we call participants) after a 
walk-through presentation of the different en-
semble visualization techniques. The participants 
were able to interact with the system and switch 
through the various visualization. For our study, 
we solicited their feedback on the visualization of 
two anatomical structures: the left ventricle and 
the cortical surface. We paid particular attention 
to the participants’ comments concerning the 
suitability of ensemble visualization for this ap-
plication. As the participants interacted with our 
system, we gained useful insights into the atlas 
data. We describe three examples here.

Local Variability
In our first example, we focus on analyzing the 
variability within an ensemble of different regions 
of brain ventricles transformed to a common at-
las space using the unbiased, diffeomorphic ap-
proach.2 Ensemble visualization not only helps 
general users identify regions that are either well 
or poorly aligned, but also provides insight regard-

ing whether the variability is due to differences in 
shape, position, or both.

Figure 4 shows the three approaches to visual-
izing the aligned ventricles for an ensemble of 
34 brains. In Figure 4a, one can immediately 
identify regions of high variability. For example, 
in region A, most of the variability is outside the 
50 percent band, which means that less than 
half the ensemble members contributed to this 
variability.

Looking at the spaghetti plot in Figure 4b, we 
see there are in fact only two ensemble members 
that significantly differ from the other members 
in region A. These results show that the variability 
is due to overall position as well as shape in this 
region. In region B in Figure 4a, we notice that 
the variability can be attributed to significantly 
different shapes of the isocontours and that these 
shapes would not easily be aligned through the 
smooth transformations in this atlas and may re-
quire parameter tuning to achieve alignment. By 
observing region C in Figures 4a and 4b, we see 
that the variability comes mostly from the posi-
tions of the isocontours. Results in region C also 
show that no particular ensemble member is dis-
proportionately responsible for the variability—the 
width of the 50 percent band is nearly that of the 
100 percent band in this region, and outliers align 
well with the median contour.

Finally, region D in Figure 4a demonstrates an 
area of low variability across the ensemble and 
provides an example of good alignment of all the 
ventricles, which is confirmed by the spaghetti 
plot in Figure 4b. Figure 4c shows a volume-ren-
dered 3D version of the average intensity image 
for comparison. The average intensity image is an 
essential part of the atlas, but it does not provide 
the same insights for debugging the atlas in a de-
tailed way.

We also showed the participants volume render-
ings of LCP values, as suggested in earlier work.9 
The participants noted that the LCP visualization 
shows almost the same information as the aver-
age intensity image in Figure 4c, which is already 
used extensively during atlas construction. They 
did not feel that further exploration of this form 
of ensemble uncertainty visualization for evaluat-
ing atlases would be useful, and therefore we did 
not include comprehensive results from LCP ren-
derings in this study.

Overall Variability
The second example was chosen to evaluate whether 
ensemble visualization can also provide insight 
into the overall variability among the members of 

The contour boxplot, as part of 
the atlas construction process, can  

help users tease apart the different  
aspects of variability.
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an ensemble of aligned shapes. An understanding 
of the overall variability, as opposed to local vari-
ability, is useful not only for understanding how 
well a particular atlas was constructed, but also 
for comparing different atlases.

For this example, we constructed three atlases, 
each with an ensemble size of 30. The first atlas 
was constructed with a high value of regulariza-
tion (transformation smoothing), λ = 1.0; a sec-
ond atlas was constructed for the same ensemble 
while using a low regularization value, λ = 1/9; 
and a third atlas was constructed from a different 
ensemble (subject group) with the regularization/
smoothing at λ = 1/9.

Figures 6 and 7 shows slices of intensity atlases 
and contour boxplot visualizations for each of 
the three cases. Figure 6 presents a slice of the 
intensity image for each atlas, and Figure 7 dem-
onstrates the 3D contour boxplot visualization of 
the cortical surfaces for atlases corresponding to 
the intensity images in Figure 6.

Using a high value for the regularization param-
eter enforces high smoothness of the deformation 
fields, which in turn makes it harder to arrive at 
a set of deformations that would perfectly align 
all the individual images. This lack of alignment 
leads to high variability between isosurfaces in 
the ensemble. Such high variability is easily visible 

(a) (b) (c)

Figure 6. Slices of average intensity atlases for ensembles of 30 brain images: (a) High value of regularization 
(transformation smoothing), λ = 1.0; (b) the same ensemble with low regularization value, λ = 1/9; and from a 
different ensemble (subject group) with the regularization/smoothing at λ = 1/9.

(a) (b) (c)

Region E Region E Region F Region F

Region H

Region G

Figure 7. Associated contour boxplot visualizations for cortical surfaces in Figure 6: (a) Atlas constructed with high regularization 
of deformation, (b) atlas constructed with low regularization, and (c) atlas with low regularization using a different ensemble 
than in the other columns.
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by looking at region E in Figure 7a, where the 50 
and 100 percent bands are wider than in the cor-
responding region of the atlas with low regulariza-
tion (see Figure 7b). Better image alignment when 
the atlas is constructed with low regularization is 
also evident in region E by comparing contours of 
the median and outlier shapes rendered on the cut 
plane in Figures 7a and b. We see that the median 
and the outlier shapes are poorly aligned for images 
aligned with an atlas constructed with high regu-
larization (see Figure 7a), whereas the alignment 
is much better when the atlas is constructed with 
low regularization.

Finally, the third atlas in this example (see 
Figures 6c and 7c) demonstrates the effect of in-
herent variability among the ensemble members 
(brain images) on the atlas construction process. 
We see that in many regions of Figure 7c, for in-
stance in region F, the 100 percent band is signifi-
cantly wider than the 50 percent band, indicating 
a significant spread in the distribution of surfaces, 
which differs from the variability seen in the cor-
responding region in Figure 7b, where both bands 
nearly overlap. Furthermore, in the third atlas we 
see that the outlier is well aligned with the me-
dian in some regions (see region G), but it is poorly 
aligned in others (see region H). This example 
demonstrates that shape and surface variability in 
atlases depends, in addition to construction pa-
rameters, on the inherent variability of shapes in 
the ensemble. Thus, the contour boxplot, as part of 
the atlas construction process, can help users tease 
apart these different aspects of variability.

Member Alignment
In addition to aiding in the understanding of the 
general alignment of shapes in an ensemble, the 
contour boxplot is also useful in conveying to the 

general user how well a particular shape is aligned 
with respect to the rest of the ensemble. Such 
knowledge is particularly useful in the case of out-
lier shapes. Atlas construction is often an iterative 
process, and identifying outlier images that do not 
align sufficiently with the atlas is an important 
intermediate step in the process.

In the contour boxplot in Figure 8c, we see a sin-
gle outlier shape and its alignment relative to the 
ensemble. By comparing this visualization with an 
average intensity image of the left ventricle region 
(Figure 8a), we see that an anomaly in region I 
(Figure 8c) shows as a barely perceivable increase 
in intensity in Figure 8a. A similar observation 
can be made from the intensity image slice of the 
outlier member shown in Figure 8b. However, the 
anomaly shows up clearly in the contour boxplot, 
and because it is outside the 100 percent band, 
we know that the degree of misalignment of this 
shape is rare within the ensemble of ventricles.

Region I also demonstrates the challenges of as-
sessing geometry in 3D because distances between 
surfaces can be exaggerated when viewing them 
on a single cut. However, interacting with the vi-
sualization by moving and rotating the cut plane 
can help verify the 3D shapes of rank statistics and 
the surface geometries and separation distances.

In some cases, aligned shapes can differ in size 
from the rest of the ensemble. For instance, Fig-
ure 8c shows that the outlier ventricle is notice-
ably smaller than the median ventricle in regions 
J and K, which is not the case in region L. This 
observation is not possible in the corresponding 
intensity images. These size differences occur for 
several reasons. In this example, for instance, the 
outlier ventricle may have been different and ir-
regular to begin with. Another reason could be 
mislabeling of the ventricular region during the 

(a)

(b) (c)

Region J

Region K Region I

Region L

Figure 8. Visualizations of left ventricles. Crosses mark the correspondence between the images. (a) Left ventricle slice from an 
intensity image of the atlas. (b) Left ventricle slice of an ensemble member identified as an outlier by data depth analysis. (c) 
Contour boxplot visualization of an ensemble of 34 ventricles in the atlas space.
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segmentation process to generate that image’s la-
bels. Finally, the process of generating deforma-
tions during the atlas construction might fail, 
leading to irregularities for an ensemble member 
when mapped onto the atlas space. The contour 
boxplot can provide information that can help 
the user decide whether or not any particular 
outliers need to be removed from the ensemble 
or if further investigation is necessary to identify 
causes of possible misalignment.

Technique Comparison
At the conclusion of our study, we asked the par-
ticipants to comment on their experience with the 
system, including the applicability of such a sys-
tem if it were integrated into an atlas construction 
software. We also asked them to compare the en-
semble visualizations to the evaluation techniques 
they currently use. As we mentioned earlier, the 
two main techniques currently used for atlas eval-
uation are inspecting unaligned structures (when 
mapped to the atlas space) or analyzing the defor-
mations, quantifying the amount of change neces-
sary to bring an individual ensemble member into 
alignment.

We collected the following observations from 
the participants in this study:

■■ Being able to visualize the extent of the varia-
tion among the ensemble of aligned shapes in 
terms of quantitative percentile information us-
ing the contour boxplot visualization was help-
ful for comparing various atlas-construction 
schemes (or comparing atlases that were con-
structed from different ensembles or parameter 
settings). The participants also mentioned that 
the contour boxplot has the potential to help 
reduce the time needed to gain insights regard-
ing the quality of the atlas. 

■■ State-of-the-art techniques for evaluation and 
visualization of atlases provided limited in-
formation about the variability that remained 
within an ensemble after transforming it to the 
atlas space. Deformation and image match ener-
gies (quantities that are optimized during image 
registration in atlas construction) are not able to 
provide insight into the geometric discrepancies 
that are crucial to understanding atlas quality. 

■■ The contour boxplot’s ability to effectively locate 
and characterize different types of variability 
was valuable in atlas construction. 

■■ An automated and statistically robust way of 
identifying and visualizing outliers in an en-
semble can play a major role in constructing 
an atlas. 

■■ The spaghetti plot helped the participants view 
the contours of specific ensemble members other 
than the median or outliers. 

■■ The contour boxplot and the spaghetti plot were 
able to convey important details pertaining to 
the variability in an ensemble, whereas the av-
erage intensities had limited utility because of 
their general fuzziness.

The goal of the application we describe here is 
to evaluate the alignment of 3D shapes, in par-
ticular the alignment of 3D MRI images that have 
been transformed to a common atlas space us-
ing various ensemble visualization methods. We 
found that the ensemble visualization methods 
are helpful in characterizing the shape alignment 

and, furthermore, provide insights that are useful 
in understanding the variability in alignment. An 
understanding of the type or location of the vari-
ability can be helpful in tuning parameters used 
in atlas construction and/or removal of outliers to 
achieve better alignment.

We also observed that the contour boxplot 
emerged as a clear favorite of our participants. 
One of the contour boxplot’s salient features that 
makes it distinct from the other ensemble visu-
alization approaches is its ability to convey an 
aggregated result from the analysis of all shape 
regions in the ensemble on any arbitrary cut 
plane. For example, visualizing a slice of the in-
tensity image, or contours on a cut plane using 
the spaghetti plot, conveys the variability for only 
the region intersecting the cut plane, whereas a 
contour boxplot visualization using the same cut 
plane also provides information about the median 
and outlier contours that are calculated from a 
global analysis of contours.

The contour boxplot, however, has a drawback: 
it does not give the user much information about 
specific ensemble members, other than the me-
dian or the outliers. For such cases, the spaghetti 
plot with interactivity that allows highlighting 
of specific ensemble members can augment the 

The ensemble visualization methods 
are helpful in characterizing the shape 
alignment and provide insights that are 
useful in understanding the variability  
in alignment.

g3raj.indd   69 4/19/16   2:15 PM



70	 May/June 2016

Feature Article

contour boxplot by providing more detail if the 
general user wishes to focus on specific anatomical 
areas or members of the ensemble.

Future work for our system in the context of 
the current application includes refining the 

system in order to address the study participants’ 
suggestions, such as viewing the specific struc-
tures in the context of the whole brain and more 
interaction options. Furthermore, the ensemble 
visualization approaches we discussed here can 
be integrated into an atlas construction package 
to provide users with the ability to interactively 
inspect the shape alignments and the variability 
among ensemble members after atlas construc-
tion. Motivated by the feedback from the partici-
pants, a more comprehensive study is required to 
examine the applicability of ensemble visualization 
to compare different atlas-construction schemes.

Studying shape variability has applications in 
various branches of science. In molecular dynam-
ics, researchers study different types of molecu-
lar structures and the shapes of their potential 
fields in solutions (which vary stochastically) 
to understand, for instance, their biochemical 
properties.12 Scientists are also interested in 
the evolution of the shape of molecules. For ex-
ample, the surfaces of 3D molecular chains are 
of significant interest for comparison of various 
types of protein structures.12 Figure 9a shows the 
contour boxplot visualization of the surface of an 
ensemble of simulated HIV molecules. The ensem-
ble members underwent a Procrustes alignment 
(translation, rotation, scale) using the positions 
of the underlying molecules. The potential fields 
that form these contours are inherently smooth, 
and thus there was no need to preprocess this 
volume data.

Another application where the study of shape 
variability and alignment is of significant inter-
est is fluid mechanics. In fluid mechanics, when 
developing models of vortex behavior, scientists 
often study the variability in the shapes of vortex 
structures among different simulations (for ex-
ample, using slightly different parameter settings 
or boundary conditions) to confirm that their ob-
servations are repeatable,13 rather than a numeri-
cal artifact of a particular simulation. The center 
of an eddy corresponds to low pressure values in 
the flow, and hence studying the pressure field of 
a fluid flow can help detect the position of the ed-
dies and regions of high vortices. For this case, we 
used the 2D incompressible Navier-Stokes solver as 
part of the open source package Nektar++ (www.
nektar.info) to generate an ensemble of 28 fluid 
flow simulation runs. These simulations were de-
signed for a steady fluid flowing past a cylindrical 
obstacle. For each of the ensemble members, we 
randomly perturbed the initial conditions such 
as inlet velocity and Reynolds number. For this 
example, the pressure dependence in the third 
dimension was computed analytically. Figure 9b 
shows the contour boxplot visualization of the 
isosurfaces of the pressure volume.

In addition to those we have showcased here, 
there are many possible applications that could 
benefit from the contour boxplot summary and 
visualization technique.�
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Figure 9. Contour boxplot visualizations. (a) Visualization for an ensemble of 100 simulated HIV protein. Here, 
we see the median contour in yellow and the outlier contours in red. (b) Visualization of the isosurface of a 
pressure field in a fluid flow. The pressure is considered a function of depth to generate a 3D pressure volume. 
The median contour is in yellow, and the outlier contours are in red.
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